密度感应系统对铜绿假单胞菌致病力及生物被膜形成影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌(Pseudomonas aeruginosa,PAO)是临床上最常见的引起严重医院内获得性感染的条件致病菌。在人体抵抗力低下时容易引起慢性感染,由PAO引起的医院内感染高达30%以上,临床上常见一些慢性创面久治不愈,如皮肤溃疡、褥疮、烧伤感染及糖尿病足等的感染终末菌均为铜绿假单胞菌,增加了患者的负担。一部分因为细菌生物被膜的形成,另一原因为细菌调节宿主炎症反应及免疫反应,改变宿主的免疫监视功能,从而产生很强的耐药性。
     国内外研究者考虑能否通过减低细菌毒力的方法达到控制感染的目的,最近发现细菌自身密度感应系统(quorum sensing QS)在铜绿假单胞菌致病因子的表达、抗生素的敏感性以及生物被膜分化及形成上起着至关重要的作用;而且发现这种自身诱导分子对机体内的细胞也有不同程度的影响,调节机体的炎症反应及免疫应答。
     然而在皮肤组织内关于生物被膜形成的研究报道很少,本实验建立大鼠铜绿假单胞菌皮肤感染模型,从形态学角度观察到在大鼠溃疡面于细菌接种8小时开始形成生物被膜;同时为了观察QS系统对大鼠皮肤感染及生物被膜形成的影响,我们建立野生型铜绿假单胞菌(PAO1)及遗传子缺陷的变异菌株(不含LasI及RhlI基因)的大鼠溃疡感染模型,结果发现铜绿假单胞菌感染大鼠皮肤后,在第1、3、7天突变株生物被膜明显较野生型薄,组织内细菌寄生能力弱。
     生物被膜是细菌的耐药机制之一,临床上没有针对生物被膜有效的治疗方法,我们采用含有脂质的聚维酮碘凝胶应用在感染了铜绿假单胞菌的大鼠创面,结果发现该消毒药可以明显减少生物被膜的形成,促进创面上皮化,是一个可以开发的新型消毒药剂型。
Bacterial colonization and infection are important factors in compromised wound healing particularly in chronic wounds. Pseudomonas aeruginosa is a gram-negative bacterium and an opportunistic human pathogen that causes chronic infections in immunocompromised individuals .These infections are hard to treat, partly due to the high intrinsic resistance of the bacterium to clinically used antibiotics and partly due to the formation of antibiotic-tolerant biofilms. Bacterial biofilms are aggregations of bacteria that live in a highly structured and organized community. Biofilms typically become established by attachment of planktonic cells to a surface, followed by production of an extracellular polymeric substance (EPS) that may consist of polysaccharide, proteins, and nucleic acids. This interconnecting matrix links the bacterial cells together, and begins the establishment of an organized ommunity. Biofilms represent a locus for infection, which is protected from the effects of antibiotics, and present additional obstacles to phagocytes, Particularly chronic P.aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Bacterial biofilms are increasingly recognised as a major cause of persistent and destructive infectious diseases. However the biofilm formation in critical colonization and a role of biofilms on wounds are well not understood. Although it has been suggested that bacteria are living within a biofilm in the condition of critical colonization, biofilm formation on wounds are well not understood. The aim of this study was to produce a rat model P.aeruginosa inoculated, and demonstration that biofilm formation on the skin wounds morphologically. The full-thickness and partial-thickness wounds were created on the backs of SD rats, Suspensions of P.aeruginosa carring the gene encoding the green fluorescent protein were applied on wounds, and bacterial suspension was not applied in a control group. Both wounds were kept in closed environment during this experiment. Wounds were harvested at 8 hours, 1, 3, 7 days postwounding, processed for histology and immunohistochemictry. Partial-thickness wounds are proper to observe P.aeruginosa biofilm formation, Fluorescence microscopy showed biofilm from 8 hours, and thickened day by day until 3 days after the inoculation. The rate of wound reduction was increased in the experimental group inoculated bacteria compared to the control group. In conclusions, we have developed a experimental model of wound to observe P.aeruginosa biofilms on damaged skin. Full-thickness wounds hava been used to observe rat wounds usually. Howevere, we used partial thickness wounds in this study because we thought full-thickness wounds may be inappropriate to observe biofilm formation.
     In recent years, it has been demonstated that expression of a large number of these virulence factors in P.aeruginosa is regulated by quorum sensing. The extracellular virulence factors include proteases, pigments, haemolysins, exoenzymes and exotoxin. These infections are hard to treat, partly due to the high intrinsic resistance of the bacterium to clinically used antibiotics and partly due to the formation of antibiotic-tolerant biofilms which naturally develop in wounds. Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. When antimicrobial therapy stops, the biofilm can act as a nidus for recurrence of the infection. Biofilm infections can linger for months, years or even a lifetime and usually persist until the colonized surface is surgically removed from the body.
     Localized tissue ischemia and bacterial colonization were recognized as important factor in compromised wound healing, particularly in chronic wounds. Wound healing in ischemic tissues such as flap margins due to inadequate blood supply is still a source of considerable morbidity in surgical practice. Therefore, we set out to develop a model of ischemic rat wounds infected with Pseudomonas aeruginosa PA01 for use in biofilm stud. Tissue from the excised wounds visualized by fluorescence microscopy showed a significantly greater biofilm biomass and thickness in control group compared to those ischemic group. During the course of 7-day biofilm was found to progressively wax over time Quorum-sensing in Pseudomonas aeruginosa (PAO1) known to regulate several aspects of pathogenesis, including virulence factor production, biofilm development, and antimicrobial resistance. Several recent reports indicate that the signaling molecules (autoinducers) that mediate QS in Pseudomonas aeruginosa may also modulate gene expression in host cells. However, the role of quorum sensing in this skin infection models utilizing rat has not been examined. Furthermore these are little known about the importance of Quorum-sensing on biofilm in vivo. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infection, thus knowledge of how quorum sensing systems of P. aeruginosa operate during infection may help us to find a new approach to the treatment of P. aeruginosa wound infections. The objective To understand the importance of quorum sensing in Pseudomonas aeruginosa wound infection, the in vivo pathogenic effects of the wild-type P. aeruginosa PAO1 and its double mutant, PAO1 lasI rhlI, in which the signalgenerating parts of the quorum sensing systems are defec were compared. These results suggest that the lasI and rhlI genes of P. aeruginosa play an important role in the horizontal spread of P. aeruginosa within wound skin and development of biofilms. In this study, we have used the skin wound model to examine the contribution of quorum-sensing systems to the pathogenesis of P. aeruginosa infections in skin wounds. Our results suggest that both quorum-sensing systems (lasI and rhlI) contribute to the virulence of P. aeruginosa. In comparison with P. aeruginosa parent strain PAO1, lasI, and rhlI mutants showed a reduction in virulence. In addition, mutants were less efficient than PAO1 in spreading within the tissue, confirmed in this study, the in vivo virulence of the mutant is significantly lower than that of PAO1. It is clear from the present results that mutations in the quorum-sensing systems interfered with the ability of P. aeruginosa to cause general and local damage in the wound infection. Based on these data, the expression of quorum-sensing genes may be a mechanism whereby P. aeruginosa gains a protective advantage, by making a concerted effort as a population to overcome host defenses and establish an infection. In this study, Blank grops and lasI /rhlI mutant showed a greater level of wound epithelization on day 7 and compared to PAO1 group. One possible explanation for these findings is that the epithelization was delayed by infection, or owing to the biofilm, directed to inhibition the epithelization process or other factors that are controlled by either quorum-sensing system. these studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants , the biofilm of PAO1 had significantly greater biomass and thickness, compared to the biomass and thickness of lasI /rhlI mutant, the rhlI mutant formed only slightly less biofilm than the wild type. Our data indicate that the Quorum sensing regulates the expression of several secreted virulence factors and lasI/rhlI mutant strains are attenuated for virulence in rat wound models. Ffurthermore, the Quorum sensing is a potent inducer of biofilm in rat wound. Thus all these data indicate that the lasI and rhlI gene of P. aeruginosa play an important role during the infectious process. Therefore QS-inhibition has been suggested as a new target for preventive and/or therapeutic strategies.
     Antiseptics have long and widely been used on wounds to prevent infection. It is well known that Povidone–iodine has a broad anti-microbial spectrum and is very effective in the treatment of various types of wounds, and no resistance has been determined . The usefulness of antisepics on intact skin is well established and broadly accepted. However, the use of antiseptics as prophylactic anti-infective agehts for open wounds has been an area of intense controversy for several years. Povidone iodine is available in several forms (solution, cream, ointment, scrub), but without control of dosage, iodine can cause tissue staining and possible local toxicity. The Two Component Gel (TCG) is a new iodine formulation which generates low, safe and effective levels of molecular iodine at the point of delivery to a wound. Ischemic flaps were raised using aseptic technique, two rectangular (18 x 55 mm) random skin flaps were raised superficial to the deep muscular fascia. Full thickness skin wounds were created at 45mm from the flap base. Bacterial suspension (Pseudomonas aeruginosa) was inoculated onto the base of the ulcer . A total of 28 wounds were created. Each wound was randomly assigned to either the antimicrobial gel (two Component Gel [TCG] or the Gel Vehicle (without iodine). The 2 days after operation was designated as day 0. On days 0, 2 and 4 the swabs were taken from the base of the wound for total bacterial count. At the final timepoint, the wounds were removed in their entirity using a scalpel. Each wound was divided into 2 equal parts, one part was used for total bacterial count and the other part was rapidly frozen in liquid nitrogen or embed in paraffin directly. The biopsies of each wound were stained with haematoxylin and eosin or Rhodamine-conjugated Concanavalin A and were then observed by light and fluorescence microscopy. Biopsy samples were observed for evidence of epithelialisation and biofilm. In this study, TCG effectively reduces bacterial counts and wound exudates, in the swab, the TCG treated wounds were less contaminated, TCG showed significant decreases in quantitative bacteriological counts. That show a significant difference in bactericidal activity in vivo between pre-TCG and post-TCG, on day2 gradually fewer microorganisms were cultured from the wounds of the TCG ointment treated group. On day4, the number of colony forming units per swab was significantly more reduced in TCG group. Tissue from the excised wounds visualized by fluorescence microscopy showed a significantly greater biofilm biomass and thickness in wounds treated with the TCG vehicle compared to those treated with the TCG .In rat wounds that were treated with the TCG, reduction in wound exudate and faster epithelialisation was observed relative to the vehicle control. Also, the TCG inhibited biofilm development on the surface of the wound. Thus we suggest that the TCG is a promising treatment to inhibit biofilm development and clear Pseudomonas aeruginosa cells within biofilm from skin lesions of exudative or infectious wounds and to prevent wound exacerbation.
引文
1、Costerton. Introduction to biofilm. Int J Antimicrob Agents. 1999 ; 11(3-4): 217-21.
    2、Costerton .Overview of microbial biofilms. J Ind Microbiol. 1995 ;15(3): 137- 40.
    3、Donlan RM,Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002 ;15(2):167-93.
    4、Slusher MM, Myrvik QN, Lewis JC,et al. Extended-wear lenses, biofilm, and bacterial adhesion. Arch. Ophthalmol. 1987;105:110–115.
    5、Stickler DJ, Morris NS, McLean RJ,et al. Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbiol. 1998;64:3486–90
    6 、 Potera C. Forging a link between biofi lms and disease. Science 1999;283:1837–9.
    7、Costerton JW, Stewaxt PS, Greenberg EP,et al.Bacterial biofilms:a common cause of persistent infections[J], Science,1999, 284(5418): 1318-22.
    8、Donlan RM.Biofilms and device-associated infections[J] Emerg Infect Dis,2001;7(2):277-81.
    9 、 Costerton JW,Cheung W,Geesey GG.Bacterial biofilm in natureand disease[J].Ann Rev Microbiol.1987;41 ∶4 35-464.
    10、Brown M, Allison D, Gilbert P. Resistance of bacterial biofilms antibiotics: a growth rate-related effect? Antimicrob. Chemother. 1988;22(6):777–80.
    11、Dunne W, Mason E, Kaplan S. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 1993;37(2):2522–6.
    12、Schaber JA,Triffo WJ,Suh SJ,et al. Pseudomonas aeruginosa forms biofilmsin acute infection independent of cell-to-cell signaling. Infect Immun. 2007;75(8):3715-21.
    13、Leid JG,Willson CJ,Shirtliff ME,et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma- mediated macrophage killing.J. Immunol. 2005,175(11):7512–8.
    14、Pier GB. Rationale for development of immunotherapies that target mucoid Pseudomonas aeruginosa infection in cystic fibrosis patients. Behring. Inst. Mitt. 1997;98:350–360.
    15、Sauer K. The genomics and proteomics of biofilm formation. Genome Biol. 2003;4(6):219.
    16、Costerton JW,Irvin RT,Cheng KJ.The bacterial glycocalyx in nature and disease. 1981,35:299-324.
    17、Costerton JW,Ingan JM,Cheng KJ.Structure and function of the cell envelope of grame negative bacterial [J],Bacterail Rev, 1974,38(1):87-110.
    18、Jones HC, Roth IL, Saunders WM III. Electron microscopic study of a slime layer. J Bacteriol 1969;99(1):316-25.
    19、Veeh RH, Shirtliff ME, Petik JR,et al. Detection of Staphylococcus aureus biofilm on tampons and menses components. J. Infect. Dis. 2003,188(4):519–530.
    20、Whiteley MM. Bangera RE, Bumgarner MR,et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001,413(6858):860–864.
    21、.Gracia E, Fernández A, Conchello P, et al. Adherence of Staphylococcus aureus slimeproducing strain variants to biomaterials used in orthopaedic surgery. Int Orthop 1997;21(1):46–51.
    22、Amorena B, Gracia E, Monzón M, et al. Antibiotic susceptibity assay for Staphylococcus aureus in biofi lms developed in vitro. J Antimicrob Chemother 1999;44(1):43– 55.
    23、Karlov AV, Khlusov IA, Pontak VA,et al. Adhesion of Staphylococcus aureus to implants with different physicochemical characteristics. Bull Exp Biol Med 2002;143(3):277–80.
    24、Fassel TA,. Edmiston CE. Bacterial biofilms: strategies for preparing glycocalyx for electron microscopy. Methods Enzymol.1999; 310:194–203.
    25、Fulcher TP, Dart JK, McLaughlin-Borlace L,et al. Demonstration of biofilm in infectious crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmology .2001,108(6):1088–92.
    26、Nishimura S, Tsurumoto T, Yonekura A,et al. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofi lms isolated from infected total hip arthroplasty cases. J Orthop Sci 2006;11(1):46–50.
    27、Stewart PS. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. [J]. Biotechnol Bioeng.1998,59(3)∶ 261-272.
    28 、 Xu KD,Stewart PS,Xia F,et al.[J],Appl Environ Microbiol.1998,64(10) ∶ 4035-9.
    29、Xu KD,McFeters GA,Stewart PS,et al. Biofilm resistance to antimicrobial agents. Microbiology. 2000 ;146 ( Pt 3):547-9.
    30、Mathee K,Ciofu O,Sernberg C,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. [J].Microbiology, 1999,145(6) ∶1 349-1357
    31 、 Dibdin GH,Assinder SG,Nichols WW,et al. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. [J].Jntimicrob Chemother,1996;38(5) ∶ 757-769.
    32、Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms.[J].Antimicrob Agents Chemother,1996;40(1)∶ 2 517-2522.
    33 、 Bayer AS,Speert DP,Park S,et al. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infec Immun.1991;59(1):302-8.
    34、Brooun A Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother.2000; 44(3):640–646.
    35、Sauer K,Cullen MC,Rickard AH,et al. Characterization of nutrient- induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bact -eriol.2004;186(21):7312–7326.
    36、Kaplan JB,Ragunath C,Ramasubbu N,et al. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta- hexosa -minidase activity.J Bacteriol. 2003;185(16):4693-8.
    37、Toler-Nidlsen T,Brinch UC,Ragas PC,et al. Development and dynamo -ics of Pseudomonas sp. biofilms. J Bacteriol. 2000;182(22):6482-9。
    38、Molin A,Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure.Curr Opin Biotechnol.2003;14(3):255-61。
    39、Spoering AL,Lewis K.Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials 1.J Bacterilol. 2001; 183(23):6746-51.
    40、Webb JS,Thompson LA,James S,et al. Cell death in Pseudomonas aeruginosa biofilm development.J Bacteriol. 2003;185(15):4585-92。
    41、Mai-Prochnow A,Evans F,Dalisay-Saludes D,et al. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata.Appl Environ Microbiol.2004 ;70(6):3232-8.。
    42、Kaplan JB,Meyenhofer MF,Fine DH. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans.J Bacteriol. 2003 ;185(4): 1399-404
    43、Stoodley P,Wilson S,Hall-Stoodley L,et al. Growth and detachment of cell clusters from mature mixed-species biofilms. App Environ Microbiol.2001;67(12):5608-13。
    44 、 Mattick JS. Type IV pili and twitching motility Annu Rev Microbiol.2002;56:289-314.
    45、Kaplan JB,Fine DH. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl Environ Microbiol. 2002;68(10):4943-50。
    46、Inglis TJ. Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth. 1993;70(1):22-4.
    47、Hall-Stoodley L,Coterton JW,Stoodley P..Bacterial biofilms: from the natural environment to infectious diseases.Nat Rev Microbiol.2004;2(2):95-108.
    48、. Gjermansen MP, Ragas C, Sternberg S,et al. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 2005, 7(6):894–906.
    49、James GA, Korber DR, Caldwell DE,et al. Digital image analysis of growth and starvation responses of a surfacecolonizing Acinetobacter sp. J. Bacteriol. 1995;177(4):907–915.
    50、Thormann KM, Saville RM, Shukla R,et al. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J. Bacteriol.2005; 187(3):1014–1021.
    51、Rice SA , Koh KS, Queck SY,et al. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J. Bacteriol. 2005,187(10):3477–3485.
    52、Boyd A, Chakrabarty AM. Role of alginate lyase in cell detachment ofPseudomonas aeruginosa. Appl. Environ. Microbiol. 1994,60(7):2355 –2359.
    53、Davey ME,Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003;185(3):1027–1036.
    54、Hunt SM, Werner EM, Huang B,et al. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl. Environ. Microbiol. 2004;70(12):7418–7425.
    55、Purevdorj-Gage B ,Costerton WJ, Stoodley P. Phenotypic differentia -tion and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology.2005; 151(5):1569–1576.
    56. Sauer K,Camper AK, Ehrlich GD,et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol.2002; 184(4):1140–1154.
    57、Baker CS, Morozov L,. Suzuki K,et al. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol.2002; 44(6):1599–1610
    58、Jackson DW,Simecka JW,Romeo T. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 2002;184(12):3406-10.
    59、Jackson DW,Suzuki K, Oakford L,et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 2002;184(1):290–301
    60、Vats N, Lee SF. Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. Arch. Oral Biol. 2000, 45(4):305–314.
    61、Kirillina O, Fetherston JD, Bobrov AG, et al. a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilmformation in Yersinia pestis. Mol. Microbiol. 2004,54(1):75–88.
    62、Ross P, Mayer R, Weinhouse H,et al. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives.J. Biol. Chem. 1990. 265(31):18933–18943.
    63、Tischler AD,Camilli A.. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 2004;53(3):857-69.
    64 、 Itoh Y,Wang X, Hinnebusch J, et al..Depolymerization of _-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol.2005; 187(1):382–387.
    65、Romling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol.2005; 57(3):629–639.
    66、Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol.2004; 53(4):1123–1134.
    67、Tischler AD, Camilli A.. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 2004;53(3):857–869.
    68、Kovacikova G, Lin W, Skorupski K. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol. 2005;57(3):420–433.
    69、Romling U, Amikam D. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 2006;9(2):218–228.
    70、Ryan Morgan, Steven Kohn, Sung-Hei Hwang,et al. a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa.Journal of Bacteriology,Nov. 2006,188(21): 7335–7343
    71、Ramage G, Tunney MM, Patrick S, et al. Formation of Propionibacteriumacnes biofi lms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 2003;24(19):3221–7.
    72、Costerton W, Veeh R, Shirtliff M,et al. The application of biofi lm science to the study and control of chronic bacterial infections. J Clin Invest 2003;112(10):1466–77.
    73、Sheehan E, McKenna J, Mulhall KJ,et al. Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J Orthop Res 2004;22(1):39–43.
    74、Arens S, Schlegel U, Printzen G, et al. Infl uence of materials for fi xation implants on local infection: an experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 1996;78(4):647–51.
    75、Hinsa SM, Espinosa-Urgel M, Ramos JL, et al. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 2003;49(4):905–18.
    76、Ramsey MM, Whiteley M. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol Microbiol 2004;53(4):1075–87.
    77、Van Loosdrecht MC,Norde W,Zehnder AJ. Physical chemical description of bacterial adhesion.: J Biomater Appl. 1990 ;5(2):91-106.
    78、Strom MS, Lory S. Structure-function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 1993;47:565–596.
    79、Strom MS,Nunn DN, Lory S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA1993; 90(6):2404–2408.
    80、Lee KK,Sheth HB, Wong WY,et al.The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. 1994, 11(4):705–713.
    81、Bradley DE. The adsorption of Pseudomonas aeruginosa pilus-dependentbacteriophage to a host mutant with non-retractile pili. Virology 1994;58(1):149–163.
    82、Bradley DE, Pitt TL. Pilus dependence of four Pseudomonas aeruginosa bacteriophages with non-contractile tails. J. Virol.1974; 24(1):1–15.
    83、Rashid MH,Rao NN, Kornberg A. Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol. 2000;182(1):225–227.
    84、Rashid MH,Rumbaugh K,Passador L,et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000;97(17):9636–9641.
    85、O’Toole GA,Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.1998; 30(2):295–304.
    86、Whitchurch CB,Tolker-Nielsen T, Ragas PC, et al. Extracellular DNA required for bacterial biofilm formation. Science. 2002,22: 295(5559):1487.
    87、Erin J. van Schaik, Carmen L,et al. DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili。Journal of Bacteriology.2005, 187(4):1455–1464.
    88、Travis S.Walker,Kerry L,et al.Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils.Infection and Immunity.2005;73(6)3693-3701.
    89、Frees D,Chastanet A, Qazi S, et al. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol. Microbiol.2004; 54(5):1445–1462.
    90、O’Toole GA, Pratt LA,Watnick PI, et al. Genetic approaches to study of biofilms. In: Doyle RJ, editor.Methods in enzymology, 310. San Diego, CA: Academic Press; 1999. p. 91–109.
    91、Fonseca AP , Sousa JC. Effect of shear stress on growth, adhesion and biofilmformation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. International Journal of Antimicrobial Agents.2007, 30(3): 236–241.
    92、Firoved AM, Wood SR,Ornatowski W,et al.Microarray analysis and functional characterization of the nitrosative stress response in nonmucoid and mucoid Pseudomonas aeruginosa. J. Bacteriol.2004, 186(2):4046–4050.
    93、Yoon SS, Hennigan RF, Hilliard G M,et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell2002, 3(4):593–603.
    94、Worlitzsch D,Tarran R ,Ulrich M, et al. Reduced oxygen concentrations in airway mucus contribute to the early and late pathogenesis of Pseudomonas aeruginosa cystic fibrosis airway infection. J. Clin. Invest. 2002,109(3):317–325.
    95、Martin DW,Schurr MJ,Mudd MH, et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. U. S. A. 1993;90(18):8377–8381。
    96 、 Kangmin Duan,Michael G,Surette.Environmental Regulation of Pseudomonous aeruginosa PAO1 Laus and Rhl Quorum-Sensing Systems.Journal of Bacteriology,2007,;189(13):4827-4836.
    97、Jensen PQ, Bjarnsholt T, Phipps R,et al.Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled pro -duction of rhamnolipid by Pseudomonas aeruginosa.Microbiology, 2007, 5;153(5):1329-1338.
    98、David G.Davies,Matthew R,Parsek,James P.Pearson,Barbara H,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science,1998,4;280(10):295-298.
    99 、 Ichikawa K,Hikita T,Maeda N, et al.Antiangiogenic photodynamictherapy(PDT)by using long-circulating liposomes modified with peptide specific to angiogenic vessels[J].Biochim Biophys Acta,2005,1669(1):69-74.
    100、Purevdorj B,Costerton JW,Stoodley P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms.Appl Environ Microbiol. 2002 Sep;68(9):4457-64.
    101、Heydorn A,Ersboll B,Kato J, et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol. 2002 Apr;68(4):2008-17.
    102、Yang H,Matewish M,Loubens I,et al. migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology.2000,146(10):2509-19.
    103、Glessner A,Smith RS,Iglewski BH,et al. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. 1999 Mar;181(5):1623-9.
    104、Beaatson SA,Whitchurch CB,Semmler AB,et al. Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. 2002;184(13):3598-3604.
    105、Hassett DJ, Ma JF, Elkins JG,et al.Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 1999,34(5): 1082–1093.
    106、Mathee K,Ciofu O,Sternberg ,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung Microbiology 1999, 145(6):1349–57.
    107 、 Wagner VE,Bushnell D,Passador L,et al. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 2003,185(7):2080–2095.
    108 、 Donlan RM.Biofilm formation:A clinically relevant microbiological process.Healthcare epidemiology.2001;33(15):1387-92.
    109、Anwar H,Costerton JW. Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. 1990;34(9)∶ 1666-1671.
    110、Anwar H,Strap JL,Chen K,et al. Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. 1992;36(6)∶ 1 208-1214.
    111、Sun D,Accavitti MA,Bryers JD. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. 2005;12(1):93-100.
    112 、 Mckenney D,Pouliot K,Wang Y,et al. Vaccine potential of poly-1-6 beta-D-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. 2000;83(1-2):37-44.
    113、Pei L,Flock JI. Functional study of antibodies against a fibrogenin-binding protein in Staphylococcus epidermidis adherence to polyethylene catheters. 2001;(1),184:52-5.
    114、Boelens JJ,Vander PollT,Dankert J,et al. Interferon-gamma protects against biomaterial-associated Staphylococcus epidermidis infection in mice. 2000,181(3):1167-71.
    115、Livermore DM, Mushtaqa S, Jamesa D, et al. In vitro activity of piperacillin/tazobactam and other broad-spectrum antibiotics against bacteria from hospitalised patients in the British Isles. Int J AntimicrobAgents 2003;22(1):14–27.
    116、 Horii T, Muramatsu H, Monji A, et al.Release of exotoxin A, peptidoglycan and endotoxin after exposure of clinical Pseudomonas eruginosa isolates to carbapenems in vitro. Chemotherapy 2005;51(6)1:324–31.
    117、Rahal JJ. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 2006;43(Suppl. 2):S95–9.
    118 、 Horii T, Kobayashi M, Sato K, et al. An in-vitro study of carbapenem-induced morphological changes and endotoxin release in clinical isolates of gram-negative bacilli. J Antimicrob Chemother 1998;41(4):435–42.
    119 、 Neut D, van Horn JR, van Kooten TG,et al. Detection of biomaterial-associated infections in orthopaedic joint implants. Clin Orthopaed Rel Res 2003;413:261–8.
    120、 Habash M, Reid G. Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 1999;39(9):887–98.
    121、Erdmann L, Uhrich KE. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials.2000;21(19): 1941–6.
    122、 Schmeltzer R, chmalenberg K, Uhrich KE. Synthesis and cytotoxicity of salicylate-based poly(anhydride-esters). Biomacromolecules 2005;6(1):359–67.
    123、Erdmann L, Macedo B, Uhrich KE. Degradable poly(anhydrideester) implants: effects of localized salicylic acid release on bone. Biomaterials 2000;21:2507–12.
    124 、 Harten RD, Svach DJ, Schmeltzer R,et al.Salicylic acidderived poly(anhydride-esters) inhibit bone formation in vivo. J Biomed Mater Res—A 2005;72:354–62.
    125、Hentzer M, Riedel K, Rasmussen TB,et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound.Microbiology 2002;148(1):87–102.
    126、Farber B, Wolff A. The use of nonsteroidal anti-inflammatory drugs to prevent adherence of Staphylococcus epidermidis to medical polymers. J Infect Dis 1992;166(4):861–5.
    127、 Farber B, Hsieh H, Donnenfeld E,et al. A novel antibiofilm technology for contact lens solutions. Ophthalmology 1995;102(5):831–6.
    128、Bandara B, Sankaridurg P, Willcox M. Non-steroidal anti-inflammatory agents decrease bacterial colonisation of contact lenses and prevent adhesion to human corneal epithelial cells. Curr Eye Res 2004;29(4-5):245–51.
    129 、 Tomlinson A, Simmons P, Seal D,et al. Salicylate inhibition of Acanthamoeba attachment to contact lenses. Opthalmology 2000; 107(2):112–7.
    130、Nikawa H,Mikihira S,Egusa H, et al. Candida adherence and biofilm formation on oral surfaces Nippon Ishinkin Gakkai Zasshi. 2005; 46(4):233-42。
    131、Mangalappalli-Illathu ,Korber . Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother. 2006;50(11): 3588 -96.
    132、Oosterhof, Buijissen KJ,Busscher HJ, et al. Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses.Appl Environ Microbiol. 2006;72(5):3673-7.
    133、Houari A, Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Letters in Applied Microbiology 2007,45 (6): 652–656.
    134、Banin E,Bradyk M,Greenberg EP,et al. Chelator-induced dispersal and killingof Pseudomonas aeruginosa cells in a biofilm. 2006;72(3):2064-69.
    135、Nguyen T,Louis SG,Beringer PM,et al. Potential role of macrolide antibiotics in the management of cystic fibrosis lung disease. 2002;8(6):521-28.
    136、Kondoh K,Hashiba M. Inhibitory effect of macrolide antibiotics on biofilm formation by Pseudomonas aeruginosa. Nippon Jibiinkoka Gakkai Kaiho. 1998 Jan;101(1):25-36.
    137、 Dall L, Barnes WG, Lane JW,et al. Enzymatic modification of glycocalyx in the treatment of experimental endocarditis due to viridans streptococci. J. Infect. Dis.1987;156(5):736-740.
    138、Hiroshi Yasuda, Yoko Ajiki, Tetsufumi Koga, et al. Interaction between Biofilms Formed by Pseudomonas aeruginosa and Clarithro -mycin. Antimicrobial Agents and Chemotherapy. 1993;37 (9):1749-55.
    139、Tsukamoto T,Matsukawa M,Sano M,et al. Biofilm in complicated urinary tract infection. Int J Antimicrob Agents. 1999;11(3-4) ∶2 33-239.
    140、Ashiby MJ,Neale JE,Knott SJ,et al. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. 1994;33(3) ∶ 443-452.
    141、Caiazza NC, O’Toole GA. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 2004;186(14):4476–85.
    142、Marty N, Lapchine L, Dournes JL, et al. Effects of five antibiotics on adhesion and haemagglutinating properties of Pseudomonas aeruginosa isolated from cystic fibrosis patients. Drugs Exp Clin Res 1988;14(10):635–43.
    143、Wolter JM, McCormack JG. The effect of subinhibitory concentrations of antibiotics on adherence of Pseudomonas aeruginosa to cystic fibrosis (CF) and non-CF-affected tracheal epithelial cells. J Infect 1998;37(3):217–23.
    144、Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitoryconcentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 2004;53(9):903–10.
    145、Drago L, De Vecchi E, Mombelli B, et al. Activity of levofloxacin and ciprofloxacin against urinary pathogens. J Antimicrob Chemother 2001;48(1):37–45.
    146、 Kim MK, Xuan D, Quintiliani R, et al. Pharmacokinetic and pharmacy -odynamic profile of high dose extended interval piperacillin– tazobactam. J Antimicrob Chemother 2001;48(2):259–67.
    147、Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358(9276):135–8.
    148 、 Wagner VE,Bushnell D, Passador L, et al.Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 2003;185:2080–2095.
    149、 Hassett DJ, Ma JF, Elkins JG,et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 1999;34(5): 1082–1093.
    150、Mathee K,Ciofu O,Sternberg, et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung Microbiology 1999,145(6):1349–1357.
    151、 Bullen JJ, Rogers HJ, Spalding PB,et al. Iron and infection: the heart of the matter. FEMS Immunol. Med. Microbiol.2005; 43(3):325–330.
    152、Singh PK., Parsek MR, Greenberg EP,et al. A component of innate immunity prevents bacterial biofilm development. Nature.2002;417(6888):552–555.
    153、 Rogan MP, Taggart CC,Greene CM, et al. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis. 2004; 190(7):1245–1253.
    154、 Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. U. S. A. 2005;102(31):11076 –11081.
    155、 Berlutti F,Morea C,Battistoni A,et al. et al. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia enocepacia. Int. J. Immunopathol. Pharmacol.2005, 18(4):661–670.
    156、Chitambar CR,Narasimhan J. Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology. 1991,59(1):3–10.
    157、Valk WJ,Liem KD,Geven WB. Seldinger technique as an alternative approach for percutaneous insertion of hydrophilic polyurethane central venous catheters in newborns.Jpen J Parenter Enteral Nutr.1995; 19(2):151-5.
    1、Nealson KH,Platt T,Hastings JW.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol 1970 Oct;104(1):313-22。
    2 、 Whitehead NA,Barnard AM,Slater H,et al., Quorum-sensing in Gram-negative bacteria.FEMS Microbiol Rex. 2001 Aug;25(4):365-404.
    3、Miller MB,Bassler BL. Quorum sensing in bacteria. 2001;55:165-99.
    4、Schauder 7S,Bassler BL. The languages of bacteria.Genes Dev. 2001 Jun 5;15(12):1468-80.
    5、Smith RS,Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest. 2003 Nov;112(10):1460-5
    6 、 Ciofu O,Giwercman B,Pedersen SS,et al. Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center. APMIS. 1994 Sep;102(9):674-80.
    7、Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539-74.
    8、Gambello MJ,Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol.1991,173:3000-9.
    9、Passador L,Cook JM,Gambello MJ,et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science.1993,260:1127-30.
    10、Pearson JP,Gray KM. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad SciUSA.1994,91(1):197-201.
    11、JamesPP,DeldenCV,HiglewskiIB.Active efflux and diffusion are involvedintr ansportofpseu domonasaeruginosa cell to cesignals[J]. Bacteriol,1999, 181(4): 1203-10.
    12、Medina G,Juarez K,Diaz R,et al. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology.2003 Nov;149(Pt 11):3073-81.
    13、Lamb JR,Patel H,Montminy T,et al. Functional domains of the RhlR transcriptional regulator of Pseudomonas aeruginosa.J Bacteriol. 2003 Dec;185(24):7129-39.
    14、WuH,SongZ,GivskovMetal.Pseudomonas aeruginosamuta tionsinlasI and rhlI quorum sensing system sresultin milder chroniclung infection[J].Microbiology,2001,147(5):1105-13.
    15 、 deKievit TR,Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun.2000,68(9):4839-49.
    16、Whiteley M,Lee KM,Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA,1999;96(24):13904-9.
    17、Rumbaugh KP,Griswold JA,Iglewski BH,et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections.Infection and Immunity,1999;67(11):5854-62.
    18、Wu H, Song Z, Hentzer M,et al.Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa.Microbiology 2000,146,2481-2493.
    19、Swift S,Throup JP,Williams,et al.Quorum sensing: a population-density component in the determination of bacterial phenotype.1996;21(6):214-19.
    20、DiMango E,Zar HJ,Bryan R,et al.Direrse Pseudomonas aeruginosa geneproducts stimulate respiratory epithelial cells to produce interleukin-8.J Clin Invest 1995,12;96(5):2204-2210.
    21、Smith RS,Eedyk Er,Springer TA,et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol.2001;167:366-74.
    22、Chun CK,Ozer EA,Welsh MJ,et al. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. PNAS,200;10:3587-90.
    23、Smith RS Iglenwski BH. Pseudomonas aerugino quorum-sensing systems and virulence.Curr Opin Microbiol 2003,2;6(1):56-60.
    24 、 Telford G,Wheeler D,Williams P,et al.The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity.Infect Immun.1998,6;66(1):36-42.
    25、Smith RS,Harris SG,Phipps R, et al.J Bacteriol. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. 2002;184(4):1132-39.
    26、Tateda K, Ishii Y,Horikawa M,et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. 2003;71(10):5785-93.
    27、Jensen PQ, Bjarnsholt T, Phipps R,et al.Rapid necrotic killing of polymer -phonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa.Microbiology, 2007, 5;153(5): 1329-1338.
    28、Wagner C, Zimmmermann S, Brenner-Weiss G,et al. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN).2007;387:481-487.
    29、Chhabra SR,Harty C,Hooi DS,et al. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J Med Chem. 2003 ;46(1):97-104.
    30、Ritchie AJ,Yam AO,Tanabe KM,et al. Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.Infect Immun.2003;71(8):4421-31.
    31、Singh PK,Parsek MR,Greenberg EP,et al. A component of innate immunity prevents bacterial biofilm development.Nature. 2002 May 30;417 (6888):552-5.
    32、Kharazmi A,Eriksen HO,Boring G,et al. Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity. Acta Pathol Microbiol Immunol Scand. 1986 Oct;94(5):175-9.
    33、Zimmermann S, Wagner C, Muller W,et al. Induction of neutrophil chemot -axis by the quorum-sensing molechle N-3Oxododecanoyl -l-homoserine lactone.Infection and Immunity,2006;74(10):5687-92.
    34、Welch M,Todd DE,Whitehead NA,et al, N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J.2000;19:631-41.
    35 、 Xu KD,Stewart PS,Xia F,et al.[J],Appl Environ Microbiol.1998,64(10)∶ 4035-9.
    36、 Xu KD,McFeters GA,Stewart PS,et al. Biofilm resistance to antimicrobial agents. Microbiology. 2000 ;146 ( Pt 3):547-9.
    37、Mathee K,Ciofu O,Sernberg C,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. [J].Microbiology,1999,145(6) ∶1 349-1357
    38、Dibdin GH,Assinder SG,Nichols WW,et al. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. [J].Jntimicrob Chemother,1996;38(5)∶ 757-769.
    39、Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. [J].Antimicrob Agents Chemother,1996;40(11) ∶2 517-2522.
    40 、 Jensen PQ, Bjarnsholt T, Phipps R,et al.Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled prod -uction of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 2007, 5; 153 (5):1329-1338.
    41、David G.Davies,Matthew R,Parsek,James P.Pearson,Barbara H,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science,1998,4;280(10):295-298.
    42、Parsek MR,Greeberg EP.Acyl-homoserine lactone quorum sensing in gram-negative bacteria:a signaling mechanism involved in associations with higher organisms.Proc Natl Acad Sci USA.2000,97(16):8789-93.
    43、Purevdorj B,Costerton JW,Stoodley P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms.Appl Environ Microbiol. 2002 Sep;68(9):4457-64.
    44、Heydorn A,Ersboll B,Kato J, et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol. 2002 Apr;68(4):2008-17.
    45、Yang H,Matewish M,Loubens I,et al. migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology.2000,146(10):2509-19.
    46、Glessner A,Smith RS,Iglewski BH,et al. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. 1999 Mar;181(5):1623-9.
    47、Beaatson SA,Whitchurch CB,Semmler AB,et al. Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. 2002;184(13):3598-3604.
    48、Schaber JA,Triffo WJ,Suh SJ,et al. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun. 2007;75(8):3715-21.
    49、Hassett DJ, Ma JF, Elkins JG,et al.Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 1999,34(5): 1082–1093.
    50、Mathee K,Ciofu O,Sternberg ,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung Microbiology 1999, 145(6):1349–57.
    51、Sauer K,Cullen MC,Rickard AH,et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol.2004;186(21):7312–7326.
    52、Wagner VE,Bushnell D,Passador L,et al. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 2003,185(7):2080–2095.
    53、Camara M,Williams P,Hardman A,et al. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis.2002 Nov;2(11):667-76.
    54、Hentzer M,Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest.2003 Nov;112(9):1300-7 .
    55、Fuqua WC,Winans SC,Greenberg EP, et al. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269-75. 1994;
    56、 Salmond GP,Bycroft BW,Stewart GS, et al. The bacterial 'enigma': cracking the code of cell-cell communication.Mol Microbiol. 1995 May;16(4):615-24.
    57、Chhabra SR,Stead P,Bainton NJ,et al. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl) -L-homoserine lactone. J Antibiot (Tokyo).1993 Mar;46(3):441-54.
    58 、 Givskov M,de Nys R,Manefield,et al.Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling.J Bacteriol. 1996 Nov;178(22):6618-22.
    59、Manefield M,Rasmussen T B,Henzter Metal. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover.. Microbiology,2002, 148(Pt4):1119-1127.
    60、Manefield M,Harris L,Rice SA,et al. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists.App; Environ Microbiol. 2000 May;66(5):2079-84.
    61、Henzer M,Wu H,Andersen JB,et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003 Aug 1;22(15): 3803-15.
    62、Wu H,Song Z,Hentzer M,et al.Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother. 2004 Jun;53(6):1054-61.
    63、Rasmussen TB,Skindersoe ME,Bjarnsholt T,et al.Identity and effects ofquorum-sensing inhibitors produced by Penicillium species. Microbiology (2005), 151, 1325–1340.
    63、Reimmann C,Ginet N,Michel L,et al. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1.Microbiology. 2002 Apr;148(Pt 4):923-32.
    64、宮入伸一.Quorum-sensing制御による感染症治療の可能性.分子病呼吸器病.2005;9(1):33-7.
    1 、 Potera C. Forging a link between biofi lms and disease. Science 1999;283:1837–9.
    2、Costerton JW, Stewaxt PS, Greenberg EP,et al.Bacterial biofilms:a common cause of persistent infections[J],Science,1999,284(5418):1318-22.
    3 、 Donlan RM.Biofilms and device-associated infections[J] Emerg Infect Dis,2001;7(2):277-81.
    4、Serralta VW,Harrison-Balestra C,Cazzaniga AL,et al.Lifestyles of bacteria in wounds.Presence of Biofilms?2001;13(1):29-34.
    5、Akiyama H,Oono T,Saito M,et al.Assessment of cadexomer iodine against staphylococcus aureus biofilm in vivo and in vitro using confocal laser scanning microscopy.The Journal of Dermatology,2004;31:529-534.
    6、Akiyama H,Huh WK,Yamasaki O,et al.Confocal laser scanning microscope observation production by Staphylococcus aureus in vitro.Journal of Dermatological Science.2002;29:54-61.
    7、Costerton JW,Irvin RT.The bacterial glycocalyx in nature and disease.Annu Rev Microbiol 1981;35:299-324.
    8、Sauer K,Camper AK,Ehrlich GD et al.Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.J Bacteriol 2002;184: 1140-1154.
    9、Tateda K,Comte R,Pechere JC,et al .Azuthromycin inhibits quorum-sensing in Psudomonas aeruginosa.Antimicrobial Agents chemotherapy, 2001,45(6): 1930-1933.
    10、Stoodley P,Sauer K,Davies DG,et al.Biofilms as complex differentiated communities.Ann Rev Microbiol 2002;56:187-209.
    11、Spoering AL,Lewin K,Biofilms and planktonic cells of Pseudomonasaeruginosa have similar resistance to killing by antimicrobials.J Bacteriol 2001;183:6746-6751.
    12、Darouiche R.O.Device-associated infections:a macroproblem that srarts with microadherence.Clin.Infect.Dis.2001;33:1567-1572.
    13、Stewart PS,Costerton JW.Antibiotic resistance of bacteria in biofilms.Lancet 2001;358:135-8.
    14、Sigh PK,Parsek MR,Greenberg EP,Welsh MJ.A component of innate immunity prevents bacterial biofilm development.Nature 2002;417: 552-555.
    15、Falcieri E,Vaudaux P,Huggier E et al.Role of bacteria exopolymers and host factors on adherence and phagocytosis of Staphylococcus aureus in foreign body infection.J Infect Dis 1987;155:524-31.
    16、Wysocki AB.Evaluating and managing open skin wouds:colonization versus infection.AACN Clin Issues 2002;13:382-397.
    17、H Akiyama, Huh WK,Yamasaki O,et al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br J Dermatol. 2002 ;147(5):879-85.
    18、Sauer K. The genomics and proteomics of biofilm formation. Genome Biol. 2003; 4(6):219.
    19、Costerton JW,Irvin RT,Cheng KJ.The bacterial glycocalyx in nature and disease. 1981,35:299-324.
    20、Hinsa SM, Espinosa-Urgel M, Ramos JL, et al. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 2003;49(4):905–18.
    21、Ramsey MM, Whiteley M. Pseudomonas aeruginosa attachment andbiofilm development in dynamic environments. Mol Microbiol 2004;53(4):1075–87.
    22、Van Loosdrecht MC,Norde W,Zehnder AJ. Physical chemical description of bacterial adhesion.: J Biomater Appl. 1990 ;5(2):91-106.
    23、Strom MS, Lory S. Structure-function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 1993;47:565–596.
    24 、 Mattick JS. Type IV pili and twitching motility Annu Rev Microbiol.2002;56:289-314.
    25、Strom MS,Nunn DN, Lory S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA1993; 90(6):2404–2408.
    26、 Lee KK,Sheth HB, Wong WY,et al.The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. 1994, 11(4):705–713.
    27、 Skillman LC, Sutherland IW, Jones MV, et al . Green fluorescent protein as a novel species-specificmarker in enteric dual-species biofilms. Microbiology. 1998; 144 (Part 8):2095–2101.
    28、 Banning N, Toze S, Mee BJ. Persistence of biofilmassociated E. coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system. Microbiology. 2003.149 (Part 1), 47–55.
    29、 Jansson JK. Marker and reporter genes: lluminating tools for environmental microbiologists. Curr. Opin. Microbiol. 2003; 6 (3):310–6.
    30、Bordi F, Cametti C, DiociaiutiM, et al. Comp lexation of anionic polyelectrolyteswith cationic liposomes:evidence of reentrant condensation and lipop lex formation [J]. Langmuir, 2004,20(13):5214-5222.
    31、Hoque A T, Liu X, Kagami H, Swaim W D, Wellner R B,O'Connell B C, Ambudkar I S and Baum B J. Construction and function of a recombinantadenovirus encoding a human aquaporin 1-green flurescence protein fusion product. Cancer Gene Thereapy, 2000,7:476-485.
    32、Scholz O, Thiel A, Hillen W, et al. Quantitative analysis of gene expression with an improved green fluorescent protein[J]. Eur J Biochem, 2000,267: 1565-1570.
    33、Hoen PAC, Ro sema BS, Commandeur JNM, et al. Selection of effective antisense o ligodeoxynucleo tides w ith a green fluo rescent p ro teinbased assay: D iscovery of selective and po tent inh ibito rs of glutath ione Stransferase M u exp ression. Eur J Biochem. 2002,269(10):2574-2583.
    34、Bumann D. Exam ination of Salmonella gene exp ression in an infected mammalian ho st using the green fluo rescent p ro tein and twoco lour flow cytometry [J]. Mol Microbiol. 2002,43(5):1269-1283.
    35、Strathmann M,Wingender J,Flemming HC.Application of fluorescently labeled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa.Journal of Microbiological Methods 2002;50:237-248.
    36、Veeh RH, Shirtliff ME, Petik JR,et al. Detection of Staphylococcus aureus biofilm on tampons and menses components. J. Infect. Dis. 2003,188(4):519–530.
    37、Whiteley MM. Bangera RE, Bumgarner MR,et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001,413(6858):860–864.
    38、Edwards R,Haring KG.Bacteria and wound healing.Curr Opin Infect Dis.2004;17:91-96.
    39、Nemoto K,Hirota K,Ono T,et al. Effect of Varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy. 2000;46:111-15.
    40 、 Harrison-Balastra C,Cazzaniga AL,Davis SC,et al. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and isvisualized by light microscopy. Dematol Surg 2003;29(6):631-5.
    41、Travis S.Walker,Kerry L,et al.Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils.Infection and Immunity. 2005;73(6)3693-3701.
    42、Zimmermann S, Wagner C, Muller W,et al. Induction of neutrophil chemo -taxis by the quorum-sensing molechle N-3Oxododecanoyl-l- homoserine lactone.Infection and Immunity,2006;74(10):5687-92.
    1、Bollinger N,Hassett DJ,Iglewski JW,et al.Gene expression in Pseudomonas aeruginosa:evidence of iron override effects on quorum sensing and biofilm-specific gene regulation.J.Bacteriol.2001,3;183(6):1990-6.
    2、Costerton JW,Stewart WP,Greenberg EP.Bacterial biofilms:a common cause of persistent:infection.Science 1999,5;284(5418):1318-22.
    3、Kangmin Duan,Michael G,Surette.Environmental Regulation of Pseudomonous aeruginosa PAO1 Laus and Rhl Quorum-Sensing Systems.Journal of Bacteriology,2007,July;189(13):4827-36.
    4、Nealson KH,Platt T,Hastings JW.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol 1970 Oct;104(1):313-22.
    5、Whitehead NA,Barnard AM,Slater H,et al., Quorum-sensing in Gram-negative bacteria.FEMS Microbiol Rex. 2001 Aug;25(4):365-404.
    6、Miller MB,Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165-99.
    7、Schauder S,Bassler BL. The languages of bacteria.Genes Dev. 2001 Jun 5;15(12):1468-80.
    8、SmithRS,IglewskiBH.Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target.JClinInvest,2003;112(10):1460-5.
    9、Rumbaugh KP,Griswold JA,Iglewski BH,et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections.Infection and Immunity,1999;67(11):5854-62.
    10、Gambello MJ,Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol,1991,173:3000-9.11、Passador L,Cook JM,Gambello MJ.Science.1993,260:1127-30.
    12、Pearson JP,Gray KM. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA.1994,91(1):197-201.
    13、Pearson JP, Passador L, Iglewski BH,et al. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1995.;92:1490–4.
    14、Latifi A, Winson MK, Foglino M,et al. Multiple homologues of LuxR and LuxI contrd expression of virulence determinants and secondary metabolites through quorum gensing in Pseudomonas aeruginosa PAO1.Mol Microbiol, 1995,7;17(2):333~43.
    15JamesPP,DeldenCV,HiglewskiIB.Activeeffluxanddiffusioareinvolvedintransportofpseudomonasaeruginosacell to cesignals[J].Bacteriol,1999, 181(4):1203-10.
    16、Smith RS Iglenwski BH. Pseudomonas aerugino quorum-sensing systems and virulence.Curr Opin Microbiol 2003,2;6(1):56-60.
    17、Winsns SC,Bassler BL. Mob psychology. Journal of Bacteriology , 2002, 184(4): 873-83.
    18、Shigematsu T,Fukushima J,Oyama M,et al.Iron-mediated regulation of alkaline proteinase production in pseudomonas aeruginosa.Microbiol Immunol 2001;45(8):579-90.
    19、MedinaG,JuárezK,DíazR,etal.TranscriptionalregulationofPseudomo -nasaeruginosarhlR,encodingaquorum-sensingregulatoryprotein.Microbiology,2003(11);149:3073-81.
    20、LambJR,PatelH,MontminyT,etal.Functional Domains of the Rhl RT rans criptional Regulator of Pseudomonasaeruginosa.J Bacteriol, 2003;185(24): 7129-39.
    21、WuH,SongZ,GivskovMetal.Pseudomonas aeruginosa mutations in lasI andrhlI quorum sensing system sresultin milder chroniclung infection [J]. Micr -obiology,2001,147(5):1105-13.
    22 、 deKievit TR,Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun.2000,68(9):4839-49.
    23、Whiteley M,Lee KM,Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 1999;96(24):13904-9.
    24、Wu H, Song Z, Hentzer M,et al.Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa.Microbiology 2000,146,2481-93.
    25、Fuqua C,Greenberg EP.Cell-to-cell communication in Escherichia coli and Salmonella typhimurium:They may be talking,but who’s listenting?The National Academy of Sciences,1998,6;95(12):6571-2.
    26、DiMango E,Zar HJ,Bryan R,et al.Direrse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8.J Clin Invest 1995,12 ;96(5):2204-10.
    27 、 Telford G,Wheeler D,Williams P,et al.The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity.Infect Immun.1998,6;66(1):36-42.
    28、Jensen PQ, Bjarnsholt T, Phipps R,et al.Rapid necrotic killing of polymorph -honuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 2007,5;153 (5): 1329-38.
    29、Costerton JW, Irvin RT, Cheng KJ. The bacterial glycocalyx in nature and disease.Annu Rev Microbiol 1981;35:299-324.
    30、Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances(EPSs)-Part2: Technical aspects. Water Sci Technol.2001; 43(6): 9-16.
    31、Neu TR, Lawrence JR. Lectin-binding analysis in biofilm systems.MethodsEnzymol.1999; 310:145-52.
    32、Sauer K, Camper AK, Ehrlich GD et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.J Bacteriol 2002, 2; 184(4):1140-54.
    33、David GD, Matthew RP,James PP,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science, 1998,4;280 (10): 295-8.
    34、Ichikawa K. Hikita T, Maeda N ,et al. Antiangiogenic photodynamic therapy(PDT)by using long-circulating liposomes modified with peptide specific to angiogenic vessels[J]. Biochim Biophys Acta, 2005, 5;1669(1):69-74.
    35、Hassett DJ, Ma JF, Elkins JG,et al.Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 1999,34(5): 1082–93.
    36、Mathee K,Ciofu O,Sternberg ,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung Microbiology 1999, 145(6):1349–57.
    37 、 Wagner VE,Bushnell D,Passador L,et al. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 2003,185(7):2080–95.
    38、Sauer K,Cullen MC,Rickard AH,et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 2004;186(21):7312–26.
    39、Strathmann M, Wingende J, Flemming HC. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 2002; 50: 237-248.
    1 、 Potera C. Forging a link between biofi lms and disease. Science 1999;283:1837–9.
    2、Hyina,Tomanova YH,Gintsburg AL.Biofilms as a mode of existence of bacteria in extemal environment and host body:the phenomenon genetic control ,and regulation systems of development[J],Russian J Genetics, 2004,40(11):1189-98.
    3、Fleischer W,Reimer K.Povidone iodine in antisepsis-State of art.Dermatology 1997;195(Suppl 2):3-9.
    4、Wutzler P, Sauerbrei A, Kloc king R, et al. Virucidal and chlamydicidal activities of eye drops with povidone-iodine (PVP-I) liposomes.Ophthalmic Res 2000;32(2-3):118–125.
    5 、 Vogt PM,Reimer K,Hauser J,et al. PVP-iodine in hydrosomes and hydrogel—A novel concept in wound therapy leads to enhanced epithelialization and reduced loss of skin grafts.Burns 2006;32(6):698-705.
    6、Heggers JP.Defining infecting in chronic wounds;Does it matter?)J Wound Care 1998;7(8):389-92.
    7、Nishimura S, Tsurumoto T, Yonekura A,et al. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofi lms isolated from infected total hip arthroplasty cases. J Orthop Sci 2006;11(1):46–50.
    8、Fulcher TP, Dart JK, McLaughlin-Borlace L,et al. Demonstration of biofilm in infectious crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmology .2001,108(6):1088–92.
    9 、 Xu KD,Stewart PS,Xia F,et al.[J],Appl Environ Microbiol.1998,64(10)∶ 4 035-9.
    10、Xu KD,McFeters GA,Stewart PS,et al. Biofilm resistance to antimicrobialagents. Microbiology. 2000 ;146 ( Pt 3):547-9.
    11、Mathee K,Ciofu O,Sernberg C,et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. [J].Microbiology,1999,145(6) ∶1 349-1357
    12、Dibdin GH,Assinder SG,Nichols WW,et al. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. [J].Jntimicrob Chemother,1996;38(5)∶ 757-769.
    13、Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. [J].Antimicrob Agents Chemother,1996;40(11) ∶2 517-2522.
    14、McAvoy M J, Newton V, Paull A, et al. Isolation of mucoid strains of Pseudomonas aeruginosa from noncystic- fibrosis patients and characterisation of the structure of their secreted alginate. J. Med. Microbiol. 1989;28(3):183–9.
    15、Molloy RG, Brady MP. A modified technique of delayed primary closure using a povidone iodine wick: influence on wound healing in an experimental model. Ir J Med Sci 1993; 162: 297–300.
    16、Damour O, Hua SZ, Lasne F, et al.Cytotoxity evaluation of antiseptics and antibiotics on cultured human fibroblasts and keratinocytes. Burns 1992;18: 479–85.
    17、Mertz PM, Davis SC, Brewer LD et al. Can antimicrobials be effective without impairing wound healing—evaluation of cadexomer-iodine ointment. Wounds 1994; 6: 184–93.
    18、Dyson M, Young SR, Hart J,et al. Comparison effects of moist and dry conditions on the process of angiogenesis during dermal repair. J Invest Dermatol 1992;99(6):729-33.
    19、Jonkman MF, Bruin P, Hoeksma EA, et al. A clot-inducing wound coveringwith high vapour permeability: enhancing effects on epidermal wound healing in partial-thickness wounds in guinea pigs. Surgery 1988;104:537-45.
    20、Niedner R.Cytotoxicity and sensitization of povidone indine and other freguently used antiinfection agents.Dermatology 1997;195(Suppl2):89-92.
    21、Wutzler P, Sauerbrei A, Klocking R, et al. Virucidal and chlamydicidal activities of eye drops with povidone-iodine liposome complex. Ophthalmic Res 2000;32:118-25.
    22、McDonnell G,Russell AD.Antiseptics and disinfectants:Actiety,action and resistance.Clinnical Microbiology Reviews 1999;12(1):147-79.
    23、Payne DN,Gibson SAW,Lewis R.Antiseptics:A forgotten weapon in the control of antibiotic resistant bacteria in hospital and community swttings.J Roy Soc Health 1998;118(1):18-22.
    24、Apelqvist J, Ragnarson Tennvall G. Cavity foot ulcers in diabetic patients: a comparative study of cadexomer iodine ointment and standard treatment. An economic analysis alongside a clinical trial. Acta Derm Venereol 1996; 76: 231–5.
    25、Moore K, Thomas A, Harding KG: Iodine release from the wound dressing Iodosorb modulates the secretion of cytokines by human macrophages responding to bacterial lipopolysac charide. Int J Biochem Cell Biol 1997; 29: 163–171.
    26、Konig B, Reimer K, Fleischer W,et al. Effects of Betaisodona-ess mice[J ]. Eur Surg Res, 2006; 38 (1):27-34.
    29、Mueller S, Vogt PM, Stinau HU , et al. Repithel : removing the barriers to wound healing[J ].Dermatology, 2006; 212(1): 77-81.
    30、Venturi S, Donati FM, Venturi A, Venturi M,Grossi L, Guidi A: Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach. Adv Clin Pathol 2000; 4: 11–17.
    31、Mertz PM,Ovington LG.Wound healing microbiology. Dermatology. Dermat -ologic Clinics 1993;4:739-47.
    32、Sauer K,Camper AK,Ehrlich GD et al.Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.J Bacteriol 2002;184:1140-1154.
    33、Tateda K,Comte R,Pechere JC,et al .Azuthromycin inhibits quorum-sensing in Psudomonas aeruginosa.Antimicrobial Agents chemotherapy,2001, 45(6): 1930-1933.
    34、Stoodley P,Sauer K,Davies DG,et al.Biofilms as complex differentiated communities.Ann Rev Microbiol 2002;56:187-209.
    35、Matthew B,Henryc A,Joseph J.Relationship between Glycocalyx and Povidone-Iodine Resistance in seudomonas aeruginosa(ATCC27853) Biofilms.Applied and Environmental.Microbiology.1995,2:187-193.
    36、Tokeo Y,Oje S,Kamiya A,et al.Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa.Microbios.1994;79(318):19-26.
    37、Brown ML,Aldrich HC,Gauthier JJ. Relationship between Glycocalyx and Povidone-Iodine Resistance in Pseudomonas aeruginosa (ATCC 27853) Biofilms .Applied and Environ Mental. 1995 ;61(1):187-93.
    38、Mary S,Charrasse S,Meriane M, et al., Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism.Mol Biol Cell. 2002 Jan;13(1):285-301.
    39、Shirwaikar A,Shenoy R,Udupa AL, et al. Wound healing property of ethanolic extract of leaves of Hyptis suaveolens with supportive role of antioxidant enzymes .Indian J Exp Biol. 2003 Mar;41(3):238-41.
    40、Dow G Browne A,Sibbald RG.Infection in chronic wounds:Conroversies in diagnosis and treatment.Ost Wound Manang 1999;45(8):23-40.
    41、Rodenheaver GT.Wound cleansing.wound irrigation,wound disinfection. In: Krasner D,Kane D.Chronic Wound Care;A Clinical Source Book for Health -care professionals,second edition,wayne,PA:Health Management Publicati -ons,Inc.1997:97-108.
    42、Reimer K, Vogt PM, Broegmann B, et al: An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone-iodine liposome hydrogel. Dermatology 2000; 201: 235–241.
    43、Vogt PM, Hauser J, Rossbach O, et al: Polyvinyl pyrrolidone-iodine liposome hydrogel improves epithelialization by combining moisture and antisepis. A new concept in wound therapy. Wound Repair Regen 2001; 9: 116–122.
    44、Zhou LH, Nahm WK, Badiavas E, et al. Slow release iodine preparation and wound healing: in vitro effects consistent with lack of in vivo toxicity in human chronic wounds. British Journal of Dermatology. 2002; 146(3): 365–374.
    45、Lamme EN, Gustafsson TO, Middelkoop E. Cadexomer-iodine ointment shows stimulation of epidermal regeneration in experimental full-thickness wounds.Arch Dermatol Res. 1998; 290(1-2): 18–24.
    46、Tonnesen MG, Feng X, Clark RA: Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000; 5(1): 40–46.
    47、Langer S , Botteck NM, Bosse B, et al. Effect of polyvi2 nylpyrrolidon -e2iodine liposomal hydrogel on wound microcir2 culation in SKH12hrhairless mice[J ]. Eur Surg Res, 2006; 38 (1):27-34.
    48、Moore K, Thomas A, Harding KG. Iodine released from the wound dressing Iodosorb modulates the secretion of cytokines by human macrophages responding to bacterial lipopolysaccharide. Int J Biochem Cell Biol. 1997; 29(1): 163–71.
    49、Vogt PM, Lehnhardt M, Wagner D, et al. Determination of endogenous growth factors in human wound fluid: temporal presence and profiles of seretion. Plast Reconstr Surg. 1998; 102(1): 117–23.
    50、Ohtani T, Mizuashi M, Ito Y, et al. Cadexomer as well as cadexomer iodine induces the production of proinflammatory cytokines and vascular endothelial growth factor by human macrophages Experimental Dermatology 2007; 16(4): 318–23.
    51、Goldenheim PD. An appraisal of povidone-iodine and wound healing. Postgrad Med J 1993; 69 (Suppl.): S97–105.
    52、Sundberg J, Meller R. A retrospective review of the use of cadexomer iodine in the treatment of chronic wounds. Wounds 1997; 9: 68–86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700