介质阻挡放电中微放电通道等离子体参量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用特殊设计的水电极介质阻挡放电装置,通过先升高电压使气体击穿然后逐渐降低电压的方法(清洗放电),分别在空气、氩气放电中获得了稳定的单个微放电通道。采用电学及光谱方法,研究了微放电通道中等离子体参量的变化及其空间分布。
     在空气中,通过“清洗放电”,在气压高于0.25atm时,可以得到单个稳定的丝状放电。而气压低于0.25atm时,放电经历类辉光模式、丝放电模式,但最终只能得到弥散放电。
     利用对电流积分的方法,计算了不同pd值条件下空气放电中单个微放电通道的输运电量。结果发现,单个微放电通道的输运电量与气压关系不大,但随放电间距的增大而增大。
     采用光谱方法,研究了单个微放电通道中等离子体参量的空间分布。实验发现,光谱强度在放电通道的两端最强,而中间最弱,分布基本对称。利用在空气单通道放电中得到的氮分子振动光谱,计算了振动温度在放电通道内的分布情况,结果发现振动温度在放电通道的两侧最低而中心最高。利用在氩气单通道放电中得到的光谱,根据696.54nm谱线的stark展宽,计算了电子密度在放电通道内的分布,结果发现,电子密度在放电通道的两端最高,而中间略小。
     本工作对于介质阻挡放电模型的建立提供了必要的实验数据,另外对于弄清介质阻挡放电的放电发展过程也很有意义。
A stable micro-discharge channel is obtained respectively in air discharge and argon discharge, by using a specially designed dielectric barrier discharge (DBD) system with two water electrodes. A cleaning discharge method is used, which is performed by increasing the applied voltage first until the gas is breakdown and then decreasing the applied voltage. The variations and the spatial distributions of the plasma parameters in the channel are studied by using electrical and spectral methods.
     In air, by'cleaning discharge' method, the filamentary discharge with a single stable filament can be observed when the gas pressure p is more than 0.25atm, while the discharge undergoes the sequence of glow-like discharge to filamentary discharge and finally to diffuse discharge, when p is lower than 0.25atm.
     The transported charges of a mono-filamentary for diverse pd valve are calculated by current integral method. Results show that the transported charge has little relationship with the gas pressure, while increases with the width of the gas gap.
     The spatial distribution of the plasma parameters in a single micro-discharge channel is investigated by spectral methods. It is found that the intensity of the spectrum is strongest at the two ends of the channel, while weakest in the middle, distributing symmetrically. The spatial distribution of the vibrational temperature is calculated by using the N2 spectrum in the air discharge channel. It is found that the vibrational temperature is lowest at the two end of the channel, while highest in the middle. In addition, the spatial distribution of the electronic density in the discharge channel is also investigated by the Stark broadening of 696.54nm in argon spectrum. Results show that the electronic density is highest at the ends of the discharge channel, while slightly lower in the middle.
     This work provides necessary data for establishing the model of the dielectric barrier discharge system, and is of great importance to understand the discharge process of DBD.
引文
[1]郭书印,黄林,邱孝明.等离子体物理学原理[M].原子能出版社,1983,第一版:1.
    [2]Tonks L, Langmuir I. Oscillations in Ionized Gases [J].Phys Rev,1929,33:195-210.
    [3]Kanazawa S,Kogoma M,Moriwaki T, Okazaki S. Stable glow plasma at atmospheric pressure [J] J.Phys D 1988,21:838-840.
    [4]Massines F, Rabehi A, Decomps P etal. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. J. Appl. Phys, 1998,83(6):2950-2957.
    [5]Jozef Rahel, Daniel M Sherman. The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2005,38:547-554.
    [6]董丽芳,李雪辰,尹增谦,王龙.大气压介质阻挡放电中的自组织斑图结构[J].物理学报,2002,51(10):2296--2301.
    [7]Ammelt E, Schweng D, Purwins H-G. Spatio- temporal pattern formation in a lateral high-frequency glow discharge system[J]. Phys Lett A,1993,179:348-350.
    [8]周炳琨,高以智,陈家骅等.激光原理[M].国防工业出版社,2000,第4版:126.
    [9]Lifang Dong, Junxia Ran, Zhiguo Mao. Direct measurement of electron density in micro-discharge at atmospheric presure by Stark broadening, Appl Phys Lett.2005,86(17):161501.
    [10]邓红艳,王加扣,吴卫东.低温低压氢等离子体的光谱分析[J].原子与分子物理学报,2005,22(2):256-259.
    [11]朱沛臣,万春华,熊诗杰.热等离子体中Stark谱线增宽和移动的理论及实验现状[J].物理学进展,2001,21(1):88-129.
    [12]Merbahi N, Sewraj N, Marchal F, Salamero Y, and Millet P. Luminescence of argon in a spatially stabilized mono-filamentary dielectric barrier micro-discharge: spec-troscopic and kinetic analysis J. Phys. D:Appl. Phys.2004,37:1664-1678.
    [13]Kozlov K V, Wanger H E,Brandenburg R Spatio-temporally resolved spectroscopic diagnositic of the barrier discharge in air at atmospheric presure[J], J. Phys. D:Appl. Phys,2001,34(21):3164-3176.
    [14]Klein M,Miller N, Walhout M, Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system[J]. Physical Review E, 2001,64:026402-026407.
    [15]Baldur Elissson,Senior Member, Ulrich Kolgelscharz. IEEE Transactions on Plasma[J]. science,1991,19(2):309.
    [16]Loeb L B, Meek J M. The mechanism of spark discharge in air at atmospheric pressure[J]. J Appl Phys,1940,11(6):438~447.
    [17]徐学基,诸定昌.气体放电物理[M].复旦大学出版社,1996年第一版:325.
    [18]Alexandre C. Self-Organization Of Microdischarges In DBD Plasma [D] Philadelphia: Drexel University,2003.
    [19]李雪辰.大气压介质阻挡放电中微放电特性研究[D].保定:河北大学,2002.
    [20]Dong L F, Yin Z Q, Li X C, Wang L. Spatio-Temporal Dynamics of Discharge Domains in a Dielectric Barrier Discharge Device, Plasma Sources Sci. Technol.2003,12(3):380-388.
    [21]J Reece Roth, Jozef Rahel, Xin Dai, Daniel M,Sherman. The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP TM) reactors for surface treatment applications [J]. J. Phys. D:Appl. Phys.2005,38:555-567.
    [22]方志,邱毓昌,王辉,孙岩洲.介质阻挡放电的电荷传输特性研究[J].高压电器,2004,40(6):401-403.
    [23]董丽芳,刘峰,李树锋,贺亚峰氩气/空气介质阻挡放电中分子振动温度研究[J].光谱学与光谱分析.2006,26(5):802-804.
    [24]董丽芳,冉俊霞,尹增谦,毛志国.大气压氩气介质阻挡放电中的电子激发温度[J].光谱学与光谱分析,2006,25(8):1184-1186.
    [25]KANG Zheng-De, PU Yi-Kang.Molecular Nitrogen Viberational Temperature in an Induc-tively Coupled Plasma [J].Chin. Phys. Lett.,2002,19(2):211-213.
    [26]Hollmann E M, Pigarov A Yu. Measurement and modeling of molecular ion concentrations in a hydrogen reflex-arc discharge [J]. Physics of Plasmas,2002,9(10):4330-4339.
    [27]Masoud N, Martus K, Figus M, Becker K. Rotational and Vibrational Temperature Measurements in a High-Pressure Cylindrical Dielectric Barrier Discharge (C-DBD) [J]. Contrib. Plasma Phys.2005,45(1):30-37.
    [28]G.赫兹堡,《分子光谱与分子结构》(第一卷)[M].科学出版社,1983,第一版:155-156.
    [29]Nicholls R W. Laboratory Asttrophysics [J]. Quant Spectrosc Radiat Transfer.1962,2:433-439.
    [30]Shemansky D E, Broadfoot A L. Excitiation of N2 and N2+ systems by electrons-I absolute transition probabilities[J]. Quant. Spectrosc. Radiat. Transfer,1971,11:1385-1400.
    [31]Langmuir I, Mott-Smith H. Studies of electric discharges in gases at low pressures[J]. Gen Elec Rev 1924,27:449-455.
    [32]陈宗柱,高树香编.气体导电(下册)[M],南京工学院出版社,1988,第一版:166.
    [33]Ejiri A, Kawahata K. Transmissivity Measurement to Obtain Density. Profile of Sheet Plasmas, Jpn J of Appl Phys Part1 2000,39(5):2839-2842.
    [34]Den Hartog DJ, Cekic M, A simple high-performance Thomson-scattering diagnostic for high-temperature plasma research[J]. Measurement sci&Techno,1994,5(9):1115-1123.
    [35]伍永征,王兆永,陈凌冰,赵衍盛.激光物理学[M].上海:复旦大学出版社,1989第一版:21.
    [36]H. R Griem. Plasma spectroscopy[M], New York:McGraw-Hill,1964,第一版:492.
    [37]董丽芳,李树锋,刘峰等.大气压氩气介质阻挡放电中的四边形斑图和六边形斑图[J].物理学报,2006,55(1):362-366.
    [38]董丽芳,范伟丽,李雪辰等.氩气放电中四边形发光斑图形成过程研究[J].物理学报,2006,55(10):5375-5380.
    [39]L F Dong, YF He, WL Liu, RL Gao, HF Wang, Haitao Zhao, Hexagon and square patterned air discharges[J]. Appl. Phys. Lett.,2007,90:031504.
    [40]LF Dong, WL Fan, YF He, Fucheng Liu, Shufeng Li, Ruiling Gao, Long Wang, Square superlattice pattern in dielectric barrier discharge [J]. Phys. Rev. E,2006,73:066206.
    [41]胡志强,甄汉生,施迎难.气体电子学[M].北京:电子工业出版社,1985 第一版:34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700