表面等离子体共振及其在探测金表面大分子方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振(surface plasmon resonance)可以存在于金属和电介质的交界面上,它的局域电场放大效应使得它对表面的特性非常敏感。在本论文中表面等离子体共振技术被用来研究金表面的大分子自组装效应。
     我们首先进行了一些实验和理论的工作来提高表面等离子体共振探测器的性能。通过对表面等离子体共振系统用多层膜模型来模拟,并且用菲涅耳理论来处理它的反射,我们研究了实验结果和理论模拟之间差别的来源。我们发现这种差别主要并不是由金表面的粗糙引起的,而是由金膜的紧密度引起的。我们改进了金膜的制备方法来减小实验结果与理论计算之间的差别。通过高沉积速度制备的金膜具有更高的紧密性,并且它的表面更平整,因此更适合制备高性能的SPR探测器。
     自组装单层膜(self-assembed monolayers)被制备在金表面上用来帮助吸附DNA等大分子。我们成功的制备了几种不同的自组装单层膜,并且通过电化学阻抗谱(electrochemical impedance spectroscopy)测试了它们的特性。此外,我们还通过表面等离子体共振技术实时监测了自组装单层膜形成的动力学过程。我们证明了通过巯丙基三甲氧基硅烷((3-Mercaptopropyl)trimethoxysilane)和3-氨丙基三乙氧基硅烷(3-Aminopropyl-triethoxysilan)构造的双层自组装单层膜来吸附DNA分子是可行的,但是它的效率不高。我们通过电化学阻抗谱和表面等离子体共振详细研究了巯基十一烷醇(11-Mercaptoundecanol)和11-氨基-1-十一烷硫醇(11-Amino-1-undecanethiol)分子构成的混合自组装单层膜。因为在缓冲液中巯基十一烷醇分子是不带电的,但是11-氨基-1-十一烷硫醇分子可以带有正电荷,具有自组装单层膜的表面的电荷可以通过改变这两种分子的比例以及缓冲液的特性来调节。我们研究了他们与溶液离子力以及酸碱度的关系。这种巯基十一烷醇/11-氨基-1-十一烷硫醇的自组装单层膜具有很好的电流阻断特性。此外,我们还研究了它们对施加电压的反应,这些自组装单层膜在一个很小的电压范围内丧失这种好的电流阻断特性,这个范围相对于银/氯化银标准参考电极一般为[-100mV,0mV]。
     为了制备基于表面等离子体共振的DNA芯片,我们致力于研究DNA在这些巯基十一烷醇/11-氨基-1-十一烷硫醇的混合自组装单层膜表面的吸附。我们通过表面等离子体共振测量了DNA吸附在这些混合自组装单层膜上的动力学过程。研究的DNA有两种,一种为3000对基的环形质粒DNA,另外一种为200对基的直DNA。我们分别研究了DNA吸附对于溶液中DNA的浓度、表面电荷、溶液离子力的关系。吸附在金表面的DNA的拓扑图也用原子力显微镜进行了观察。通过这两种方法的结合,我们可以提取DNA吸附的很多信息。
     为了从DNA芯片上提取基因信息,我们提出利用表面等离子体共振的电场增强效应构建一种新的灵敏的表面二次谐波显微镜。数值模拟的结果表明这种表面等离子体共振增强二次谐波显微镜能够探测更多的表面二阶非线性极化系数。它还具有高分辨率表面成像和探测表面分子取向的潜力。
Surface plasmon resonance (SPR) occurs at the interface of metal and dielectric, whose local field enhancement effect makes it very sensitive to the properties of the surface. This SPR technique is used to study the self-assembling of macromolecules on gold surfaces in this thesis.
     The research work reported here started from improving the performance of SPR sensors. Some theoretical and experimental works were firstly carried out to analyze the differences between experimental results and theoretical calculations. The SPR configuration is modeled by a multilayer system, its reflection is treated by Fresnel's theory. The topology of gold layer surface is measured by atomic force microscopy (AFM), and the influences of the surface roughness is modeled by effective medium theories. It is found that the differences are not mainly caused by the surface roughness of gold layer, but rather by the inhomogeneity of gold layer. The process of gold deposition is improved to prepare gold films of higher compactness. Higher deposition speed are experimentally proved to result in more compact gold layer and flatter gold surfaces, therefore more favorable for making ideal SPR sensors.
     In order to control the adsorption of macromolecules on gold surface, special self-assembed monolayers (SAMs) need to be prepared on gold surface. Several kinds of SAMs are prepared successfully, and their properties are studied by electrochemical impedance spectroscopy (EIS). In addition, the dynamics of SAM formation are also characterized in real time by SPR microscopy. Double layer SAMs of 3-mercaptopropyl-trimethoxysilan (MPTS) and 3-Aminopropyl-triethoxysilan (APTES) are proved to be feasible but less effective for DNA adsorption. Since the MUO 11-Mercaptoundecanol (MUO) molecules are uncharged and 11-Amino-1-undecanethiol (AUT) may be positively charged in buffers, the surface charge of mixed MUO/AUO SAMs can be varied by changing the proportion of MUO/AUO molecules and the buffer conditions. The properties of mixed SAMs of various MUO/AUO proportion and their dependence on solution ionic strength and pH value are studied by EIS and SPR microscopy. Both measurements show that the MUO/AUT SAMs have good charge carrier blocker performance. In addition, their responses versus the electric potential of the gold film are also investigated. The SAMs loose charge carrier blocking behavior in a finite range of potential typically [-100 mV, 0 mV] versus Ag/AgCl standard reference. This method of sweeping in potential is very suitable to detect the defects in SAMs, which are less evident in general conditions. EIS measurements also indicate that defects in mixed SAMs may be more serious in pure SAMs.
     Arming at the preparation of SPR based DNA sensors, our first study concentrated on the preparation of DNA layers on MUO/AUT mixed SAMs. The dynamics of DNA adsorption on these mixed SAMs was followed in real time by SPR microscopy. Two kinds of DNAs were investigated, namely circular DNA plasmids of 3000 base pair (bp), and straight DNAs of 200 bp. The dependence of DNA adsorption on DNA concentration in solution, surface charge, and solution ionic strength are reported here. The topography of adsorbed DNAs are observed by atomic force microscopy ex-situ. Many information can be drawn from the combination of these two kinds of measurements.
     We propose to use the local field enhancement of SPR to construct a new sensitive surface second harmonic generation (SSHG) microscopy. Numerical simulations show that the SPR enhanced SSHG microscopy is suitable for detecting the components of the second order nonlinear susceptibility of the surface. It also opens the possibility of imaging the surface with higher resolution, and detecting the orientations of surface molecules.
引文
[1] G. Ramsay, "DNA chips: State-of-the art," Nature Biotechnology 16, 40-44 (1998).
    
    [2] D. N. Howbrook, A. M. van der Valk, M. C. O'Shaughnessy, D. K. Sarker, S. C. Baker, and A. W. Lloyd, "Developments in microarray technologies," Drug discovery today 8, 642-651 (2003).
    
    [3] D. H. Geschwind, "DNA microarrays: translation of the genome from laboratory to clinic," Lancet Neurology 2, 275-282 (2003).
    
    [4] N. Dhiman, R. Bonilla, D. O. J, and G. A. Poland, "Gene expression microarrays: a 21st century tool for directed vaccine design," Vaccine 20, 22-30 (2002).
    
    [5] S. Szunerits, L. Bouffier, R. Calemczuk, B. Corso, M. Demeunynck, E. Descamps, Y. Defontaine, J.-B. Fiche, a. T. L. Elodie Fortin, P. Mailley, A. Roget, and E. Vieil, "Comparison of Different Strategies on DNA Chip Fabrication and DNA-Sensing: Optical and Electrochemical Approaches," Electroanalysis 17, 2001-2017 (2005).
    
    [6] J. Spadavecchia, M. Manera, F. Quaranta, P. Siciliano, and R. Rella, "Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis," Biosensors and Bioelectronics 21, 894-900 (2005).
    
    [7] J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M.-C. Millot, M. Goossens, and M. Canva, "Plasmonic DNA: Towards Genetic Diagnosis Chips," Plasmonics 2, 201-215 (2007).
    
    [8] R. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Magm. 4, 396-402 (1902).
    
    [9] H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer- Verlag, 1988).
    
    [10] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of Optical Society of America 31, 213-222 (1941).
    
    [11] A. Otto, "Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection," Zeitschrift fur Physik 216, 398-410 (1968).
    [12](?)excited by light," Zeitschrift fur naturforschung,(part A)A 23,2135-2136(1968).
    [13]A.D.Boardman,Electromagnetic surface modes(John Wiley & Sons Ltd.,1982).
    [14]J.Homola,Surface Plasmon Resonance Based Sensors,Vol.4 of Springer Series on Chemical Sensors and Biosensors(Springer,Berlin Heidelberg,2006).
    [15]S.A.Maier,Plasmonics:Fundamentals and Applications(Springer,New York,2007).
    [16]C.Thirstrup and W.Zong,"Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm," Sensors and Actuators B 106,796-802(2005).
    [17]P.Nikitin,A.Beloglazov,V.Kochergin,M.Valeiko,and T.Ksenevich,"Surface plasmon resonance intefferometry for biological and chemical sensing," Sensor8 and Actuators B 54,43-50(1999).
    [18]H.Ho and W.Lain,"Application of differential phase measurement technique to surface plasmon resonance sensors," Sensor8 and Actuator8 B 96,554-559(2003).
    [19]R.P.Duyne,"Molecular Plasmonics," Science 306,985-986(2004).
    [20]M.B.Johnston,"Superfocusing of terahertz waves," Nature Photonics 1,14-15(2007).
    [21]S.Maier,"Clear for launch," Nature Physics 3,301-303(2007).
    [22]F.Lopez-tejeira,S.G.Rodrigo,L.Martin-Moreno,F.J.Garcia-Vidal,E.Devaux,T.W.Ebbesen,J.R.Krenn,I.P.Radko,S.I.Bozhevolnyi,M.U.Gonzalez,J.C.Weeber,and A.Dereux,"Efficient unidirectional nanoslit couplers for surface plasmons," Nature Physics 3,324-328(2007).
    [23]M.Rajarajan,C.Themistos,B.M.A.Rahman,and K.T.V.Grattan,"Plasmonics in Metal-clad Terahertz Waveguides," PIERS 3,294-299(2007).
    [24]W.L.Barnes,A.Dereux,and T.W.Ebbesen,"Surface plasmon subwavelength optics," Nature 424,824-830(2003).
    [25]S.A.Maier,"Plasmonics-Towards Subwavelength Optical Devices," Current Nanoscience,2005,1,17-221,17-22(2005).
    [26]E.Ozbay,"Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions,"Science 189,189-193(2006).
    [27]R.Zia,J.A.Schuller,A.Chandran,and M.L.Brongersma,"Plasmonics:the next chip-scale technology," Materials Today 9,20-27(2006).
    [28]M.L.Brongersma,R.Zia,and J.Schuler,"Plasmonics-The Missing Link between Nanoelectronics and Microphotonics," PIERS 3,360-362(2007).
    [29]H.A.Atwater,"The Promise of Plasmonics," Scientific American 296,56-63(2007).
    [30]S.Kawata,Near-Field Optics and Surface Plasrnon Polaritons,Vol.81 of Topics in Applied Physics(Springer,Berlin Heidelberg,2001).
    [31]J.Tominaga and D.P.Tsai,Optical Nanotechnologies:The Manipulation of Surface and Local Plasmons,Vol.88 of Topics in Applied Physics(Springer,2003).
    [32]A.V.Zayats,I.I.Smolyaninov,and A.A.Maradudin,"Nano-optics of surface plasmon polaritons," Physics Reports 408,131-314(2005).
    [33]M.L.Brongersma and P.G.Kik,Surface Plasmon Nanophotonics,Vol.131 of Springer Series in Optical Sciences(Springer,2007).
    [34]D.L.Andrews and Z.Gaburro,Frontiers in Surface Nanophotonics:Principles and Applications,Vol.133 of Optical Sciences(Springer,2007).
    [35]H.Kitajima,K.Hieda,and Y.Suematsu,"Use of a total absorption ATR method to measure complex refractive-indexes of metal-foils," Journal of Optical Society of America 70,1507-1513(1980).
    [36]H.E.Debruijn,R.P.H.Kooyman,and J.Greve,"Determination of dielectric permittivity and thickness of a metal layer from a surface-plasmon resonance experiment,"Applied Optics 29,1974-1978(1990).
    [37]J.Hurtado-Ramos and H.M.Wang,"Analysis of accuracy in prism coupling methods and a proposal of two simple ways for coupling to guided waves and/or for exciting surface plasmon resonance," Optical Materials 7,153-164(1997).
    [38]Y.Levy,M.Jurich,and J.D.Swalen,"Optical-properties of thin-layers of SiO_x,"Journal Applied Physics 57,2601-2605(1985).
    [39]P.Pokrowsky,"Optical methods for thickness measurements on thin metal-films,"Applied Optics 30,3228-3232(1991).
    [40]A.E.Craig,G.A.Olson,and D.Sarid,"Novel system for coupling to surfaceplasmon polaritons," Applied Optics 24,61-64(1985).
    [41]H.Kano,S.Mizuguchi,and S.Kawata,"Excitation of surface-plasmon polaritons by a focused laser beam," Journal of Optical Society of America B 15,1381-1386(1998).
    [42](?)platoon microscopy with solid immersion excitation," Applied Physics Letters 855451-5453(2004).
    [43]M.Born and E.Wolf,Principles of Optics(Cambridge University Press,2002),7th edn.
    [44]P.Yeh,Optical Waves in Layed Media(Wiley series in pure and applied optics,
    [45]D.W.BERREMAN,"Optics in Stratified and Anisotropic Media:4×4-Matrix Formulation," Journal of Optical Society of America 62,502-510(1972).
    [46]P.Yeh,"Electromagnetic propagation in birefringent layered media," Journal of Optical Society of America 69,742-756(1979).
    [47]P.B.Johnson and R.W.Christy,"Optical-constants of transition-metals:Ti,V,Cr,Mn,Fe,Co,Ni,and Pd," Physical Review B 9,5056-5070(1974).
    [48]P.B.Johnson and R.W.Christy,"Optical-constants of noble-metals," Physical Review B 6,4370-4379(1972).
    [49]Y.Yamamoto and R.L.Hughson,"Extracting fractal components from time series,"Physica D 68,250-264(1993).
    [50]J.C.Maxwell-Garnett,"Colours in Metal Glasses and in Metallic Films," Phil.Trans.Roy.Soc.A 203,385-420(1904).
    [51]J.C.Maxwell-Garnett,"Colours in metal glasses,in metallic films,and in metallic solutions," Philos.Trans.R.Soc.London 205,237-288(1906).
    [52]D.Bruggeman,"Berechnung verschiedener physikalischer Konstanten yon heterogenen Substanzen.I.Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen," Ann.Phys.Lpz.24,636-679(1935).
    [53]T.C.Choy,Effective medium theory:principles and applications,Vol.102 of International series of monographs on physics(Oxford Science Publications,1999).
    [54]L.Ward,The optical mnstants of bulk materials and films,Optics and Optoelectronic Series(Institute of Physics Publishing,Bristol,England,1994),2nd edn.
    [55]E.D.Palik,Handbook of optical constants of solids,Vol.I(Academic Press,1985).
    [56]M.-L.Theye,"Investigation of the optical properties of Au by Means of thin semitransparent Films." Physical Review B 2,3060-3078(1970).
    [57]Gray and E.Dwight,American Institute of Physics Handbook(McGraw-Hill,1972),3rd edn.
    [58]L.Berguiga,S.Zhang,F.Argoul,and J.Elezgaray,"High-resolution surfaceplasmon imaging in air and in water:V(z)curve and operating conditions," Optics Letters 32,509-511(2007).
    [59]S.Zhang,L.Berguiga,J.Elezgaray,T.Roland,C.Faivre-Moskalenko,and F.Argoul,"Surface plasmon resonance characterization of thermally evaporated thin gold films," Surface Science 601,5445-5458(2007).
    [60]T.Wink,S.J.van Zuilen,A.Bult,and W.P.van Bennekom,"Self-assembled Monolayers for Biosensors," Analyst 122,43R-50R(1997).
    [61]J.Lu,Y.Wang,J.Zang,and Y.Li,"Protective silicon coating for nanodiamonds using atomic layer deposition," Applied Surface Science 253,3485-3488(2007).
    [62]J.H.Schon,H.Meng,and Z.Bao,"Self-Assembled Monolayer Transistors," Advanced Materials 14,323-326(2002).
    [63]I.R.Peterson,"Langmuir-Blodgett films," J.Phys.D:App1.Phys 23,379-395(1990).
    [64]A.P.Girard-Bgrot,S.Godoy,and L.J.Blum,"Enzyme association with lipidic Langmuir-Blodgett films:Interests and applications in nanobioscience" Advances in Colloid and Interface Science 116,205-225(2005).
    [65]A.Ulman,An Introduction to ultrathin organic Film:from Langmuir-Blodgett to self-assembly(Academic Press,1991).
    [66]K.S.Birdi,Self-assembly monolayer 8trctures of lipids and macromolecules at interfaces (Kluwer Academic/Plenum Publishers,New York,1999).
    [67]F.Schreiber,"Structure and growth of self-assembling monolayers," Progress in Surface Science 65,151-256(2000).
    [68]F.Schreiber,"Self-assembled monolayers:from 'simple' model systems to biofunctionalized interfaces," Journal of Physics:Condensed Matter 16,R881-R900(2004).
    [69]J.C.Love,L.A.Estroff,J.K.Kriebel,R.G.Nuzzo,and G.M.Whitesides,"SelfAssembled Monolayers of Thiolates on Metals as a Form of Nanotechnology," Chem.Rev.105,1103-1169(2005).
    [70]C.Vericat,M.E.Vein,G.A.B.J.A.M.Gago,X.Torrelles,and R.C.Salvarezza,"Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)," Journal of Physics:Condensed Matter 18,R867-R900(2006).
    [71]X.Torrelles,C.Vericat,M.E.Vela,M.H.Fonticelli,M.A.D.Millone,R.Felici,T.-L.Lee,J.Zegenhagen,G.M.unnoz,J.A.Martin-Gago,and R.C.Salvarezza,"Two-Site Adsorption Model for the(3~(1/3)x 3~(1/3))-R30°Dodecanethiolate Lattice on Au(111)Surfaces," J.Phys.Chem.B 110,5586-5594(2006).
    [72](?)plicalions,Vol.242 of Methods in Molecular Biology(Human Press,2003).
    [73]B.Bhushan and H.Fuchs,Applied Scanning Probe Methods Ⅱ:Scanning Probe Microscopy Techniques,NanoScience and Technology(Springer,2006).
    [74]N.Jalili and K.Laxminarayana,"A review of atomic force microscopy imaging systems:application to molecular metrology and biological sciences," Mechatronics 14,907-945(2004).
    [75]B.E.Conway,J.Bockris,and R.White,Modern Aspects of Electrochemistry,Vol.32(Kluwer Academic,Plenum Publishers,New York,1999).
    [76]P.A.Buining,B.M.Humbel,A.P.hilipse,and A.J.Verkleij,"Preparation of Functional Silane-Stabilized Gold Colloids in the subnanometer Size Range," Langmuir 13,3921-3926(1997).
    [77]K.A.Peterlinz and G.R.,"In situ kinetics of self-assembly by surface plasmon resonance spectroscopy," Langmuir 12,4731-4740(1996).
    [78]H.O.Finklea,Electroanalytical Chemistry(Marcel Dekker,New York,1996),Vol.19,chap.Electrochemistry of Organized Monolayers of Thiols and Related Molecules on Electrodes,pp.109-335.
    [79]S.Zhang,C.Moskalenko,L.Berguiga,J.Elezgaray,and F.Argoul,"Gouy diffuse layer modelling in phosphate buffers," Journal of Electroanalytical Chemistry 603,107-112(2007).
    [80]E.Boubour and R.B.Lennox,"Insulating Properties of Self-Assembled Monolayers Monitored by Impedance Spectroscopy," Langmuir 16,4222-4228(2000).
    [81]E.Boubour and R.B.Lennox,"Stability of w-Fuctionalized Self-Assembled Monolayers as a Function of Applied Potential," Langmuir 16,7464-7470(2000).
    [82]T.Pajkossy,"Impedance of rough capacitive electrodes," Journal of Electroanalytical Chemistry 364,111-125(1994).
    [83]J.More,The Levenberg-Marquardt Algorithm:Implementation and Theory,Vol.630 of Lecture Notes in Mathematics(Springer,Berlin,1978).
    [84]J.Brandrup,E.H.Immergut,and E.A.Grulke,Polymer Handbook(John Wiley and Sons,New York,1999),4th edn.
    [85]C.Boulas;J.V.Davidovits,F.Rondelez;and D.Vuillaume,"Suppression of.Charge Carrier Tunneling through Organic Self-Assembled Monolayers," Physical Review Letters.76,4797-4800(1996).
    [86](?)coated eiectrodes.4.Comparison of the double layer at w-hydroxy thiol and alkanethio]monolayer coated Au electrodes," J.Phys.Chem 97,6233-6239(1993).
    [87]J.W.Dale and M.yon Schantz,From Genes to Genomes:Concepts and Applications of DNA Technology(John Wiley & Sons,Ltd,Baffins Lane,Chichester,West Sussex PO19 IUD,England,2002).
    [88]R.J.Reece,Analysis o/Genes and Genomes(John Wiley & Sons,Ltd,The Atrium,Southern Gate,Chichester,West Sussex PO19 8SQ,England,2004).
    [89]M.G.Gary Felsenfeld and,"Controlling the double helix," nature 421,448-453(2003).
    [90]J.B.Rampal,DNA Arrays:methods and protocols,Vol.170 of Methods in molecular biology(Human press,Totowa,New Jersey,2001).
    [91]T.E.Cloutier and J.Widom,"Spontaneous Sharp Bending of Double-Stranded DNA," Molecular Cell 14,355-362,(2004).
    [92]B.Audit,C.Thermes,C.Vaillant,Y.d'Aubenton Carafa,J.F.Muzy,and A.Arneodo,"Long-Range Correlations in Genomic DNA:A Signature of the Nucleosomal Structure," Physical Review Letters 86,2471-2474(2001).
    [93]B.Audit,C.Vaillant,A.Arneodo,Y.d'Aubenton Carafa,and C.Thermes,"Longrange Correlations between DNA Bending Sites:Relation to the Structure and Dynamics of Nucleosomes," J.Mol.Biol.316,903-918(2002).
    [94]H.J.Simon,D.E.Mitchell,and J.G.Watson,"Optical Second-Harmonic Generation with Surface Plasmons in Silver Films," Physical Review Letters 33,1531-1534(1974).
    [95]C.S.Chang and J.T.Lue,"Optical Second Harmonic generation from thin silver films," Surface Science 393,231-239(1997).
    [96]S.I.Bozhevolnyi and K.Pedersen,"Second harmonic generation due to surface plasmon localization," Surface Science 377-379,384-387(1997).
    [97]X.Wang and H.J.Simon,"Directionally scattered optical second-harmonic generation with surface plasmons," Optics Letters 16,1475-1477(1991).
    [98]Y.Wang and H.J.Simon,"Coherent backscattering of optical second-harmonic generation in silver films," Physical Review B 47,13695-13699(1993).
    [99]R.Naraoka,G.Kaise,K.Kajikawa,H.Okawa,H.Ikezawa,and K.Hashimoto,"Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy," Chemical Physics Letters 362,26-30(2002). nance enhanced second-harmonic generation in Kretschmann configuration," Optics Communications 248, 249-256 (2005).
    
    [101] L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, D. Vial, A. andBarchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, "Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement," Chemical Physics Letters 422, 303-307 (2006).
    
    [102] R. A. Alvarez-Puebla, D. J. Ross, G.-A. Nazri, and R. F. Aroca, "Surface-Enhanced Raman Scattering on Nanoshells with Tunable Surface Plasmon Resonance," Lang-muir 21, 10 504-10508 (2005).
    
    [103] S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Physical Review A 73, 013815-1-013 815-8 (2006).
    
    [104] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," Physical Review Letters. 7, 118-119 (1961).
    
    [105] F. Brown, R. E. Parks, and A. M. Sleeper, "Nonlinear Optical Reflection from a Metallic Boundary," Physical Review Letters. 14, 1029-1031 (1965).
    
    [106] N. Bloembergen and P. S. Pershan, "Light Waves at the Boundary of Nonlinear Media," Phys. Rev. 128, 606-622 (1962).
    
    [107] J. M. Robinson, H. M. Rojhantalab, V. L. Shannon, and G. L. Richmond, "Monitoring surface structure and interfacial properties via second harmonic generation," Pure & Appl. Chem 59, 1263-1268 (1987).
    
    [108] V. Mizrahi and J. E. Sipe, "phenomenological treatment of surface second-harmonic generation," Journal of Optical Society of America B 5, 660-667 (1988).
    
    [109] J. C. Conboy, J. L. Daschbach, and G. L. Richmond, "Total internal reflection second-harmonic generation: Probing the alkane water interface," Appl. Phys. A 59, 623-629 (1994).
    
    [110] L. Marrucci, D. Paparo, G. Gerrone, C. de Lisio, E. Santamoto, S. Solimeno, S. Ardizzone, and P. Quagliotto, "Probing interfacial properties by optical second-harmonic generation," Optics and Lasers in Engineering 37, 601-610 (2002).
    
    [111] M. B. Raschke and S. Y. Ron, "Nonlinear optical spectroscopy of solid interfaces," Current Opinion in Solid State and Materials Sciences 8, 343-352 (2004).
    
    [112] R. M. Corn and D. A. Higgins, "Optical second Harmonic Generation as a Probe of Surface Chemistry," Chem. Rev. 94, 107-125 (1994).
    
    [113] II. Sano and G. Mizutani, "Ab initio Calculation of surface nonlinear optical response," e-Journal of Surface Science and Nanotechnology 1, 57-66 (2003).
    [114](?)Rep.Prog.Phys.68,1095-1127(2005).
    [115]L.Schneider and W.Peukert,"Second Harmonic Generation Spectroscopy as a Method for In Situ and Online Characterization of Particle Surface Properties,"Part.Part.Syst.Charact.23,351-359(2006).
    [116]Y.R.Shen,The Principles of Nonlinear Optics(John Wiley & Sons,1994).
    [117]V.M.Agranovich and A.A.Maradudin,Nonlinear surface electromagnetic phenomena,Vol.29 of Modern Problems in Condensed Matter Sciences(North-Holland,1991).
    [118]S.I.Bozhevolnyi,B.Vohnsen,and K.Pedersen,"Near-field optical microscopy of nonlinear susceptibilities," Optics Communications 150,49-55(1998).
    [119]J.Vydra and M.Eich,"Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy," Applied Physics Letters 72,275-277(1998).
    [120]M.Adameck,R.Blum,and M.Eich,"Scanning second harmonic microscopy techniques with monomode and near field optical fibers," Applied Physics Letters 73,2884-2886(1998).
    [121]G.Martin,E.Toussaere,L.Soulier,and J.Zyss,"Reflection second harmonic generation scanning microscope," Synthetic Metals 127,105-109(2002).
    [122]P.Torok and F.-J.Kao,Optical Immaging and Microscopy:Techniques and Advanced Systems,Optical Sciences(Springer,2003).
    [123]M.G.Somekh,"Surface plasmon fluorescence microscopy:an analysis," Journal of Microscopy 206,120-131(2002).
    [124]E.Wolf,"Electromagnetic diffraction in optical systems,I.An integral representation of the image field," Proc.R.Soc.London Ser.A 253,349-357(1959).
    [125]P.T(o|¨)r(o|¨)k,P.Varga,Z.Laczik,and G.R.Booker,"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices:an integral representation," Journal of Optical Society of America A 12,325-332(1995).
    [126]P.T(o|¨)r(o|¨)k and P.Varga,"Electromagnetic diffraction of light focused through a stratified medium," Applied Optics 36,2305-2312(1997).
    [127]P.Drude,Annalen der Physik(Leipzig)1,566(1900).
    [128]P.Drude,Annalen der Physik(Leipzig)3,369(1900).
    [129](?)curve-fitting equation for the accurate determination of SPR resonance angle," Sensors and Actuators B 86,49-57(2002).
    [130]R.A.Innes and J.R.Sambles,"Optical characterization of gold using surfaceplasmon polaritons," Journal of Physics F-Metal Physics 17,277-287(1987).
    [131]A.Vial,A.S.Grimault,D.Macias,D.Barchiesi,and M.L.de la Chapelle,"Improved analytical fit of gold dispersion:Application to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B 71,085416(1)-085416(7)(2005).
    [132]C.J.POWELL,"Analysis of optical-and inelastic-electron-scattering data.2.application to Al," Journal of Optical Society of America 60,78-83(1970).
    [133]A.D.Rakic,A.B.Djurisic,J.M.Elazar,and M.L.Majewski,"Optical properties of metallic films for vertical-cavity optoelectronic device," Applied Optics 37,5271-5283(1998).
    [134]M.M.Dujardin and M.L.Theye,"Investigation of optical properties of Ag by means of thin semi-transparent films," Journal of Physics and Chemistry of Solids 32,2033-44(1971).
    [135]L.G.Schulz,"The optical constants of silver,gold,copper,and aluminum.1.the absorption coefficient-k," Journal of Optical Society of America 44,357-362(1954).
    [136]D.R.Lide,Handbook of chemistry and physics(CRC Press,1999-2000),80th edn.
    [137]M.Bass,Handbook of Optics(sponsored by the Optical Society o]America),Vol.Ⅱ(McGraw-Hill,Inc,1995),2nd edn.
    [138]R.Brendel and D.Bormann,"An infrared dielectric function model for amorphous,"Journal Applied Physics 71,1-6(1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700