类脂立方液晶及咪唑类离子液液晶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在溶剂中,两亲分子可以形成多种的缔合结构,如胶束、囊泡、溶致液晶等。溶致液晶因为相态丰富多样、结构可调控等特殊的性能而受到众多研究人员的关注,其物理化学性质以及在材料合成、萃取、催化、医药等领域的应用被广泛的研究。本论文从扩展溶致液晶在药物载体及材料制备方面的应用两个角度出发,对溶致液晶的物理化学性质进行了系列研究。首先,利用甘油单酸酯构建了类脂立方液晶,研究了多种添加剂对其物理化学性质的影响、药物分子在立方液晶中的增溶位置,同时考察了其作为药物载体在药物包载及药物控制释放方面的应用。其次,利用长链咪唑类离子液体与水和对二甲苯共同构筑了溶致液晶,研究了溶致液晶的结构参数、流变学性质与各组分含量、烷基链长之间的关系,还比较了长链咪唑类离子液体形成的溶致液晶与传统阳离子表面活性剂溶致液晶在结构及流变学性质上的差异。这为今后以咪唑类离子液体溶致液晶作为模板进行纳米材料的制备打下了理论基础。
     甘油单油酸酯(MO)与水形成的类脂立方液晶具有生物可降解、生物亲和度高、粘度大、有助于药物的透皮吸收等优点,因此其在药物载体领域的应用逐渐受到人们的关注。在本论文的第二章中,我们利用小角X射线散射(SAXS)、流变和傅立叶变换红外光谱(FT-IR)等技术,考察了嵌段共聚物(F-127)、药物分子(盐酸普鲁卡因,PC)对MO/水类脂立方液晶结构及流变学性质的影响。发现,F-127的加入可以引起MO/水立方液晶的结构由C_D型向C_P型转变,而盐酸普鲁卡因的加入则可以引起立方液晶由C_G型向C_D型转交。相应的,体系的流变学性质也随着立方液晶结构的变化而发生了变化。另一方面,体系流变学性质非线性变化也证实了,随着F-127和PC的加入,立方液晶内部结构的变化不是连续的,体系确实存在着相态类型的变化。利用FT-IR技术研究了盐酸普鲁卡因对立方液晶中MO分子构象的影响,结果表明,体系中加入盐酸普鲁卡因后,MO分子烷基链构象的变化较大,随着PC的加入,红外光谱的特征峰宽度变窄,说明烷基链活跃度降低,分子排列的有序性增强。同时,PC的加入更有利于立方液晶相中kink构象的形成。PC对MO分子极性头的影响主要表现在,MO分子中羰基的氢键形式加强,这是由于PC中的N~-离子上的H原子与羰基上的氧原子间形成了氢键作用。进一步证实,盐酸普鲁卡因可以增溶在MO分子形成的双层膜中,与MO共同构筑立方液晶中骨架结构。而随着PC含量的升高,MO分子中构象的不连续性变化也恰好对应于SAXS结果中表明的,MO/水立方液晶由C_G型向C_D型的结构转变。
     类脂立方液晶在水中的分散体系(cubosome)也是一种潜在的药物载体。在本论文的第三章中,我们用一种操作简单的前体法制备了cubosome,通过SAXS、冷冻蚀刻电镜(FF-TEM)和激光光散射(DLS)等技术考察了该分散体系颗粒的结构类型、形貌以及粒径分布。研究发现,一定量的嵌段共聚物F-127和P6100对cubosome的形貌不会产生明显的影响,分散体系仍然为不规则的立方状颗粒,但颗粒的粒径尺寸变化明显,这与嵌段共聚物可以引起体系内部结构由C_D向C_P变化有关,而且相同量的嵌段共聚物由于分子量的差异对颗粒尺寸的影响也有所不同;链长不同的三种甘油单酸酯均可以得到相应的cubosome,但其分散颗粒的粒径尺寸存在差异;由于药物分子咖啡因可以破坏MO分子极性头与水分子之间的氢键作用,因此其加入可以引起体系发生由cubosome向囊泡的相转变。
     两亲分子在医药领域具有广泛的应用,它不但可以起到增溶药物、保护药物、稳定药剂等的作用,而且其在溶剂中形成的多种有序结构本身即可用作药物载体。在本论文的第四章中,我们在类脂立方液晶作为药物载体方面进行了研究尝试。首先,研究了两种药物分子——盐酸普鲁卡因(PC)和盐酸环丙沙星(CF),对两种双尾巴表面活性剂——二—(2—乙基己基)磺基琥珀酸钠(AOT)和双十二烷基二甲基溴化铵(DDAB)在水中胶束化过程热力学参数的影响,从分子层面揭示了药物分子与表面活性剂分子之间的相互作用。研究方法包括表面张力法、紫外—可见分光光度法及稳态荧光技术等。研究发现,药物分子对双尾巴表面活性剂在水溶液中的临界胶束浓度(cmc)、表面张力平衡值(γ_(cmc))以及表面活性剂分子胶束化过程的热力学参数均产生了一定程度的影响,但机理有所不同。PC与AOT之间的静电引力,可以导致水溶液中AOT的cmc及γ_(cmc)值降低。当PC的浓度增加到一定程度时,PC可以与AOT形成混合胶束,进一步影响其胶束化行为。PC与DDAB之间的静电斥力,导致DDAB胶束排列松散,水溶液的γ_(cmc)升高。CF和AOT间的静电引力同样可以引起水溶液中AOT的cmc值及γ_(cmc)降低。另一方面,CF导致DDAB在水溶液中cmc及γ_(cmc)升高,则是因为CF可以破坏DDAB疏水部分周围水分子形成的“冰山”结构。同时,通过对比药物分子在水溶液及胶束溶液中光学性质的差异,也可以证实PC与AOT混合胶束的生成,并推测出CF增溶在AOT胶束的栅栏层中,而在DDAB体系中,CF位于DDAB胶束/水的界面附近。其次,在本章中,利用释放度测定法研究了PC在MO/水立方液晶中的释放行为。发现在研究的时间和浓度范围内,不同浓度的盐酸普鲁卡因均可以在MO/水立方液晶中达到缓释,t_(1/2)超过20小时,且释放效率超过80%,基本达到完全释放。PC在不同体系中的释放过程可分为两个阶段,第一阶段为暴释阶段,对应于自由药物分子的释放;第二阶段为载体中包结的药物分子的释放。两个阶段的释放曲线均符合Higuchi平方根定律。而第二阶段中,PC在C_D结构立方液晶中的扩散系数高于在C_G结构立方液晶中的扩散系数,说明药物释放行为的差异与载体体系的结构存在着一定的关系。最后,我们还考察了F-127的含量对氯霉素在MO/水体系形成的cubosome中释放行为的影响。发现氯霉素的释放效率与体系的结构有关,对于氯霉素这类亲油的模型药物来说,cubosome是一种暴释载体。
     近些年来,离子液体由于其特殊的物理化学性质,在绿色化学、合成、催化及材料制备方面逐渐受到人们的关注。在胶体与界面化学领域,离子液体除了作为传统溶剂的替代品之外,还可以通过对其分子结构的调控,使之具有一定的表面活性,进而扩展了离子液体的应用范围。在本论文的第五章中,我们合成了一系列不同链长的1—烷基—3—甲基澳代咪唑类离子液体(C_Nmim-Br,N=12、14、16),并利用这几种离子液体与对二甲苯和水共同构筑了溶致液晶体系,同时应用SAXS、偏光显微镜(POM)、核磁共振(~2H-NMR)等技术对离子液体溶致液晶的结构进行了表征。研究发现,溶致液晶的结构参数受到体系中离子液体的种类及各组分含量等因素的影响。在六角相中,随着离子液体含量的升高,一方面,离子液体分子在形成结构单元的棒状胶束中的聚集更加紧密;另一方面,结构单元在体系中的聚集也更加紧密。在层状相中,随着水含量的升高,溶致液晶的水通道厚度增大,相应的离子液体分子双层膜受到挤压,其厚度降低。同时,体系的流变学性质与溶致液晶的结构有关,在六角相中随着离子液体分子的聚集更加紧密,体系的稳态参数和动态模量值均增大,松弛时间缩短。在层状相中,则由于水含量的升高,体系的模量值降低。长链咪唑类离子液体形成的溶致液晶的结构参数与流变学性质随组分含量变化的规律与在传统阳离子表面活性剂CTAB形成的溶致液晶体系中的变化规律一致。但由于分子结构的不同,长链咪唑类离子液体形成的溶致液晶的结构与相同碳链长度的三甲基季铵盐体系有所差异。在C_(12)mim-Br/对二甲苯/水三元体系中,除六角相和层状相外,还利用SAXS和NMR等技术手段证实了双连续型立方相溶致液晶的存在。根据IPMS理论计算了立方液晶的结构参数,发现随着离子液体含量的升高,离子液体分子双层膜逐渐膨胀,进而挤压水通道,使水通道半径的值降低。长链咪唑类离子液体疏水烷基的长度对其形成的溶致液晶的物理化学性质也有着一定的影响,疏水烷基的长度越大,液晶的晶胞参数越大、流变学模量参数的值越高。同时,体系的流变学性质与液晶的结构有关。这部分研究丰富了溶致液晶体系,同时为离子液体在合成纳米材料、催化和萃取方面的应用进行了探索。
The self-assembled structures of amphiphile molecules in solvents,such as micelle, vesicle,and lyotropic liquid crystalline phase(LLC)etc.,have attracted more and more attention.As the abundant of structures,LLC is studied widely and applied in several fields,such as synthesis,extraction,catalysis,pharmaceutics,and so on.In order to expand the application of LLC as the drug delivery system and the templates of nanomaterials,the physicochemical properties of two kinds of LLCs formed by lipid and imidazolium-type ionic liquids are studied in the present dissertation.Beside of the component effects on the physicochemical properties of the two kinds of LLCs are studied,the lipid-based LLCs are attempted to be used as drug delivery systems.
     In the second chapter,the effects of copolymer(F-127)and model drug(procaine hydrochloride,PC)on the structure and theological properties of the cubic LLC formed in monoolein(MO)/water systems are studied by means of Small Angle X-ray Scattering,rheology and FT-IR.It is found that the addition of F-127 could lead to the structure transition from C_D-type to C_P-type cubic phase.The structure transition from C_G-type to C_D-type could also be investigated in the MO/water cubic phase in the present of procaine hydrochloride.The phase transition could consequently induce the change of the theological properties of the cubic phases.The effect of procaine hydrochloride on molecular conformation of MO in the cubic phase is further studied by FT-IR.The results reveal that the arrangement of the hydrophobic carbon chain of MO is strongly affected by procaine hydrochloride.The spectrums of MO/PC/water mixtures are narrower than that of MO/water mixtures,which means that the order of the arrangement of MO hydrophobic carbon chain is increased.The addition of PC is favorable to the kink conformation of CH_2 group.Moreover,with the addition of PC.the H-bond C=O in the polar head group of MO is enhanced.It results from the H-bond between C=O and the N~+-H in the polar head group of PC.From the change of the FT-IR spectrums,it could be concluded that PC could anticipate forming the lipid bilayer together with MO in the cubic phase.Meanwhile,the discontinuous change of the conformation of MO molecules is corresponding to the structure transition of cubic LLC which is confirmed by SAXS.
     It is well known that the aqueous dispersion of cubic LLC(cubosome)formed from monoglyceride can be used for the development of drug delivery systems.The cubosome formed based on monoglycerides are obtained by precursor method in the third chapter.The internal structures,morphologies and sizes of the dispersed particles are studied by means of SAXS,electronic microscopy and Dynamic Light Scattering (DLS).It is found that the sizes of the cubosomes are dependent on the carbon chains of the monoglycerides.As the phase transition induced by F-127 in the cubic LLCs.a discontinuous change of the cubosome sizes also could be investigated.In additional, the model drug,caffeine,could induce the phase transition from cubosome to vesicle, because it could destroy the H-bond between head polar group of MO and water molecules.
     The elementary studies on cubic LLC used as drug delivery systems are involved in the fourth chapter.Firstly,the effects of model drugs,procaine hydrochloride(PC)and ciprofloxacin hydrochloride(CF)on the micellization of two double tailed surfactants. sodium bis(2-ethyl-1-hexyl)sulfosuccinate(AOT)and didodecyldimethylammonium bromide(DDAB),in the aqueous solution are studied in order to reveal the interaction between drug molecules and amphiphiles on molecular level.It is found that the electrostatic attraction between PC and AOT could lead to the reduction of the cmc and equilibrium surface tension of AOT in aqueous solution.The PC-AOT mixed micelle could be formed when the concentration of PC increased to 0.5mmol/L.On the contrary. the electrostatic repulsion between PC and DDAB leads to the incompact package of DDAB molecules in micelle,and the surface tension of aqueous DDAB solutions are slightly increased.The different electrostatic actions between CF and two surfactants cause that the effect on surface properties and the standard thermodynamic functions of micelle formation are different.The electrostatic attraction between CF and AOT could lead to the reduction of cmc of AOT and surface tension in AOT/CF solution,but the increase of the cmc and surface tension in DDAB solution.From the UV results,it reveals that CF is localized in the palisade layer of AOT micelle but the water/micelle interface of DDAB micelle.Secondly,the controlled release of PC from MO/water cubic phases could be achieved because t_(1/2)is more than 20h,and the release efficiency could attain up to 80%in different systems.The release profiles of PC could be divided into two stages.The release in the two stages both follow the Higuchi quadratic root law. Finally,the effects of copolymers on the drug release behavior from cubosome formed from MO/water systems are also studied.It is found that the release efficiency of Chloramphenicol is dependent on the structure of cubosome,and cubosome is a burst drug release system for lipophilic drugs.
     In the fifth chapter,the structures of the LLCs formed in 1-alkyl-3-methylimidazolium bromide(C_Nmim-Br,N=12,14,16)/p-Xylene/water mixtures are characterized by Small Angle X-ray Scattering(SAXS),Polarized Optical Microscopy (POM)and ~2H-NMR technologies.There are two phases in all of the three systems with different carbon number of the hydrophobic group of C_Nmim-Br,hexagonal and lamellar LLCs,respectively.The structural parameters of the two LLCs are found to be dependent on the carbon number of the hydrophobic group of C_Nmim-Br and the components content.For hexagonal phase,at higher surfactant content,the surfactant molecules aggregate more densely in the cylinder unit of the hexagonal phase;while the cylinder units aggregate more densely in the hexagonal phase.For lamellar phase,the increase of the water content leads to the water channel swell,and the surfactant bilayer is compressed.Meanwhile,the rheological properties of the LLCs are related to the phase structures.In the hexagonal phase,the sample with higher surfactant content has a higher zero-rate viscosity,zero-rate stress and dynamic modulus,which is due to the more dense aggregation of surfactant molecules in the membranes.The viscosity of lamellar phase is dependent on the component contents.Samples with higher content of surfactant or lower water content have the higher viscosity and dynamic modulus. Besides of hexagonal and lamellar phases,there is a bicontinuous cubic phase in the C_(12)mim-Br system,which is investigated by SAXS,POM and ~2H-NMR experiments. Moreover,the structural parameters and rheological properties of the C_Nmim-Br-based LLCs are compared with that of the traditional cationic surfactant cetyltrimethylammonium bromide(CTAB)system.It is found that the effects of components content on the LLCs formed from the two kinds of amphiphile molecules are similar.However,the structural parameters and rheological properties of the two systems are different because of the different molecular structure.The studies of the physicochemical properties of LLC formed based on ionic liquid are helpful to the further application of LLC in the nanomaterials preparation.
引文
[1]O.Pelletier,E Davidson,C.Bourgaux.C.Couion,S.Regnault,J.Livage.A detailed study of the synthesis of aqueous vanadium pentoxide nematic gels.Langmuir,2000,16(12),5295-5303.
    [2]X.Commeinhes,P.Davidson,C.Bourgaux,J.Livage.Alignment of liquid-crystalline V_2O_5ribbons suspensions in a magnetic field.Adv.Mater.,1997.9(11),900-903.
    [3]P.A.Buining,H.N.W.Lekkerkerker.Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods.J.Phy.Chem..1993,97(44).11510-11516.
    [4]P.A.Buining,A.P.Philipes,H.N.W.Lekkerkerker.Phase behavior of aqueous dispersions of colloidal boehmite rods.Langmuir,1994,10(7),2106-2114.
    [5]M.P.B.van Bruggen,J.K.G.Dhont,H.N.W.Lekkerkerker,Morphology and kinetics of the isotropic-nematic phase transition in dispersions of hard rods.Macromolecules,1999,32(7),2256-2264.
    [6]R.W.Hicks,T.J.Pinnavaia.Nanoparticle assembly of mesoporous AIOOH(Boehmite).Chem.Mater..2003,15(1),78-82.
    [7]Langmuir,I.The role of attractive and repulsive forces in the formation of tactoids,thixotropic gels,protein crystals and coacervates.J.Chem.Phys.,1938,6,873-896.
    [8]J.C.P.Gabriel.P.Davidson.New trends in colloidal liquid crystals based on mineral moieties.Adv.Mater.,2000,12(1),9-20.
    [9]H.Maeda,Y.Maeda,Atomic force microscopy studies for investigating the smectic structures of colloidal crystals of β-FeOOH.Langmuir,1996,12(6),1446-1452.
    [10]J.C.P.Gabriel,C.Sanchez,P Davidson.Observation of nematic liquid-crystal textures in aqueous gels of smeetite clays.J.Phys.Chem.,1996,100(26),11139-11143.
    [11]F.M.van der Kooij,K.Kassapidou,H.N.W.Lekkerkerker.Liquid crystal phase transitions in suspensions of polydisperse plate-like particles.Nature,2000,406(6798).868-871.
    [12]F.M.van der Kooij,D.vander Beck,H.N.W.Lekkerkerker.Isotropic-nematic phase separation in suspensions of polyddisperse colloidal platelets.J.Phys.Chem.B,2001,105(9),1696-1700.
    [13]D.vander Beek,H.N.W.Lekkerkerker.Nematic ordering vs.gelation in suspensions of charged platelets.Europhys.Lett.,2003,61(5),702-707.
    [14]D.vander Beek,H.N.W.Lekkerkerker.Liquid crystal phases of charged colloid platelets.Langmuir,2004,20(20),8582-8586.
    [15]A.B.D.Brown,S.M.Claeke,A.R.Rennie,Ordered phase of platelike particles in concentrated dispersions.Langmuir,1998,14(11),3129-3132.
    [16]A.B.D.Brown,C.Ferrero,T.Narayanan,A.R.Rennie,Phase separation and structure in a concentrated colloidal dispersion of uniform plates.Eur.Phys.J.B.,1999,11(3),481-489.
    [17]N.Wang,S.Y.Liu,J.Zhang,Z.H.Wu,J.Chert,D.J.Sun,Lamellar phase in colloidal suspensions of positively charged LDHs platelets.Soft Matter,2005,1(6),428-430.
    [18]S.Y.Liu,J.Zhang,N.Wang,W.R.Liu,C.G.Zhang,D.J.Sun.Liquid-crystalline phases of colloidal dispersions of layered double hydroxides.Chem.Mater.,2003,15(17),3240-3241.
    [19]李彦.张庆敏,黄福志,顾镇南,表面活性剂溶致液晶体系研究进展.大学化学,2000.15(1),5-9.
    [20]X.B.Zeng,Y.S.Liu,M.Imperor-Clerc,Hexagonal close packing of nonionic surfactant micelles in water.J.Phys.Chem.B,2007,111(19),5174-5179
    [21]K.A.Simon,P.Sejwal,R.B.Gerecht,Y.Y.Luk,Water-in-water emulsions stabilized by non-amphiphilic interactions:polymer-dispersed lyotropic liquid crystals.Langmuir,2007,23(3),1453-1458.
    [22]F.Comelles.J.Sanchez-Leal,J.J.Gonzalez,Influence of fatty acid structure on liquid crystal formation in systems with anionic surfactant,diethyleneglycol ethylether and water.Eur.J.Lipid Sci.Technol.,2005,107(5),291-296.
    [23]Y.C.Lee,I.J.Chung,Lyotropic liquid crystalline phase of polyesteramides with different ratio of amide to ester groups in a main chain.Polymer Bulletin,1992,28(4),441-447.
    [24]X.Auvray,C.Petipas,C.Dupuy,S.Louvet,R.Anthore,1.Rico-Lattes,A.Lattes,Small-angle X-ray diffraction study of the thermotropic and lyotropic phases of five alkyl cyclic and acyclic dieaccharides:Influence of the linkage between the hydrophilic and hydrophobic moieties.Europ.Phys.J.E-Soft Mater.2001,4(4),489-504.
    [25]T.Kijima,Y.Nishida,D.Fujikawa,M.Uota,T.Yoshimura,G.Sakai,Long-chain alcohol induced phase transition in lyotropic mixed polyoxyethylene-type surfactant liquid-crystals.J.Mol.Liquids,2007,133(1-3),54-60.
    [26]A.Feher,E.Csanyi,I.Csoka,Anita Kovacs,I.Eros.Thermoanalytical investigation of lyotropic liquid crystals and microemulsions for pharmaceutical use.J.Thermal Anal.Cal.,2005,82(2),507-512.
    [27]唐渝,王小白,桂明德.化学研究与应用,1998,10(5).470-475.
    [28]J.N.Israelachvili,D.J.Mitchell,B.W.Ninham,Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers.J.Chem.Soc.Faraday Trans.Ⅱ,1976,72,1525-1568.
    [29]D.J.Mitchell,B.W.Ninham,Micelles,vesicles and microemulsions.J.Chem.Soc.Faraday Trans.Ⅱ,1981,77(4),601-629.
    [30]C.Tanford,Micelle shape and size.J.Phys.Chem.,1972.76(21).3020-3024.
    [31]G.J.T.Tiddy,Surfactant-water liquid crystal phase.Phys.Rep.,1980,57,1-46.
    [32]T.Landh,Phase behavior in the system pine needle oil monoglycerides-poloxamer 407-water at 20℃.J.Phys.Chem.,1994,98(34),8453-8467.
    [33]Y.Yamashita,H.Kunieda.E.Oshimura.K.Sakamoto,Formation of intermediate micellar phase between hexagonal and discontinuous cubic liquid crystals in brine/N-acylamino acid surfactant/N-acylamino acid oil system.J.Colloid Interface Sci.,2007.312(1).172-178.
    [34]F.Nilsson,O.Soderman,Physical-chemical properties of the n-octayl β-D-glucoside/water system.A phase diagram,self-diffusion NMR,and SAXS study.Langmuir,1996,12(4).902-908.
    [35]M.K.Hossain,D.P.Acharya,T.Sakai,H.Kunieda,Phase behavior of poly(oxyethylene)cholesteryl ether/novel alkanolamide/water systems.J.Colloid Interface Sci..2004.277(1).235-242.
    [36]P.Alexandridis,U.Olsson,B.Lindman.Structureal polymorphism of amphiphilic copolymers:six lyotropic liquid crystalline and two solution phases in a poly(oxybutylene)-b-poly (oxyethylene)-water-xylene system.Langmuir,1997,13(1),23-34.
    [37]Z.N.Wang,Z.Y.Diao,F.Liu,G.Z.Li,G.Y.Zhang,Microstructure and rheological properties of liquid crystallines formed in Brij 97/water/IPM system.J.Colloid Interface Sci.,2006. 297(2). 813-818.
    [38] T. lmura, Y. Hikosaka, W. Worakitkanchanakul, H. Sakai, M. Abe. M. Konishi. H. Minamikawa. D. Kitamoto, Aqueous phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir. 2007. 23(4). 1659-1663.
    [39] D. Anderson, H.Wennerstrom, U. Olsson, Isotropic bicontinuous solutions in surfactant-Solvent systems: the L3 phase. J. Phys. Chem. 1989,93(10), 4243-4253.
    [40] M. H. Ropers, M. J. Stebe. Veronique Schmitt, Lyotropic mesophases of a fluorinated surfactant with a short nonionic polar head in water. J. Phys. Chem.. 1999,103(17), 3468-3475.
    [41] M. A. Siddig, S. Radiman. S. V. Muniandy, L. S. Jan, Structure of cubic phases in ternary systems Glucopone/water/hydrocarbon. Colloids and Surfaces A, 2004,236(1-3), 57-67.
    [42] H. Qiu, M. Caffrey, Lyotropic and thermotropic phase behavior of hydrated monoacylglycerols: structure characterization of monovacceinin. J. Phys. Chem. B. 1998. 102(24). 4819-4829.
    [43] H. Kunieda, K. Shigeta, M. Suzuki, Phase behavior and formation of reverse vesicles in long-polyoxyethylene-chain nonionic surfactant systems. Langmuir, 1999, 15(9), 3118-3122.
    [44] M. Hato, I. Yamashita, T. Kato, Y. Abe, Aqueous phase behavior of a 1-o-phytanyl-β-D-xyloside /water system. Glycolioid-based bicontinuous cubic phases of crystallographic space groups Pn3m and Ia3d. Langmuir, 2004,20(26), 11366-11373.
    [45] P. Alexandridis, U. Olsson, B. Lindman, Phase behavior of amphiphilic block copolymers in water-oil mixtures: The pluronic 25R4-water-p-xylene system. J. Phys. Chem.. 1996. 100(1). 280-288.
    [46] R. Mezzenga, M. Grigorov, Z. D. Zhang, C. Secais, L. Sagalowicz, A. I. Romoscanu. V. Khanna. C. Meyer, Polysaccharide-induced order-to-order transitions in lyotropic liquid crystals. Langmuir, 2005,21 (14), 6165-6169.
    [47] P. L. Hubbard, K. M. McGrath, P. T. Callaghan, Orientational anisotropy in the polydomain lamellar phase of a lyotropic liquid crystal. Langmuir, 2006,22(9), 3999-4003.
    [48] J. Borne, T. Nylander, A. Khan, Microscopy, SAXD, and NMR studies of phase behavior of the monoolein-diolein-water system. Langmuir, 2000, 16(26), 10044-10054.
    [49] I. E. Pacios, C. S. Renamayor, A. Horta, B. Lindman, K. Thuresson, Incorporation of substituted acrylamides to the lamellar mesophase of Aerosol OT. J. Colloid Interface Sci., 2006. 299(1). 378-387.
    [50] S. Mele, B. W. Ninham, M. Monduzzi, Phase behavior of homologous perfluoropolyether surfactants: NMR, SAXS, and optical microscopy. J. Phys. Chem. B. 2004. 108(46). 17751-17759.
    [51] I. Goodchild, L. Collier, S. L. Millar, I. Prokes, J. C. D. Lord, C. P. Butts, J. Bowers. J. R.P. Webster, R. K. Heenan, Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. J. Colloid Interface Sci.. 2007. 307(2). 455-468.
    [52]W.C.Pomerantz.N.L.Abbott,S.H.Gellman,Lyotropic liquid crystals from designed helical β-peptides.J.Am.Chem.Soc.,2006.128(27),8730-8731.
    [53]V.Castro,S.V.Dvinskikh.G.Widmalm,D.Sandstrom,A.Maliniak,NMR studies of membranes composed of glycolipids and phospholipids.Biochim.Biophys.Acta.2007.1768(10),2432-2437.
    [54]C.Frank,R.Strey,C.Schmidt,C.Stubenrauch,Coexisting lamellar phases in water-oil-surfactant systems induced by the addition of an amphiphilic block copolymer.J.Colloid Interface Sci.,2007,312(1),76-86.
    [55]P.Strom,D.M.Anderson,The cubic phase region in the system didodecyldimethyl-ammonium bromide-water-styrene.Langmuir,1992.8(2),691-709.
    [56]P.L.Hubbard,K.M.McGrath,P.T.Callaghan,A Study of anisotropic water self-diffusion and defects in the lamellar mesophase.Langmuir,2005,21(10),4340-4346.
    [57]R.Zana,Surfactants solutions:New methods of investigation,Marcel Dekker Inc.,New York.1987,p209.
    [58]G.Montalvo,M.Valiente,E.Rodenas,Rheological properties of the I phase and the hexagonal.lamellar,and cubic liquid crystals of the CTAB/benzyl alcohol/water system.Langmuir.1996.12(21),5202-5208.
    [59]J.L.Jones,T.C.B.Mcleish,Concentration fluctuations in surfactant cubic phases:theory,rheology,and light scattering.Langmuir,1999,15(22),7495-7503.
    [60]J.L.Jones,T.C.B.McLeish,Rheological response of surfactant cubic phases.Langmuir,1995.11(3),785-792.
    [61]T.Horanyi,L.Halasz,J.Palinkas,Zs.Nemeth,Relationship between optical and rheological properties of polymer-added lamellar liquid-crystalline systems.Langmuir,2004.20(5).1639-1646.
    [62]L.L.Shui,P.Z.Guo,F.Chen,G.Y.Xu,L.Q.Zheng,The effect of lopamidal on rheological properties of monoglyceride/water system.Colloids and Surfaces A,2005,256(1),85-90.
    [63]P.Fisher,H.Rehage,Rheological master curves of ciscoelastic surfactant solutions by varying the solvent viscosity and temperature.Langmuir,1997.13(26),7012-7020.
    [64]T.Durrschmidt,H.Hoffmann.Organogels from ABA triblock copolymers.Colloid Polym.Sci.2001.279(10)1005-1012.
    [65]王红霞.张高勇.非离子表面活性剂液晶的线性粘弹性研究.化学学报.2001.59(11).1988-1893.
    [66]Zs.Nemeth,L.Halasz,J.Palinkas,A.Bota,T.Horanyi,Rheological behaviour of a lamellar liquid crystalline surfactant-water system.Colloids and Surfaces:A,1998,145(1),107-119.
    [67]Zs.Nemeth,J.Palinkas,L.Halasz.A.Bota,T.Horanyt.Rheological and structural properties of binary nonionic surfactant-water lamellar systems.Tenside Surf.Det.,1999,36(2),88-99.
    [68]O.Robles-Vasquez,S.Corona-Galvan,J.F.A.Soltero,J.E.Puig,S.B.Tripodi,E.Valles,O.Manero.Rheology of lyotropic liquid crystals of aerosol OT:Ⅱ.High concentration regime.J. Colloid Interface Sci.,1993,160(1),65-71.
    [69]C.C.Muller-Goymann,Physicochemical characterization of colloidal drug delivery systems such as reverse micelles,vesicles,liquid crystals and nanoparticles for topical administration.Eur.J.Pharma.Biopharma.,2004,58(2),343-356.
    [70]J.P.M.van Duynhoven,I.Broekmann,A.Seinc,G.M.P.van Kempen,G.-J.W.Goudappel,W.S.Veeman,Microstructural investigation of monoglyceride-water coagel systems by NMR and CryoSEM.J.Colloid Interface Sci.,2005,285(2),703-710.
    [71]D.Libster,P.B.Ishai,A.Aserin,G.Shoham,N.Garti,From the microscopic to the mesoscopic properties of lyotropic reverse hexagonal liquid crystals.Langmuir,2008,24(5).2118-2127.
    [72]E.Nazaruk,A.Michota J.Bukowska,S.Shleev,L.Gorton,R.Bilewicz,Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes.J.Biol.Inorg.Chem.,2007,12(3),335-344.
    [73]李英,李干佐,陆用海,李丽霞.刘维民,胶束、液晶的Raman光谱研究.科学通报,1996,41(3),300-304.
    [74]V.Razumas,Z.Talaikyte,J.Barauskas,K.Larsson,Y.Miezis,T.Nylander,Ef(?)ects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase:X-ray diffraction and Raman scattering studies.Chem.Phys.Lipids,1996.84(2).155-164.
    [75]F.Castro-Roman,L.Porcar,G.Portel,C.Ligourel,Quantitative analysis of lyotropic lamellar phases SANS patterns in powder oriented samples.Europ.Phys.J.E.,2005,18(3),259-272.
    [76]魏西莲,尹宝霖.孙得志,刘杰,王仲妮,李干佐,彩色溶致液晶的研究.科学通报,2005,50(14),1454-1458.
    [77]Y.J.Wang,E.F.Marques,Thermotropic phase behavior of cationic gemini surfactants and their equieharge mixtures with sodium dodecyl sulfate.J.Phys.Chem.B,2006,110(3).1151-1157.
    [78]T.lnoue,B.Dong,L.Q.Zheng,Phase behavior of binary mixture of 1-dodecyl-3-methyl-imidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy.J.Colloid Interface Sci.,2007,307(2),578-581.
    [79]N.Carlsson,A.-S.Winge,S.Engstrom,B.Akerman,Diamond Cubic Phase of Monoolein and Water as an Amphiphilic Matrix for Eleetrophoresis of Oligonucleotides.J.Phys.Chem.B.2005.109(39),18628-186364.
    [80]N.Sanandaji,N.Carlsson,M.Voinova,B.Akerman,Comparison of oligonucleotide migration in a bicontinuous cubic phase of monoolein and water and in a fibrous agarose hydrogel.Electrophoresis,2006,27(15),3007-3017.
    [81]P.Rowinski,C.Kang.H.Shin,A.Heller,Mechanical and chemical protection of a wired enzyme oxygen cathode by a cubic phase lyotropic liquid crystal.Anal.Chem.,2007.79(3).1173-1180.
    [82] N. M. Huang, C. S. Kan. S. Radiman, In situ synthesis of mesoporous CdS nanoparticles in ternary cubic phase lyotropic liquid crystal. Appl. Phys. A. 2003. 76(4). 555-559.
    [83] C. T. Kresge, M. E. Leonwicz, W. J. Roth, J. C. Vartuli. J. S. Beck, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1992. 359(6397). 710-712.
    [84] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonwicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins. J. L. Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992. 114(27), 10834-10843.
    [85] G. Surendran, G. Apostolescu, M. Tokumoto, E. Prouzet, L. Ramos, P. Beaunier. P. J. Kooyman, A. Etcheberry, H. Remita, From Self-Assembly of Platinum Nanoparticles to Nanostructured Materials. Small, 2005. 1(10). 964 - 967.
    [86] L. Y. Wang. X. Chen, J. Zhan. Y. C. Chai. C. J. Yang. L. M. Xu. W. C. Zhuang. B. Jing. Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B. 2005. 109(8), 3189-3194.
    [87] X. Y. Lu, V. Nguyen. M. J. Zhou. X. H. Zeng, J. Z. Jin, B. J. Elliott, D. L. Gin, Crosslinked bicontinuous cubic lyotropic liquid-crystal/butyl-rubber composites: highly selective. breathable barrier materials for chemical agent protection. Adv. Mater.. 2006. 18(24). 3294-3298.
    [88] W. Q. Jiang, B. Yu, W. M. Liu, J. C. Hao, Carbon nanotubes incorporated within lyotropic hexagonal liquid crystal formed in room-temperature ionic liquids. Langmuir, 2007. 23(16). 8549-8553.
    [89] F. D. Saeva. P. E. Sharpe. G. R. Olin, Asymmetric synthesis in a cholesteric liquid crystal solvent. J. Am. Chem. Soc, 1975,97(1), 204-205.
    
    [90] G. P. Wiederrecht. W. A. Svec, M. R. Wasielewski, Controlling the adiabaticity of electron-transfer reactions using nematic liquid-crystal solvents. J. Phys. Chem. B. 1999. 103(9). 1386-1389.
    [91] J. D. Clapper, C. A. Guymon, Compatibilization of immiscible polymer networks through photopolymerization in a lyotropic liquid crystal. Adv. Mater.. 2006, 18(12). 1575-1580.
    [92] J. D. Clapper, C. A. Guymon. Nanostructured biodegradable polymer composites generated using lyotropic liquid crystalline media. Macromolecules, 2007,40(22), 7951-7959.
    [93] J. D. Clapper, S. L. Iverson, C. A. Guymon. Nanostructured biodegradable polymer networks using lyotropic liquid crystalline templates. Biomacromolecules, 2007. 8(7), 2104-2111.
    [94] F. F. Lv, X. W. Li, L. Z. Wu, C. H. Tung. Photochemical reaction of cyclohexyl phenyl ketone within lyotropic liquid crystals. Tetrahedron, 2008,64(8), 1918-1923.
    [95] K. Boschkova, J. Elvesjo, B. Kronberg. Frictional properties of lyotropic liquid crystalline mesophases at surfaces. Colloids and Surfaces A, 2000.166(1-3), 67-77.
    [96] P. Iglesias, M. D. Bermudez. F. J. Carrion. G. Martinez-Nicolas. Friction and wear of aluminium -steel contacts lubricated with ordered fluids-neutral and ionic liquid crystals as oil additives.Wear,2004,256(3-4),386-392.
    [97]M.D.Bermudez,W.Brostow,F.J.Carrion-Vilches,J.J.Cervantesa,D.Pietkiewicz.Friction and multiple scratch behavior of polymer + monomer liquid crystal systems.Polymer.2005.46(2),347-362.
    [98]李干佐.肖洪地,李英,牟建海,王连尉,溶致液晶体系研究及其在三次采油中的应用.高等学校化学学报,2001,22(1),108-111.
    [99]A.L.Ahmad,S.Ismail,S.Bhatia,Water recycling from palm oil mill effluent(POME)using membrane technology.Desalination,2003,157(1-3),87-95.
    [100]M.J.Zhou,P.R.Nemade,X.Y.Lu,X.H.Zeng.E.S.Hatakeyama,R.D.Noble.D.L.Gin.New type of membrane material for water desalination based on a cross-linked bicontinuous cubic iyotropic liquid crystal assembly.J.Am.Chem.Soc.,2007,129(31),9574-9575.
    [101]S.Engstrom,Cubic phases as drug delivery systems.Polym.Prep.(Am.Chem.Soc.,Div.Polym.Chem.)1990,31(2),157-158.
    [102]B.Ericsson,P.O.Eriksson,J.E.Loefroth,S.Engstrom,A.B.Ferring,S.Malmoe.Cubic phases as delivery systems for peptide drugs.ACS Symp.Ser.(Polym.Drugs Drug Deliv.Syst.)1991,469(2),251-265.
    [103]N.Rodriguez-Hornedo,D.Murphy,Significance of controlling crystallization mechanism and kinetics in pharmaceutical systems.J.Pharm.Sci.,1999,88(7),651-660.
    [104]J.C.Shah,Y.Sadhale,D.M.Chilukuri,Cubic phase gels as drug delivery systems.Adv.Drug Delivery Rev.,2001,47(2-3),229-250.
    [105]C.L.Stevenson,D.B.Bennett,D.Lechuga-Ballesteros,Pharmaceutical liquid crystals:the relevance of partially ordered systems.J.Pharm.Sci.,2005,94(9),1861-1880.
    [106]K.Larsson,Aqueous dispersion of cubic lipid-water phases.Curr.Opin.Colloid Interface Sci.2000,5(1),64-69.
    [107]K.Larsson,K.Fontell,N.Krog,Structural relationships between lameilar,cubic and hexagonal phases in monoglyceride-water systems.Possibility of cubic structures in biological systems.Chem.Phys.Lipids,1980,27(4),321-328.
    [108]A.N.Yoshio,S.J.Li,Y.Masahito,Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes.Biochim.Biophys.Acta,1999.1461(1),96-102.
    [109]S.T.Hyde,S.Andersson,B.Ericsson,K.Larsson,A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerol monooleat water system.Z.kristallogr.,1984,168,213-219.
    [110]J.Briggs,H.Chung,M.Caffrey,The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system.J.Phys.Ⅱ France,1996,6(5),723-751.
    [111] S. Engstrom, T. P. Norden, H. Nyquist, Cubic phases for studies of drug partition into lipid bilayers. Eur. J. Pharm. Sci., 1999,8(4), 243-245.
    [112] D. M. Wyatt, D. Dorschel, A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm. Technol., 1992, 16 (10). 116-130.
    [113] J. S. Kim, H. K. Kim, H. Chung, Y. T. Sohn, I. C. Kwon, S. Y. Jeong, Drug formulation that form a dispersed cubic phased when mixed with water. Proc. Int. Symp. Control. Rel. Bioact. Mater, 2000,27, 8123-8127.
    [114] E. Esposito, V. Carotta, A. Scabbia, L. Trombelli, P. D'Antona, E. Menegatti, C. Nastruzzi. Comparative analysis of tetracycline-containing dental gels: poloxamer- and mono- glyceride- based formulations. Int. J. Pharm., 1996,142 (1), 9-23.
    [115] K. Lindell, J. Engblom, M. Jonstroemer, A. Carlsson, S. Engstroem, Influence of a charged phospholipid on the release pattern of timolol maleate from cubic liquid crystalline phases. Prog. Colloid. Polym. Sci., 1998,108, 111 -118.
    [116] Y. Sadhale, J. C. Shah, Glyceril monooleate cubic phase gel as chemical stability enhancer of cefatolin and cefuroxime. Pharm. Dev. Technl.. 1998,3(4), 549-556.
    [117] S. Engstrom, L. Engstrom, Phase behaviour of the lidocaine-monoolein- water system. Int. J. Pharm., 1992,79(1-3), 113-122.
    [118] C. M. Chang, R. Bodmeier, Binding of drugs to monoglyceride-based drug delivery systems. Int. J. Pharm., 1997, 147(2), 135-142.
    [119] P. B. Geraghty, D. Attwood, J. H. Collett, Y. Dandiker. In vitro release of some antimuscarinic drugs from monoolein/water lyotropic liquid crystalline gels. Pharm. Res., 1996. 13(10). 1265-1271.
    [120] T. Norling, P. Landing, S. Engstrom, K. Larsson, N. Krog, S. S. Nissen. Formulationof a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of peiodonatal disease. J. Clin. Periodontol., 1992.19(10). 687-692.
    [121] R. Burrows, J. H. Collett D. Attwood. The release of drugs from monoglyceride-water liquid crystalline phases. Int. J. Pharm., 1994,111 (3), 283-293.
    [122] S. B. Leslie, S. Puvvada, B. R. Ratna. A. S. Rudolph, Encapsulation of hemoglobin in a bicontinuous cubic phase lipid. Biochim. Biophys. Acta, 1996,1285(2), 246-254.
    [123] Y. Sadhale, J. C. Shah, Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel. Int. J. Pharm.. 1999,191(1), 51-64.
    [124] Y. Sadhale, J. C. Shah, Biological activity of insulin in GMO gels and the effect of agitation. Int. J. Pharm.. 1999. 191(1), 65-74.
    [125] H. Chung, J. Kim, J. Y. Urn, I. C. Kwon, S. Y. Jeong. Self-assembled "nanocubicle" as a carrier for peroral insulin delivery. Diabetologia, 2002,45(3), 448-451.
    
    [126] Y. Y. Luk, C. H. Jang. L. L. Cheng, B. A. Israel, N. L. Abbott, Influence of lyotropic liquid crystals on the ability of antibodies to bind to surface-immobilized antigens. Chem. Mater.. 2005, 17(19), 4774-4782.
    [127] J. S. Patton, M. C. Carrey, Watching fat digestion. Science, 1979, 204(4389). 145-148.
    [128] M. Lindstrom. H. Ljusberg-Wahren, K. Larsson, B. Borgstrom. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids. 1981, 16(10), 749-754.
    [129] W. Bucheim, K. Larsson, Cubic lipid-protein-water. phases. J. Colloid Interface Sci., 1987, 117(2), 582-583.
    [130] J. Gustafsson, H. Ljusberg-Wahren. M. Almgren, K, Larsson. Cubic lipid-water phase dispersed into submicron particles. Langmuir, 1996, 12(20), 4611 -4613.
    [131] J. Gustafsson, H. Ljusberg-Wahren, M. Almgren, K. Larsson, Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997. 13(26). 6964-6971.
    [132] H. Ljusberg-Wahren. L. Nyberg, K. Larsson, Dispersion of the cubic liquid crystalline phase-structure, preparation and functionality aspects. Chim. Oggi. Chem. Today. 1996. 6. 40-43.
    [133] D. Yang, B. Armitage. S. R. Marder, Cubic Liquid-Crystalline Nanoparticles. Angew. Chem. Int. Ed.. 2004, 43(34), 4402-4409.
    
    [134] I. Amar-Yuli, E. Wachtel, E. B. Shoshan, D. Danino, A. Aserin, N. Garti. Hexosome and Hexagonal Phases Mediated by Hydration and Polymeric Stabilizer. Langmuir, 2007. 23(7). 3637-3645.
    [1]J.C.Shah,Y.Sadhale,D.M.Chilukuri,Cubic phase gels as drug delivery systems.Adv.Drug Delivery Rev.,2001,47(2-3),229-250.
    [2]K.Larsson.Cubic lipid-water phases:structures and biomemhrane aspects.J.Phys.Chem.,1989,93(21).7304-7314.
    [3]S.Engstrom,Cubic phases as drug delivery systems.Polym.Prep.(Am.Chem.Soc.,Div.Polym.Chem.)1990,31(2),157-158.
    [4]V.Vill,R.Hashim.Carbohydrate liquid crystals:structure - property relationship of thermotropic and lyotropic glycolipids.Curr.Opin.Colloid Interface Sci.,2002,7(5-6),395-409.
    [5]R.H.Templer.Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles.Curr.Opin.Colloid Interface Sci.,1998,3(4),255-263.
    [6]L.A.Tardieu,V.Luzzati,Polymorphism of lipids.A novel cubic phase - a cage-like network of rods with enclosed spherical micelles.Biochim.Biophys.Acta,1970,219(1),11-17.
    [7]H.Chung,M.Caffrey,The curvature elastic-energy function of the lipid-water cubic mesophase.Nature,1994,368(6468).224-226.
    [8]H.G.von Schnering,R.Nesper,Nodal surfaces of fourier series:fundamental invariants of structured matter.Z.Phys B,Condensed Matter,1991,83(3),407-412.
    [9]P.O.Eriksson,G.Lindblom,Lipid and water diffusion in bicontinuous cubic phases measured by NMR.Biophys.J.,1993,64(1),129-136.
    [10]K.Larsson,Aqueous dispersion of cubic lipid-water phases.Curr.Opin.Colloid Interface Sci.,2000,5(1),64-69.
    [11]R.Koynova,B.Tenchov,Interactions of surfactants and fatty acids with lipids.Curt.Opin.Colloid Interface Sci.,2001,6(3),277-286.
    [12]M.Makai,E.Csanyi,I.Dekany,Zs.Nemeth,I.Eros,Structural properties of nonionic surfactant/glycerol/paraffin lyotropic liquid crystals.Colloid Polym.Sci..2003,281(9).839-844.
    [13]D.Marsh,J.M.Seddon,Gel-to-inverted hexagonal(L_β-H_(Ⅱ))phase transitions in phosphatidylethanolamines and fatty acid-phosphatidyicholine mixtures,demonstrated by ~(31)p-NMR spectroscopy and X-ray diffraction.Biochim.Biophys.Acta - Biomembranes.1982.690(1),117-123.
    [14]R.D.Koynova,A.I.Boyanov.B.G.Tenchov,Gel-state metastability and nature of the azeotropic points in mixtures of saturated phosphatidyicholines and fatty acids.Biochim.Biophys.Acta,1987,903(1),186-196.
    [15]R.D.Koynova,B.G.Tenchov,P..I.Quinn,P.Laggner.Structure and phase behavior of hydrated mixtures of L-dipalmitoylphosphatidylcholine and palmitic acid.Correlations between structural rearrangements,specific volume changes and endothermic events.Chem.Phys.Lipids.1988,48(3-4),205-214.
    [16]J.M.Seddon,J.L.Hogan,N.A.Warrender,E.Pebay-Peyroula,Structural studies of phopsholipid cubic phases.Prog.Colloid Polym.Sci.,1990.81.189-197.
    [17]V.Luzzati,Biological significance of lipid polymorphism:the cubic phases.Curr.Opin.Struct.Biol.,1997.7(5),661-668.
    [18]R.D.Koynova,B.Tenchov,G.Rapp,Mixing behavior of saturated short-chain phosphatidylcholines and fatty acids:Eutectic points,liquid and solid phase immiscibility.non-lamellar phases.Chem.Phys.Lipids,1997,88(1),45-61.
    [19]R.H.Templer,J.M.Seddon,N.A.Warrender,A.Syrykh,Z.Huang,R.Winter,J.Erbes,Inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures.The effects of chain length,hydration and temperature.J.Phys.Chem.B,1998,102(37),7251-7261.
    [20]R.H.Templer,J.M.Seddon,P.M.Duesing,R.Winter,J.Erbes,Modeling the phase behavior of the inverse hexagonal and inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures.J.Phys.Chem.B,1998,102(37),7262-7271.
    [21]B.Tenchov,M.Rappolt,R.Koynova,G.Rapp,New phases induced by sucrose in saturated phosphatidylethanolamines:an expanded lamellar gel phase and a cubic phase.Biochim.Biophys.Acta,1996,1285(1),109-122.
    [22]H.M.von Minden,G.Milkereit,V.Vill,Effects of carbohydrate headgroups on the stability of induced cubic phases in binary mixtures of glycolipids.Chem.Phys.Lipids.,2002,120(1-2).45-56.
    [23]Z.N.Wang,L.Q.Zheng,T.Inoue,Effect of Sucrose on the Structure of Cubic Phase Formed From Monoolein/Water Mixture.J.Colloid Interface Sci.,2005,288(2),638-641.
    [24]王志宁,郑利强,李干佐,蔗糖对MO/水立方液晶体系流变性质的影响.化学学报,2005.63(4),274-278.
    [25]J.Gustafsson,T.Nylander,M.Almgren,H.Ljusberg-Wahren,Phase behavior and aggregate structure in aqueous mixtures of sodium cholate and glycerol monooleate.J.Colloid Interface Sci.,1999,211(2),326-335.
    [26]T.Landh,Phase behavior in the system pine needle oil monoglycerides-poioxamer 407-water at 20℃.J.Phys.Chem.,1994,98(34),8453-8467.
    [27]S.Engstrom,T.P.Norden,H.Nyquist,Cubic phases for studies of drug partition into lipid bilayers.Eur.J.Pharm.Sci.,1999,8(4),243-245.
    [28]S.Engstrom,L.Engstrom,Phase behaviour of the lidocaine-monoolein- water system.In:.J.Pharm.,1992,79(1-3),113-122.
    [29]C.M.Chang,R.Bodmeier,Binding of drugs to monoglyceride-based drug delivery systems.Int.J.Pharm.,1997.147(2),135-142.
    [30]J.Borne,T.Nylander,A.Khan,Microscopy,SAXD,and NMR studies of phase behavior of the monoolein-diolein-water system.Langmuir,2000,16(26),10044-10054.
    [31]J.Clogston,J.Rathman,D.Tomasko,H.Walker,M.Caffrey,Phase behavior of a monoacylglycerol:(Myverol 18-99K)/water system.Chem.Phys.Lipids,2000,107(2).191-220.
    [32]W.R.Perkins,I.Ahmad,X.G.Li,D.J.Hirsh,G.R.Masters,C.J.Fecko,J.K.Lee,S.Ali.J.Nguyen,J.Schupsky,C.Herbert,A.S.Janoff,E.Mayhew,Novel therapeutic nano-particles (lipocores):trapping poorly water soluble compounds,Int.J.Pharm.,2000,200(1),27-39.
    [33]R.Burrows,J.H.Collett,D.Attwood.The release of drugs from monoglyceride-water liquid crystalline phases,Int.J.Pharm.,1994,111(3),283-293.
    [34]F.Caboi.G S.Amico,P.Pitzalis,M.Monduzzi,T.Nylander,K.Larson,Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system Ⅰ.Phase behavior.Chem.Phys.Lipids,2001,109(1),47-62.
    [35]L.L.Shui,P.Z.Guo,F.Chen,G.Y.Xu,L.Q.Zheng,The effect of Iopamidoi on rheological properties of monoglyceride/water system.Colloids and Surfaces A,2005,256(1),85-90.
    [36]L.L.Shui,Z.N.Wang,L.Q.Zheng,Rheological properties of cubic liquid crystals formed from monoglyceride/h_2o systems.Chinese J.Chem.,2005,23(3),245-250.
    [37]L.Q.Zheng,J.Zhang,L.L.Shui,F.Chen,J.Um,H.Chung,Component effects on the phase behavior of monoglyceride-water mixtures studies by FT-IR and X-Ray diffraction.J.Disper.Sci.Technol.,2003,24(6),773-778.
    [38]G.J.T.Tiddy,Surfactant-water liquid crystal phase.Phys.Rep.,1980.57,1-46.
    [39]G.Rummel,A.Hardmeyer,C.Widmer.M.L.Chiu P.Nollert,K.P.Locher,I.Pedruzzi,E.M.Landau,J.Rosenbusch,Lipidic cubic phases:new matrices for the three-dimensional crystallization of membrane proteins.J.Structural Bio.,1998,121(2),82-91.
    [40]V.Razumas,K.Larsson,Y.Miezis,T.Nylander,A cubic monoolein- cytochrome c-water phase:X-ray diffraction,FT-IR,differential scanning calorimetric and electrochemical studies.J.Phys.Chem.,1996,100(28),11766-11774.
    [41]J.L.Jones,T.C.B.McLeish,Rheological response of suffactant cubic phases.Langmuir.1995.11(3),785-792.
    [42]R.Zana.Surfactants solutions:New methods of investigation,Marcel Dekker Inc.,New York,1987,p209.
    [43]A.Khatory,F.Laqueux,F.Kern.S.J.Candau Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content.Langmuir,1993.9(6).1456-1464.
    [44]J.Schulte,S.Eners.K.Quitzsch.Rheological studies of aqueous alkylpoly- glucoside surfaetant solutions.Colloid Polym.Sci.1999,277(9),827-836.
    [45]G.Montalvo,M.Valiente,E.Rodenas.Rheological properties of the 1 phase and the hexagonal,lamellar,and cubic liquid crystals of the CTAB/benzyl alcohol/water system.Langmuir.1996.12(21),5202-5208.
    [46]王红霞,张高勇,非离子表面活性剂液晶的线性粘弹性研究.化学学报,2001,59(11),1988-1893.
    [47]Zs.Nemeth.L.Halasz,J.Palinkas,A.Bota.T.Horanyi,Rheological behaviour of a lamellar liquid crystalline surfactant-water system.Colloids and Surfaces:A,1998,145(1),107-119.
    [48]O.Robles-Vasquez,S.Corona-Galvan,J.F.A.Soltero.J.E.Puig,S.B.Tripodi,E.Valles.O.Manero,Rheology of lyotropic liquid crystals of aerosol OT:Ⅱ.High concentration regime.J.Colloid Interface Sci.,1993,160(1),65-71.
    [49]H.Watanabe,T.Sato,K.Osaki,Y.Aoki,L.Li,M.Kakiuchi,M.-L.Yao,Rheological images of poly(vinyl chloride)gels.4.Nonlinear behavior in a critical gel state.Macromolecules,1998,31(13),4198-4204.
    [50]M.A.Siddig,S.Radiman,L.S.Jan,S.V.Muniandy,Rheoiogical behaviours of the hexagonal and lamellar phases of glucopone(APG)surfactant.Colloids and Surfaces A,2006,276(1-3),15-21.
    [51]S.T.Hyde,S.Andersson,B.Ericsson,K.Larsson,A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerol monooleat water system.Z.kristallogr.,1984,168,213-219.
    [52]J.Briggs,H.Chung,M.Caffrey,The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system.J.Phys.Ⅱ France,1996.6(5),723-751.
    [53]B.Siekmann,K.Wrstesen,Thermoanalysis of the recrystallization process of melthomogenized glyceride nanoparticles.Colloid and Surface B,1994.3(3),159-175
    [54]V.Razumas,Z.Talaike,J.Barauskas,Y.Miezis,T.Nylander,Vibrational Spectroscopy.1997,15(1),91-101.
    [55]P.Alexandridis,U.Olsson,B.Lindman,Phase behavior of amphiphilic block copolymers in water-oil mixtures:The pluronic 25R4-water-p-xylene system.J.Phys.Chem.,1996.100(1),280-288.
    [56]W.Hubner,H.H.Mantsch,Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy.Biophys.J.1991.59(6),1261-1272.
    [57]M.Nakano,A.Sugita,H.Matsuoka,T.Handa,Small-Angle X-ray Scattering and ~(13)C NMR investigation on the internal structure of "Cubosomes".Langmuir,2001,17(13),3917-3922.
    [58]赵瑶兴,孙祥玉,有机分子结构光谱鉴定,科学出版社,2003年,41-42页
    [59]S.M.Mohammed,A.E.-O.Humeida,A.A.-B.Abdullah,Procainamide hydrochloride.Analytical Profiles of Drug Substances And Exeipients - Volume 28,2001,pp 265-266.
    [60]F.Nilsson,O.Soderman,Physical-chemical properties of the n-octyl β-D-glucoside(?)water system.A phase diagram,self-diffusion NMR,and SAXS study.Langmuir,1996.12(4).902-908.
    [1]J.C.Shah.Y.Sadhale,D.M.Chilukuri,Cubic phase gels as drug delivery systems.Adv.Drug Delivery Rev.,2001,47(2-3),229-250.
    [2]K.Larsson.Cubic lipid-water phases:structures and biomembrane aspects.J.Phys.Chem..1989,93(21),7304-7314.
    [3]S.Engstrom,Cubic phases as drug delivery systems.Polym.Prep.(Am.Chem.Soc.,Div.Polym.Chem.)1990,31(2),157-158.
    [4]B.Ericsson,P.O.Eriksson,J.E.Loefroth,S.Engstrom,A.B.Ferring,S.Malmoe,Cubic phases as delivery systems for peptide drugs.ACS Syrup.Ser.(Polym.Drugs Drug Deliv.Syst.)1991.469(2),251-265.
    [5]C.M.Chang,R.Bodmeier,Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase.Int.J.Pharm.,1998,173(1-2),51-60.
    [6]S.Engstrom,T.P.Norden,H.Nyquist,Cubic phases for studies of drug partition into lipid bilayers.Eur.J.Pharm.Sci.,1999,8(4),243-245.
    [7]Y.Sadhale,J.C.Shah,Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel.Int.J.Pharm..1999,191(1),51-64.
    [8]Y.Sadhale,J.C.Shah,Biological activity of insulin in GMO gels and the effect of agitation,Int.J.Pharm.,1999,191(1),65-74.
    [9]S.T.Hyde,S.Andersson,B.Ericsson.K.Larsson,A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerol monoolear water system.Z.kristallogr.,1984,168,213-219.
    [10]G.S.Attard,W.P.Blackaby,A.R.Leach,The aggregation behaviour of two structurally isomeric glycolipids.Chem.Phys.Lipids,1994,74(1),83-91.
    [11]J.Briggs,H.Chung,M.Caffrey,The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system.J.Phys.Ⅱ France,1996,6(5).723-751.
    [12]水玲玲,双子表面活性剂的表面活性及含MO体系的立方液晶作为药物载体.山东大学硕士学位论文,2003年,88页.
    [13]J.S.Patton,M.C.Carrey,Watching fat digestion.Science,1979,204(4389),145-148.
    [14]M.Lindstrom,H.Ljusberg-Wahren,K.Larsson.B.Borgstrom.Aqueous lipid phases of relevance to intestinal fat digestion and absorption.Lipids.1981,16(10).749-754.
    [15]W.Bucheim,K.Larsson,Cubic lipid-protein-water,phases.J.Colloid Interface Sci..1987.117(2),582-583.
    [16]J.Gustafsson,H.Ljusberg-Wahren,M.Almgren,K.Larsson,Cubic lipid-water phase dispersed into submieron particles.Langmuir,1996,12(20),4611-4613.
    [17]J.Gustafsson,H.Ljusberg-Wahren,M.Almgren,K.Larsson,Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer.Langmuir,1997,13(26),6964-6971.
    [18]H.Ljusberg-Wahrer..L.Nyberg,K.Larsson,Dispersion of the cubic liquid crystalline phase-structure,preparation and functionality aspects.Chim.Oggi.Chem.Today,1996.6.40-43.
    [19] D. Yang, B. Armitage, S. R. Marder. Cubic liquid-crystalline nanoparticles. Angew. Chem. Int. Ed. 2004,43(34). 4402-4409.
    [20] M. Nakano. A. Sugita. H. Matsuoka, T. Handa, Small-angle X-ray scattering and ~(13)C NMR investigation on the internal structure of "cubosome". Langmuir. 2001,17(13), 3917-3922.
    [21] M. Nakano. T. Teshigawara, A. Sugita, W. Leesajakul, A. Taniguchi, T. Kamo, H. Matsuoka. T. Handa, Dispersions of liquid crystalline phases of the monoolein/ oleic acid/ pluronic F-127 system. Langmuir 2002,18(24). 9283-9288
    [22] M. Monduzzi, H. Ljusberg-Wahren. K. Larsson, A ~(13)C NMR study of aqueous dispersions of reversed lipid phases. Langmuir. 2000. 16(19), 7355-7358
    [23] J. R. Giorgione, Z. Huang. R. M. Epand, Increased activation of protein kinase C with cubic phase lipid compared with liposomes. Biochemistry. 1998,37(8), 2384-2392.
    [24] H. Chung. J. Kim, J. Y. Urn. 1. C. Kwon. S. Y. Jeong, Self-assembled "nanocubicle" as a carrier for peroral insulin delivery. Diabetologia, 2002,45(3), 448-451.
    [25] J. Y. Urn, H. Chung. K. S. Kim. I. C. Kwon, S. Y. Jeong, In vitro cellular interaction and absorption of dispersed cubic particles. Int. J. Pharm., 2003,253(1-2), 71-80.
    [26] L. Q. Zheng, J. Y. Urn, H. Chung, Microstructure of dispersed colloidal particles of a bilayer cubic phase. J. Disp. Sci. Technol.. 2003,24(1), 123-128
    [27] L. Q. Zheng, J. Zhang. L. L. Shui. Component effects on the phase behavior of monoglyceride- water mixtures studies by FT-IR and X-Ray diffraction. J. Disp. Sci. Technol.. 2003. 24(6). 773-778.
    [28] X. Y. Zhao, J. Zhang, D. H. Li, L. Q. Zheng, Studies of cubosomes as a sustained drug delivery system. J. Disp. Sci. Technol., 2004,25(6), 795-799.
    [29] Z. N. Wang, L. Q. Zheng, The studies on the aqueous dispersed particles formed from monoolein/monopalmitin/water mixture. Chem. Lett., 2004,33(4), 416-417.
    [30] J. Zhang, D. H. Li, L. Q. Zheng. The aqueous dispersions of bicontinuous cubic phases formed by precursor method. Chinese Chem. Lett.. 2005.16(6). 823-826.
    [31] B. Siekmann, H. Bunjes, M. H. J. Koch, K. Westesen, Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases, Int. J. Pharm.. 2002. 244(1-2), 33-43.
    [32] P. T. Spicer, K. L. Hayden, Novel process for producing cubic liquid crystalline nanoparticles (Cubosomes). Langmuir, 2001, 17(19). 5748-5756
    [33] P. T. Spicer, W. B. Small, M. L. Lynch. J. L. Burns, Dry powder precursors of cubic liquid crystalline nanoparticles. J. Nanoparticle Res., 2002,4(4), 297-311.
    [34] W. Leesajakul, M. Nakano, A. Taniguchi. T. Handa, Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma. Colloids and Surfaces B. 2004, 34(4), 253-258
    [35] A. Angelova, B. Angelov. B. Papahadjopoulos-Sternberg, M. Ollivon, C. Bourgaux, Proteocubosomes: nanoporous vehicles with tertiary organized fluid interfaces. Langmuir. 2005. 21(9),4138-4143.
    [36]J.Bender,M.B.Ericson,N.Merclin,V.lani,A.Rosen,S.Engstrom.J.Moan,Lipid cubic phases for improved topical drug delivery in photodynamic therapy.J.Controlled Release,2005.106(3),350-360.
    [37]H.Hoffmann,C.Thunig,P.Schmiedel,U.Munkert,Surfactant systems with charged multilamellar vesicles and their rheological properties.Langmuir,1994,10(11),3972-3981.
    [38]J.H.Mu,G.Z.Li,X.L.Jia,H.X.Wang,G.Y.Zhang,Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts.J.Phys.Chem.B,2002,106(44),11685-11693.
    [39]Y.Yan,H.Hoffmann,M.Drechsler,Y.Talmon,E.Makarsky,Influence of hydrocarbon surfactant on the aggregation behavior of silicone surfactant:observation of intermediate structures in the vesicle-micelle transition.J.Phys.Chem.B,2006,110(11),5621-5626
    [40]E.Eghbali,O.Coiombani,M.Drechsler,A.H.E.Muller,H.Hoffmann,Rheology and phase behavior of poly(n-butyl acrylate)-block- poly(acrylic acid)in aqueous solution.Langmuir.2006,22(10),4766-4776.
    [41]T.Landh,Cubic cell membrane architectures:Taking another look at membrane bound cell spaces,Ph.D.thesis,University of Lund,Sweden.1996,p188.
    [42]K.Larsson,Colloidal dispersions of ordered lipid-water phases.J.Dispers.Sci.Technol.1999.20(1),27-34.
    [43]H.Schott,Effect of inorganic additives on solutions of nonionic surfactants.J.Colloid Interface Sci.,1997,189(1),117-122
    [44]A.Kalra,N.Tugcu,S.M.Cramer,S.Garde,Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions.J.Phys.Chem.B,2001,105(27),6380-6386.
    [45]W.N.Maclay,Factors affecting the solubility of nonionic emulsifiers.J.Colloid Sci..1956.11(3),272-285.
    [1]A.T.Florence,Drug solubilization in surfactant systems,in:S.H.Yalkowsky(Eds.),Techniques of Solubilization of Drugs.Marcel Dekker,New York,1981,pp.15-89.
    [2]S.Palma,R.H.Manzo,D.Aliemandi,L.Fratoni,P.L.Nostro,Drugs solubilization in ascorbyl-deeanoate miceilar solutions.Colloids and Surfaces A,2003,212(2-3),163-173.
    [3]P.Li,L.Zhao,Cosolubilization of non-polar drugs in polysorbate 80 solutions,Int.J.Pharm.2002,249(1-2),211-217.
    [4]M.T.Sheu,S.Y.Chen,L.C.Chen,H.O.Ho,Influence of micelle solubilization by tocopheryl polyethylene glycol succinate(TPGS)on solubility enhancement and percutaneous penetration of estradiol.J.Control.Release,2003,88(3),355-368.
    [5]钟静芬,欧阳辉.表面活性剂在药学中的应用,北京:人民卫生出版社,1996
    [6]赵士寿,药剂学选论,上海:上海科技出版社,1965年,38页.
    [7]S.Hulsmann,T.Backensfeld.R.Bodmeier,Stability of extruded 17-beta-estradiol solid dispersions.Pharm.Dev.Technol.,2001,6,223-229.
    [8]P.Ashton,J.Hadgraft,K.R.Brain,T.A.Miller,K.A.Walters,Surfactant effects in topical drug availability.Int.J.Pharm.,1988,41(3),189-195.
    [9]E.Amsellem.F.Derrien,M.Lanquetin,J.Paris,J.P.Marty,,In vitro studies on the influence of carbomers on the availability and acceptability of estradiol gels.Arzneim-Forsch.,Drug Res..1998,48,492-496.
    [10]Y.Sadhale,J.C.Shah,Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel.Int.J.Pharm.,1999,191(1),51-64.
    [11]Y.Sadhale,J.C.Shah,Biological activity of insulin in GMO gels and the effect of agitation.Int. J.Pharm.,1999,191(1),65-74.
    [12]D.Khossravi,Drug-surfactant interactions:effect on transport properties.Int.J.Pharm.,1997.155(2),179-190.
    [13]M.E.Johnson,D.Blankschtein.R.Langer,Permeation of steroids through human skin.J.Pharm.Sci.,1995,84(9),1144-1146.
    [14]J.Y.Fang,S.Y.Yu,P.C.Wu,Y.B.Huang,Y.H.Tsai,In vitro skin permeation of estradiol from various proniosome formulations.Int.J.Pharm.,2001,215(1-2),91-99.
    [15]R.Barreiro-Iglesias,C.Alvarez-Lorenzo,A.Concheiro,Controlled release of estradiol solubilized in carbopol-surfactant aggregates.J.Control.Release,2003,93(3),319-330.
    [16]M.Paulsson,K.Edsman,Controlled drug release from gels using surfactant aggregates:1.Effect of lipophilic interactions for a series of uncharged substances.J.Pharm.Sci.,2001,90(9).1216-1225.
    [17]M.Scherlund,A.Brodin,M.Malmstem,Nonionic cellulose ethers as potential drug delivery systems for periodontal anesthesia.J.Colloid Interface Sci.,2000,229(2),365-374.
    [18]K.Osth,M.Paulsson,E.Bjork,K.Edsman,Evaluation of drug release from gels on pig nasal mucosa in a horizontal using chamber.J.Control.Release,2002.83(3).377-388.
    [19]C.M.Chang,R.Bodmeier,Effect of dissolution media and additives on the drug release from cubic phase delivery systems.J.Control.Release,1997,46(3).215-222.
    [20]C.M.Chang,R.Bodmeier,Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase.Int.J.Pharm.,1998,173(1-2).51-60.
    [21]L.L.Li,I.Nandi,K.H.Kim,Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam.Int.J.Pharm.,2002,237(1-2).77-85.
    [22]T.S.Wiedmarm.R.Bhatia,L.W.Wattenberg,Drug solubilization in lung surfactant.J.Control.Release,2000,65(1-2),43-47.
    [23]P.M.Nassar,L.E.Almeida,M.Tabak.Binding of dipyridamole to DPPG and DPPC phospholipid vesicles:steady-state fluorescence and fluorescence anisotropy decay studies.Langmuir,1998,14(24),6811-6817.
    [24]C.von Corswant.P.E.G.Thoren,Solubilization of sparingly soluble active compounds in lecithin-based microemulsions influence on phase behavior and microstructure,Langmuir,1999.15(11),3710- 3717.
    [25]E.J.Kim.D.O.Shah,Cloud point phenomenon in amphiphilic drug solutions.Langmuir,2002.18(26),10105-10105.
    [26]E.J.Kim,D.O.Shah,A cloud point study on the micellar growth of an amphiphilic drug in the presence of alcohol and ionic surfactant.J Phys Chem B,2003,107(33),8689-8693.
    [27]E.J.Kim,D.O.Shah,Effect of surfactants on the cloud point of Amphiphilic drug solutions.Colloids and Surfaces:A,2003,227(1-3),105-111.
    [28]P.M.Blackett,G.Buckton,A microcalorimetric study of surfactant aggregation and surfactantdrug interaction in a model inhalation aerosol system,Int.J.Pharm.,1995,125(1),133-139.
    [29]D.S.Mathew,R.S.Juang.Improved back extraction of papain from AOT reverse micelles using alcohols and a counter-ionic surfactant.Biochem.Eng.J.,2005,25(3),219-225.
    [30]S.Chatterjee,S.Pramanik,S.C.Bhattacharya,Spectroscopic study of some photographic developing agents in reverse micelles of AOT in heptane.J.Mol.Liq.,2005.116(3).131 - 137.
    [31]E.Luchter-Wasylewska,M.lciek,Positive cooperativity in substrate binding of human prostatic acid phosphatase entrapped in AOT-isooctane-water reverse micelles.J.Colloid Interface Sci.,2004,273(2),632-637.
    [32]B.K.Paul,R.K.Mitra.Conductivity of reverse micellar systems of water/AOT+Brij-56 or Brij-58/IPM and their percolation under varied concentrations of amphiphiles and different additives.Colloids and Surfaces A,2006,273(1-3),129-140.
    [33]S.M.Chen,W.Y.Chao,Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide(DDAB)film- modified electrodes.J.Electroanal.Chem.,2006,587(2),226-234.
    [34]Y.Shao,Y.D.Jin,J.L.Wang,L.Wang,F.Zhao,S.J.Dong,Conducting polymer polypyrrole supported bilayer lipid membranes.Biosens.Bioelectron.,2005,20(7),1373-1379.
    [35]A.G.Lee,Interactions between anaesthetics amines and lipid mixtures.Biochemi.Biophys.Acta.,1976,448(1),34-44.
    [36]M.Makino,M.Kamiya,N.Nakajo,K.Yoshikawa,Effects of local anesthetics on the dynamic behavior of phospholipid thin film.Langmuir,1996,12(17),4211-4217.
    [37]X.Peng.J.Jonas.High-pressure phosphorus-31 NMR study of dipalmitoylphosphatidylcholine bilayers.Biochemistry,1992,31(28),6383-6390.
    [38]M.Mondal,A.Chakrabarti,S.Basak,Photophysical study of local anesthetics in reverse micelles and water-ethanol mixtures.J.Fluoresc.,2003,13(4),307-314.
    [39]C.Merino,E.Junquera,J.J.Barbero,E.Aicart,Effect of the Presence of β-Cyclodextrin on the Solution Behavior of Procaine Hydrochioride.Spectroscopic and Thermodynamic Studies.Langmuir,2000,16(4),1557-1565.
    [40]N.B.Li,J.P.Duan,H.Q.Chen,G.N.Chen,Determination of the binding constant for the inclusion complex between procaine hydrochioride and β-cyclodextrin by capillary electrophoresis.Talanta,2003,59(3),493-499.
    [41]H.Matsuki,K.Shimada,S.Kaneshina,Exclusion of the local anesthetic procaine hydrochloride from a surface-adsorbed film and micelle of decylammonium chloride.Langmuir.1997.13(23).6115-6119.
    [42]H.Matsuki,S.Kaneshina,H.Kamaya,I.Ueda,Partitioning of charged local anesthetics into model membranes formed by cationic surfactant:effect of hydrophobicity of local anesthetic molecules.J.Phys.Chem.B,1998,102(17),3295-3304.
    [43]R.Yang,Y.Fu,L.D.Li,J.M.Liu,Medium effect on fluorescence of ciprofloxacin hydrochioride.Spectrochimica Acta Part A,2003,59(12),2723-2732
    [44]B.Ericsson,P.O.Eriksson,J.E.Loefroth,S.Engstrom,A.B.Ferring.S.Malmoe.Cubic phases as delivery systems for peptide drugs.ACS Symp.Ser.(Polym.Drugs Drug Deliv.Syst.)1991,469(2),251-265.
    [45]D.M.Wyatt,D.Dorschel,A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs.Pharm.Technol.,1992.16(10),116-130.
    [46]J.S.Kim,H.K.Kim,H.Chung,Y.T.Sohn,I.C.Kwon,S.Y.Jeong,Drug formulation that form a dispersed cubic phased when mixed with water.Proc.Int.Symp.Control.Rel.Bioact.Mater,2000,27,8123-8127.
    [47]H.Chung,J.Kim.J.Y.Um,I.C.Kwon,S.Y.Jeong,Self-assembled “nanocubicle” as a carrier for peroral insulin delivery.Diabetologia,2002,45(3),448-451.
    [48]J.Y.Um,H.Chung,K.S.Kim,I.C.Kwon,S.Y.Jeong,In vitro cellular interaction and absorption of dispersed cubic particles.Int.J.Pharm.,2003.253(1-2),71-80.
    [49]A.Angelova,B.Angelov,B.Papahadjopoulos-Sternberg.M.Ollivon,C.Bourgaux.Proteocubosomes:nanoporous vehicles with tertiary organized fluid interfaces.Langmuir.2005.21(9),4138-4143.
    [50]J.Bender,M.B.Ericson,N.Merclin,V.lani,A.Rosen,S.Engstrom.J.Moan.Lipid cubic phases for improved topical drug delivery in photodynamic therapy.J.Control.Release,2005.106(3),350-360.
    [51]中华人民共和国药典,第二部,化学工业出版社,2000年版,北京,p附录77,附录174
    [52]M.J.Rosen,Surfactants and Interfacial Phenomena.John Wiley & Sons,New York.1978.pp.100-110.
    [52]赵国玺,朱步瑶.表面活性剂作用原理.北京,中国轻工业出版社.2003年第一版.417页.
    [54]E.D.Goddard,Polymer/surfactant interaction:interfacial aspects.J.Colloid Interface Sci.,2002,256(1),228-235.
    [55]H.Ritacco,D.H.Kurlat,Critical aggregation concentration in the PAMPS(10%)/DTAB system.Colloids and Surfaces A,2003,218(1-3),27-45.
    [56]赵国玺,表面活性剂物理化学.北京.北京大学出版社,1984年第一版,254页.
    [57]A.Chatterjee,S.P.Moulik,S.K.Sanyal.B.K.Mishra,P.M.Puri,Thermodynamics of micelle formation of ionic surfactants:a critical assessment for sodium dodecyl sulfate.cetyl pyridinium chloride and dioctyl sulfosuccinate(Na salt)by microcalorimetric,conductometric.and tensiometric measurements.J.Phys.Chem.B,2001,105(51).12823-12831
    [58]S.K.Mehta,K.K.Bhasin,R.Chauhan,S.Dham,Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethyl- ammonium bromide and dodecyltrimethylammonium chloride in aqueous media.Colloids and Surfaces A.2005.255(1-3),153-157
    [59]R.Slota,G.Dyrda,UV photostability of metal phthalocyanines in organic solvents.lnorg.Chem.,2003,42(18),5743-5750.
    [60]W.I.Higuchi.Analysis of data on medicament release from ointments.J.Pharm.Sci..1962.51. 802-804
    [61] L. Bromberg, E. Magner, Release of hydrophobic compounds from micellar solutions of hydrophobically modified polyelectrolytes. Langmuir, 1999,15(20), 6792-6798.
    [62] N. K. Pandit, D. Wang, Salt effects on the diffusion and release rate of propranolol from poloxamer 407 gels. Int. J. Pharm., 1998,167(1-2), 183-189.
    [63] B. J. Boyd, Characterisation of drug release from cubosomes using the pressure ultraflltration method. Int. J. Pharm., 2003,260(2), 239-247
    [1]P.Walden,Uber die molekulargrosse und elektrische leitfahigkeit einiger gesehmolzenen salze.Bull.Acad.Imp.Sci.(St Petersburg),1914,405-422.
    [2]T.Welton,Room-temperature ionic liquids.Solvents for synthesis and catalysis.Chem.Rev..1999,99(8),2071-2084.
    [3]P.Wang.S.M.Zakeeruddion.P.Comte,I.Exnar,M.Gratzel,Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells.J.Am.Chem.Soc.,2003,125(5),1166-1167.
    [4]K.Tollner,R.PopovitzBiro,M.Lahau,D.Milstein.Impact of molecular order in Langmuir-Blodgett films on catalysis.Science,1997,278(5346),2110-2102.
    [5]A.E.Bradley,C.Hardacre,J.D.Holbrey,S.Johnston.S.E.J.McMath.M.Nieuwenhuyzen.Small-angle x-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts.Chem.Mater.,2002,14(2),629-635.
    [6]J.L.Anderson,V.Pino,E.C.Hagberg,V.V.Sheares,D.W.Armstrong.Suffactant soivauon effects and micelle formation in ionic liquids.Chem.Commun..2003,19.2444-2445.
    [7]J.Tang,D.Li,C.Y.Sun,L.Z.Zheng,J.H.Li,Temperature dependant self-assembly of surfactant Brij 76 in room temperature ionic liquid.Colloids and Surfaces:A,2006,273(1-3).24-28.
    [8]L.Y.Wang,X.Chen,Y.C.Chai,J.C.Hao,Z.M.Sui,W.C.Zhuang,Z.W.Sun.Lyotropic liquid crystalline phases formed in an ionic liquid.Chem.Commun.,2004,24,2840-2641.
    [9]Z.N.Wang.F.Liu.Y.A.Gao,W.C.Zhuang,L.M.Xu.B.X.Han.G.Z.Li.G.Y.Zhang.Hexagonal liquid crystalline phases formed in ternary systems of Brij97-water-ionic liquids.Langmuir,2005.21(11),4931-4937.
    [10]M.U.Araos,G.G.Warr,Self-Assembly of nonionic surfactants into lyotropic liquid crystals ir ethylammonium nitrate,a room-temperature ionic liquid.J.Phys.Chem.B.2005.109(30).14275-14277.
    [11]J.Eastoe,S.Gold,S.E.Rogers,A.Paul,T.Welton,R.K.Heenan.I.Grilio,Ionic liquid-in-oil microemulsions.J.Am.Chem.Soc..2005,127(20).7302-7303.
    [12]H.X.Gao,J.C.Li,B.X.Han,W.N.Chen,J.L.Zhang,R.Zhang,D.D.Yan,Microemulsions with ionic liquid polar domains.Phys.Chem.Chem.Phys.,2004,6(11),2914-2916.
    [13]Y.A.Gao,S.B.Han,B.X.Han,G.Z.Li,D.Shen.Z.H.Li.J.M.Du,W.G.Hou,G.Y.Zhang.TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions.Langmuir.2005,21(13),5681-5684.
    [14]Y.A.Gao,J.Zhang,H.Y.Xu,X.Y.Zhao,L.Q.Zheng.X.W.Li,L.Yu,Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions.ChemPhysChem,2006,7(7),1554-1561.
    [15]Y.A.Gao,N.Li,L.Q.Zheng,X.Y.Zhao,S.H.Zhang,B.X.Han,W.G.Hou,G.Z.Li.A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H_2O microemulsions and their performance characterization by UV-Vis spectroscopy.Green Chem..2006,8(1),43-49.
    [16]G.Law,P.R.Watson,Surface tension measurements of n-alkylimidazolium ionic liquids.Langmuir,2001,17(20),6138-6141.
    [17]J.Bowers,C.P.Butts,P.J.Martin,M.C.Vergara-Gutierrez,Aggregation behavior of aqueous solutions of ionic liquids.Langmuir.2004.20(6),2191-2198.
    [18]B.Dong,N.Li.L.Q.Zheng,L.Yu,lnoue T.Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution.Langmuir,2007.23(8).4178-4182.
    [19]S.Thomaier,W.Kunz,Aggregates in mixtures of ionic liquids.J.Mol.Liq.,2007,130(1-3).104-107.
    [20]F.Yan,J.Texter,Surfactant ionic liquid-based microemulsions for polymerization.Chem.Commun.,2006,25.2696-2698.
    [21]G.D.Zhang,X.Chen,Y.R.Zhao,Y.Z.Xie,H.Y.Qiu.Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution.J.Phys.Chem.B,2007,111(40),11708-11713
    [22]M.A.Firestone,J.A.Dzielawa,P.Zapol.L.A.Curtiss,S.Seifert,M.L.Dietz.Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid.Langmuir,2002.18(20).7258-7260.
    [23]M.A.Firestone,P.G,Rickert,S.Seifert.M.L.Dietz.Anion effects on ionogel formation in N.N'-dialkylimidazolium-based ionic liquids,Inorganica Chimica Acta,2004,357(13).3991-3998.
    [24]T.lnoue,B.Dong,L.Q.Zbeng,Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy.J.Colloid Interface Sci..2007.307(2),578-581.
    [25]G.D.Zhang,X.Chen.Y.Z.Xie,Y.R.Zhao,H.Y.Qiu,Lyotropic liquid crystalline phases in a ternary system of 1-hexadecyl-3-methylimidazolium chloride/1-decanol/water.J.Colloid Interface Sci.,2007,315(2),601-606.
    [26]J.Dupont,C.S.Consorti,P.A.Z.Suarez,R.F.de Souza,S.L.Fulmer,D.P.Richardson,T.E.Smith,S.Wolff,Preparation of 1-butyl-3-methyl imidazolium-based room-temperature ionic liquids.Org.Synth.,2002,79(3),236-241.
    [27]林晓宏,硕士学位论文,基于癸酸单甘油酯固体脂质纳米粒作为药物载体的研究.山东大学.2007年.
    [28]W.W.Russell,A new method in pycnometric analysis - preliminary report,Ind.Eng.Chem.Anal.Ed..1937,9(12),592-597.
    [29]J.A.Riddick,W.B.Bunger,T.K.Sakano,Organic Solvents,Physical properties and methods of purification.4th ed.,Wiley-Interscienee:New York,1986,p45.
    [30]G.S.Kell,Precise representation of volume properties of water at one atmosphere.J.Chem.Eng.Data,1967,12(1),66-69.
    [31]H.Edlund,A.Sadaghiani,A.Khan,Phase behavior and phase structure for catanionic surfactant mixtures:dodecyltrimethylammonium chloride-sodium nonanoate-water system.Langmuir.1997,13(19),4953-4963.
    [32]L.Mandell,P.Ekwall,The three-compontent system sodium caprylate-deeanol-water.Acta Polyteeh.Stand.,Chem Incl.Met.Set.,1968,74(1),73-75.
    [33]C.Tanford,Micelle shape and size.J.Phys.Chem.,1972,76(21),3020-3024.
    [34]T.Durrschmidt,H.Hoffmann,Organogels from ABA triblock copolymers.Colloid Polym.Sci..2001,279(10),1005-1012.
    [35]N.Granizo,M.Alvarez,M.Valiente,The effect of octyl glucoside on rheological behavior of diluted and concentrated lamellar phases.J.Colloid Interface Sci.,2006,298(1),363-368.
    [36]R.Mezzenga,C.Meyer,C.Servais,A.I.Romoscanu,L.Sagaiowicz,R.C.Hayward.Shear rheology of lyotropic liquid crystals:a ease study.Langmuir,2005,21(8),3322-3333.
    [37]G.Montalvo,M.Valiente,E.Rodenas,Rheological properties of the I phase and the hexagonal.lamellar,and cubic liquid crystals of the CTAB/benzyl alcohol/water system.Langmuir.1996.12(21),5202-5208.
    [38]W.Z.Helfrih.Steric interaction of fluid membranes in multilayer systems.Naturforsch.1987,33a(3),305-315.
    [39]A.Zou,H.Hoffmann,N.Freiberger,O.Glatter,Influence of ionic charges on the bilayers of lamellar phases.Langmuir,2007,23(6),2977-2984.
    [40]E.Pena dos Santos,M.S.Tokumoto,G.Surendran,H.Remita,C.Bourgaux,P.Dieudonne.E.Prouzet,L.Ramos,Existence and stability of new nanoreactors:highly swollen hexagonal liquid crystals.Langmuir,2005,21(10),4362-4369.
    [41]J.Gustafsson,G.Oradd,G.Lindblom,U.Olsson,M.Almgren,A defective swelling lamellar phase.Langmuir,1997,13(4).852-860.
    [42]R.Podgornik,V.A.Parsegian,Thermal-mechanical fluctuations of fluid membranes in confined geometries:the case of soft confinement.Langmuir,1992.8(2),557-562.
    [43]S.Saha,H.Hamaguchi.Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids.J.Phys.Chem.B,2006,110(6),2777-2781.
    [44]P.L.Hubbard,K.M.McGrath,P.T.Callaghan,Orientational anisotropy in the polydomain lamellar phase of a lyotropic liquid crystal.Langmuir.2006,22(9),3999-4003.
    [45]W.C.Pomerantz.N.L.Abbott.S.H.Gellman,Lyotropic liquid crystals from designed helical β-peptides.J.Am.Chem.Soc.,2006,128(27),8730-873 i.
    [46]S.Mele,B.W.Ninham,M.Monduzzi,Phase behavior of homologous perfluoropolyether surfactants:nmr,saxs,and optical mieroscopy.J.Phys.Chem.B,2004,108(46).17751-17759.
    [47]I.Goodchiid,L.Collier,S.L.Millar,I.Prokes,J.C.D.Lord,C.P.Butts.J.Bowers.J.R.P.Webster,R.K.Heenan,Structural studies of the phase,aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures.J.Colloid Interface Sci.,2007.307(2).455-468.
    [48]H.N.Maia de Oliveira,F.W.Bezerra Lopes,A.A.Dantas Neto,O.Chiavone-Filho.Vapor-liquid equilibria for pentane + dodecane and heptane + dodecane at low pressures.J.Chem.Eng.Data,2002,47(6),1384-1387.
    [49]J.N.lsraelachvili,D.J.Mitchell,B.W.Ninham,Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers.J.Chem.Soc.Faraday Trans.Ⅱ,1976,72,1525-1568.
    [50]D.J.Mitchell,B.W.Ninham,Micelles.vesicles and microemulsions.J.Chem.Soc.Faraday Trans.Ⅱ,1981.77(4),601-629.
    [51]L.K.Shrestha.M.Kaneko,T.Sato,D.P.Acharya,T.lwanaga,H.Kunieda,Phase behavior of diglycerol fatty acid esters-nonpolar oil systems.Langmuir,2006,22(4).1449-1454.
    [52]A.Ishikawa,K.Tamori,K.Esumi,K.Meguro.Phase equilibria in the fluorinated surfactantalcohol -water and hydrogenated surfactant-alcohol-water systems.J.Colloid Interface Sci..1992,151(2),370-382.
    [53]S.M.Martin,M.D.Ward,Lyotropic phases reinforced by hydrogen bonding.Langmuir.2005.21(12),5324-5331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700