亚甲基环丙烷和环丙烯反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要内容是对两类稳定的高张力环化合物——亚甲基环丙烷和环丙烯类化合物的反应性能研究。该两类化合物都能被酸或者金属活化,得到稳定的环丙基正离子,能发生自身开环反应和被各类试剂捕获。基于以上特性,我们发展了一系列反应方法学构建各类芳香化合物和杂环化合物。
     本论文分为三个部分:第一部分是基于我们小组先前研究的酸催化亚甲基环丙烷反应的拓展,这其中包括路易斯酸催化的亲核试剂对亚甲基环丙烷的开环反应,我们以1,3-环状二羰基化合物作为亲核试剂进攻活化的亚甲基环丙烷开环得到高烯丙醚化合物,该反应中,二羰基化合物经过烯醇异构,以氧原子进攻三员环(第1章,第1节);亚甲基环丙烷在布朗斯特酸和固体酸催化下作为亲双烯体均能和亚胺发生杂Diels-Alder反应得到三员环保留的四氢喹啉类化合物(第1章,第2节)。
     第二部分是一类共轭体系稳定的环丙烯化合物的开环和后续的分子内和分子间的反应,该类芳基乙烯基环丙烯是由我们小组之前研究的亚乙烯基环丙烷在碱性条件下经过热重排以优秀的分离收率制备得到。根据使用的酸、金属催化剂和外加试剂的不同,发生了不同方式的环丙烯活化后的碳-碳键的断裂,引发了各类重排反应和加成反应,这其中包括布朗斯特酸催化的芳基乙烯基环丙烯和醛的加成反应制备二氢苯并[c]菲衍生物,路易斯酸催化芳基乙烯基环丙烯和缩醛加成反应制备二氢环戊并[α]衍生物,我们提出了以上反应可能经过的两种途径并通过计算化学得到验证(第2章,第1节);铝(Ⅲ)催化芳基乙烯基环丙烯开环后作为双烯体和活化烯(炔)烃发生Diels-Alder反应和布朗斯特酸催化的芳基乙烯基环丙烯和活化烯烃发生1,4-加成反应。其中,环丙烯作为双烯体的前体而非亲双烯体在有机合成中为首例报道(第2章,第2节);金(Ⅰ)催化的芳基乙烯基环丙烯环异构化反应,该反应为首例报道的金催化的环丙烯转化(第2章,第3节);对苯醌作为氧化剂和前亲核试剂的钯(Ⅱ)催化的芳基乙烯基环丙烯串联环异构化氧化反应(第2章,第4节);芳基乙烯基环丙烯与当量的苯腈氯化钯制备烯丙基钯(Ⅱ)络合物以及该络合物在银(Ⅰ)和三氟甲磺酸促进的脱氢重排为苯并[c]类化合物(第2章,第5节)。
     第三部分是一类新型的杂原子(氮/氧原子)连接的1,6-环丙烯炔类化合物的合成,以及Grubbs一代催化剂催化的该类烯炔化合物和烯烃的串联开环/闭环分子间烯炔复分解反应。我们通过铑金属催化的[2+1]环加成反应选择性地对双炔烃进行单环丙烯化,制备了该类含有环丙烯和炔结构的化合物,并通过该化合物和另一分子的烯烃的复分解反应合成了3-吡咯啉和2,5-二氢呋喃衍生物。我们通过一系列控制实验对此首例报道的环丙烯参与的分子间烯炔复分解反应进行了机理研究,确定了启动该反应的真正活性催化剂为亚烷基钌卡宾化合物而非常见的亚甲基钌卡宾化合物(第3章)。
This dissertation is carried out on the reactions of two kinds of highly strained-ring componds, which includes methylenecyclopropanes (MCPs) and arylvinylcyclopropenes (AVCPs). These componds can be activated by acids or metal catalysts to generate cyclopropane cations and then undergo ring-opening reactions or can be captured by various reagents. Enlightened by these, we developed series of methodologies for building a variety of aromatic compounds and heterocyclic compounds.
     The dissertation is divided into three parts:the first one is an extention based on our group's previous studies on acid catalyzed reactions of methylenecyclopropanes, including Lewis acid catalyzed nucleophilic ring-opening of activated MCPs by oxygen atoms of the enolates derived from 1,3-diones to obtain homoallylic ethers (Chapter 1.1); Brφnsted acid and solid acid catalyzed Diels-Alder reaction of MCPs (as the dienophile) and imines to produce tetrahydroquinoline derivatives with retention of the three-membered rings (Chapter 1.2).
     The second part is the intramolecular/intermolecular reactions of a class of conjugate stabilized cyclopropene componds. These compounds can be easily prepared by thermal-rearrangement of vinylidenecyclopropanes (VDCPs), which have been well studied by our group before, under basic conditions in excellent isolated yields. According to the employ of varieties of acid/metal-catalysts and external reagents, different types of C-C bond cleavage of cyclopropenes took place to initiate rearrangement and addition reactions, which includes Brφnsted acid promoted addition of AVCPs with aldehydes to produce 5,6-dihydrobenzo[c]phenanthrene derivatives and Lewis acid promoted addition of AVCPs with acetals to yield dihydrocyclopenta[a]indene componds. We have proposed two reaction pathways, and verified these routes by computational chemistry (Chapter 2.1); Al(Ⅲ) catalyzed ring-opening of AVCPs and tandem Diels-Alder reactions with activated olefins which is the firstly reported appilication of cyclopropenes as pro-dienes not dienophiles, as well as Brφnsted acid catalyzed 1,4-addition reactions of AVCPs with activated olefins (Chapter 2.2); the first report Au(Ⅰ) catalyzed cycloisomerization of cyclopropenes (Chapter 2.3); Pd(Ⅱ) catalyzed tandem cycloisomerization and oxidation of AVCPs using p-benzoquinone (p-BQ) as oxidant and pro-nucleophile (Chapter 2.4); synthesis ofπ-allylpalladium complexes using AVCPs and stoichiometric amount of PdCl2(PhCN)2 and Ag(Ⅰ) and TfOH promoted further dehydrogenetive rearrangement of theπ-allylpalladium complexes to 7H-Benzo[c]fluorene derivatives (Chapter 2.5).
     The last part is the synthesis of a novel hetero-atom (N/O atom) tethered 1,6-cyclopropene-yne and a novel tandem ring-opening/ring-closing/cross-metathesis of 1,6-cyclopropene-ynes with olefins catalyzed by the first-generation Grubbs'ruthenium complex. The novel 1,6-cyclopropene-yne was prepared by Rhodium catalyzed mono-cyclopropenation of diynes. This synthetic protocol furnishes 3-pyrroline and 2,5-dihydrofuran derivatives straightforwardly. Several control; experiments reveal that the initiator of the reaction is alkylidenes not the common methylidene (Chapter 3).
引文
[1](a) Jones, W. J.; Stoicheff, B. P. High-resolution raman spectroscopy of gases:ⅹⅷ. Pure rotational spectra of cyclopropane and cyclopropane-d6.Can. J. Phys.1964,42, 2259-2263. (b) Bastiansen,O.; Fritsch, F. N.; Hedberg, K. Least-squares refinement of molecular structures from gaseous electron-diffraction sector-microphotometer data. Ⅲ. Refinement of cyclopropene.Acta. Crystallogr.1964,17,538-543.
    [2](a) Coulson, C. A.; Moffit, W. E. Strain in non-tetrahedral carbon atoms. J. Chem. Phys. 1947,15,151-152. (b) Coulson, C. A.; Moffit, W. E. The properties of certain strained hydrocarbons. Philos. Mag.1949,40,1-35. (c) Flygare, W. H. Bent Chemical bonds: present theories and experimental results concerning electrons in some specific molecules are discussed. Science 1963,140,1179-1185. (d) Peters, D. The MO theory of bent bonds in strained cyclic hydrocarbons. Tetrahedron 1963,19,1539-1546.
    [3]For the synthesis of MCPs, see:(a) Carbocyclic three-membered ring compounds, in Houben-Weyl, Vol. E17, (de Meijere, A. Ed.; Thieme, Stuttgart,1996. (b) Brandi, A.; Goti, A. Synthesis of methylene-and alkylidenecyclopropane derivatives. Chem. Rev.1998,98, 589-636. (c) Audran, G.; Pellissier, H., Synthesis of methylene-and alkylidenecyclopropane derivatives. Adv. Synth. Catal.2010,352,575-608.
    [4]Johnson, W. T. G.; Borden, W. T., Why are methylenecyclopropane and 1-methylcylopropene more "strained" than methylcyclopropane? J. Am. Chem. Soc.1997, 119,5930-5933.
    [5]Vogel, E. Kleine kohlenstoff-ringe. Angew. Chem.1960,72,4-26.
    [6]Samuelson, A. G., Role of orbital symmetry in transition metal promoted ring opening reactions of methylenecyclopropanes and cyclobutenes. Proc. Indian Acad. Sci., Chem. Sci.1984,93,729-739.
    [7]For recent reviews on methylenecyclopropanes, see:(a) Nakamura, I.; Yamamoto, Y., Transition metal-catalyzed reactions of methylenecyclopropanes. Adv. Synth. Catal.2002, 344,111-129. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A., Heterocycles from alkylidenecyclopropanes. Chem. Rev.2003,103,1213-1270. (c) Rubin, M.; Rubina, M.; Gevorgyan, V., Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev.2007,107,3117-3179.
    [8](a) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D. Lewis acid mediated cyclisation of methylenecyclopropyl ketones and aldehydes. Tetrahedron Lett.1999,40,3045-3048. (b) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D. Lewis acid mediated cascade reactions of silyl-substituted methylenecyclopropyl ketones. Tetrahedron Lett.2000,41, 1615-1618. (c) Peron, G. L. N.; Norton, D.; Kitteringham, J.; Kilburn, J. D.1,4 Additions with lithium bis(methylenecyclopropyl)cuprate. Tetrahedron Lett.2001,42,347-349. (d) Rajamaki, S.; Kilburn, J. D. Lewis acid mediated endo-cyclisation of trimethylsilylmethylenecyclopropyl imines-a stereoselective route to indolizidines. Chem. Commun.2005,1637-1639.
    [9](a) Shi, M.; Xu, B. Lewis acid-catalyzed ring-opening reactions of methylenecyclopropanes with alcoholic or acidic nucleophiles. Org. Lett.2002,4, 2145-2148. (b) Shao, L.-X.; Huang, J.-W.; Shi, M. Brφnsted acid-mediated ring-opening reactions of methylenecyclopropanes:a dramatic counter ion effect. Tetrahedron 2004, 60,11895-11901.
    [10](a) Shi, M.; Chen, Y.; Xu, B.; Tang, J. A novel ring-opening reaction of methylenecyclopropanes with aromatic amines catalyzed by Lewis acids. Tetrahedron Lett.2002,43,8019-8024. (b) Shi, M.; Chen, Y.; Xu, B. Pd(Ⅱ)-and Pd(0)-cocatalyzed reactions of sulfonamides with MCPs. Org. Lett.2003,5,1225-1228.
    [11]Xu, B.; Chen, Y.; Shi, M. The reactions of thiols and diphenyldisulfide with terminally substituted methylenecyclopropanes. Tetrahedron Lett.2002,43,2781-2784.
    [12](a) Xu, B.; Shi, M. Ring-opening reactions of methylenecyclopropanes promoted by metal halides. Org. Lett.2003,5,1415-1418. (b) Huang, J-W.; Shi, M. Ring-opening reaction of methylenecyclopropanes with LiCl, LiBr or Nal in acetic acid. Tetrahedron 2004,60,2057-2062.
    [13]Huang, J.-W.; Shi, M. Brφnsted acid TfOH-mediated reactions of methylenecyclopropanes with nitriles. Synlett 2004,2343-2346.
    [14]Shi, M.; Xu, B.; Huang, J.-W. Lewis acid-mediated cycloaddition of methylenecyclopropanes with aldehydes and imines:a facile access to indene, THF, and pyrrolidine skeletons via homoallylic rearrangement protocol. Org. Lett.2004,6, 1175-1178.
    [15]Shao, L.-X.; Xu, B.; Huang, J.-W.; Shi, M. Synthesis of the Indene, THF, and pyrrolidine skeletons by lewis acid mediated cycloaddition of methylenecyclopropanes with aldehydes, n-tosyl aldimines, and acetals. Chem.-Eur. J.2006,12,510-517.
    [16]Demyanov, N. Y.; Doyarenko, M. N. Bull. Acad. Sci. Russ.1922 16,297.
    [17]For recent reviews of cyclopropenes, see:(a) Rubin, M.; Rubina, M.; Gevorgyan, V. Recent advances in cyclopropene chemistry. Synthesis 2006,1221-1245. (b) Fox, J. M.; Yan, N. Fox. Metal mediated and catalyzed nucleophilic additions to cyclopropenes. Curr. Org. Chem.2005,9,719-732. (c) Walsh, R. The cyclopropene pyrolysis story. Chem. Soc. Rev.2005,34,714-732. (d) Dolbier, W. R., Jr.; Battiste, M. A. Structure, synthesis, and chemical reactions of fluorinated cyclopropanes and cyclopropene. Chem. Rev.2003,103,1071-1098. (e) Sekiguchi, A.; Lee, V. Y. Heavy cyclopropenes of Si, Ge, and Sn:a new challenge in the chemistry of group 14 elements. Chem. Rev.2003,103, 1429-1448. (f) Chen, K.-C.; Lee, G.-A环丙烯类化合物的合成与性质。Huaxue 2006, 64,73. (g) Baird, M. S. Thermally induced cyclopropene-carbene rearrangements:an overview. Chem. Rev.2003,103,1271-1294.
    [18](a) Schleyer, P. v. R.; Williams, J. E.; Blanchard, K. R. Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J. Am. Chem. Soc.1970,92, 2377-2386. (b) Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground states of molecules. XXVI. MINDO/3 calculations for hydrocarbons. J. Am. Chem. Soc.1975,97, 1294-1301.
    [19]Allen, F. H. The geometry of small rings-Ⅳ:Molecular geometry of cyclopropene and its derivatives. Tetrahedron 1982,38,645-655.
    [20](a) Hernando, J.; Matia, M. P.; Novella, J. L.; A-Builla, J. Synthesis of sterculic acid. ARKIVOC 2002, v,26-30. (b) Bao, X.; Katz, S.; Pollard, M.; Ohlrogge, J. Carbocyclic fatty acids in plants:biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of sterculiafoetida. Proc. Natl. Acad. Sci. USA 2002,99,7172-7177.
    [21]Matsumoto, K.; Kozmin, S. A. Eight-step synthesis of routiennocin. Adv. Synth. Catal. 2008,350,557-560.
    [22]Yan, N.; Liu, X.; Pallerla, M. K.; Fox, J. M. Synthesis of stable derivatives of cycloprop-2-ene carboxylic acid. J. Org. Chem.2008,73,4283-4286.
    [23]Magnus, P.; Littich, R. Intramolecular cyclopropene-furan [2+4] cycloaddition followed by a cyclopropylcarbinyl rearrangement to synthesize the BCD rings of Cortistatin A. Org. Lett.2009,11,3938-3941.
    [24]Pelphrey, P. M.; Bolstad, D. B.; Wright, D. L. Versatile oxabicyclic synthons:Studies on C8-oxygenated eunicellin Diterpenes. Synlett 2007,2647-2650.
    [25]Baird, M. S. Cyclopropenes:synthesis by construction of the system, Houben-Weyl; Thieme:Stuttgart, Germany,1997; E17d/2, pp 2695-2744.
    [26]Shao, L.-X.; Zhang, Y.-P.; Qi, M.-H.; Shi, M. Lewis acid catalyzed rearrangement of vinylcyclopropenes for the construction of naphthalene and indene skeletons. Org. Lett. 2007,9,117-120.
    [27]Chuprakov, S.; Gevorgyan, V. Regiodivergent metal-catalyzed rearrangement of 3-iminocyclopropenes into N-fused heterocycles. Org. Lett.2007,9,4463-4466.
    [28]Yu, F.-F.; Yang, W.-G.; Shi, M. Photolysis of diarylvinylcyclopropenes for the construction of 1-methylene-8a-aryl-1,8a-dihydroazulene skeletons. Chem. Commun. 2009,1392-1394.
    [29](a) Masarwa, A.; Stanger, A.; Marek, I. An efficient, facile, and general stereoselective synthesis of heterosubstituted alkylidenecyclopropanes. Angew. Chem., Int. Ed.2007,46, 8039-8042. (b) Simaan, S.; Marek, I. Copper-catalyzed hydride transfer from LiAlH4 for the formation of alkylidenecyclopropane derivatives. Chem. Commun.2009,292-294. (c) Simaan, S.; Masarwa, A.; Zohar, E.; Stanger, A.; Bertus, P.; Marek, I. Cyclopropenylearbinol derivatives as new versatile intermediates in organic synthesis: application to the formation of enantiomerically pure alkylidenecyclopropane derivatives. Chem.-Eur. J.2009,15,8449-8464. (d) Rubina, M.; Woodward, E. W.; Rubin, M. Remarkable stereoelectronic control in the lewis base assisted 2,3-rearrangement of cyclopropenylmethyl phosphinites. Org. Lett.2007,9,5501-5504. (e) Xie, X.; Yang, Z.; Fox, J. M. Stereospecific synthesis of alkylidenecyclopropanes via sequential cyclopropene carbomagnesation/1,3-carbon shift. J. Org. Chem.2010,75,3847-3850. (f) Chen, J.; Ma, S. M. An X" (X=I, Br)-triggered ring-opening cyclization of cyclopropenyl-substituted alkyl halides or mesylates:an efficient and highly regio-and stereoselective approach to (E)-haloalkylidene 4-7-membered cyclic compounds. J. Org. Chem.2009,74,5595-5598.
    [30]Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. W. Stereoselective synthesis of tri-and tetrasubstituted alkenes by iron-catalyzed carbometalation ring-opening reactions of cyclopropenes. Angew. Chem., Int. Ed.2008,47,7350-7353.
    [31]Sherrill, W. M.; Rubin, M. Rhodium-catalyzed hydroformylation of cyclopropenes. J. Am. Chem. Soc.2008,130,13804-13809.
    [32](a) Kuzmin, A. V.; Popik, V. V. Dual reactivity of a photochemically-generated cyclic enyne-allene. Chem. Commun.2009,5707-5709. (b) Pandithavidana, D. R.; Poloukhtine, A.; Popik, V. V. Photochemical generation and reversible cycloaromatization of a nine-membered ring cyclic enediyne. J. Am. Chem. Soc.2009,131,351-356. (c) Poloukhtine, A. A.; Mbua, N. E.; Wolfert, M. A.; Boons, G.-J.; Popik, V. V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc.2009,131, 15769-15776. (d) Orski, S. V.; Poloukhtine, A. A.; Arumugam, S.; Mao, L.; Popik, V. V.; Locklin, J. High density orthogonal surface immobilization via photoactivated copper-free click chemistry. J. Am. Chem. Soc.2010,132,11024-11026. (e) Popik, V. V.; Poloukhtine, A. A. New cyclopropenone useful for photochemically inducing the reaction of two materials or for the selective labeling of living cells that are metabolically modified with azido-containing surface monosaccharides. US2010210854-Al,2010.
    [33]For a recent review on l,n-enyne compounds, see:Michelet, V.; Toullec, P. Y.; Genet, J.-P. Cycloisomerization of l,n-enynes:challenging metal-catalyzed rearrangements and mechanistic insights. Angew. Chem. Int. Ed.2008,47,4268-4315.
    [34]Niiske, H.; Brase, S.; de Meijere, A. Catalyzed nucleophilic substitution on cyclopropenylmethyl esters-reactions via a 1,2-methano-π-allylpalladium intermediate. Synlett 2000, 1467-1469.
    [35]Shibata, T.; Maekawa, S.; Tamura, K. Rhodium-catalyzed intramolecular cycloaddition of cyclopropene-ynes triggered by carbon-carbon bond cleavage. Heterocycles 2008,76, 1261-1270.
    [36]Li, C. K.; Zhang, H.; Feng, J. J.; Zhang, Y.; Wang, J. B. Rh(Ⅰ)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes. Org. Lett.2010,12,3082-3085.
    [37]Li, C. K.; Zeng, Y.; Zhang, H.; Feng, J. J.; Zhang, Y.; Wang, J. B. Gold(Ⅰ)-catalyzed cycloisomerization of enynes containing cyclopropenes. Angew. Chem., Int. Ed.2010,49, 6413-6417.
    [38](a) Wilcox, C. F.; Loew, L. M.; Hoffmann, R. Why a cyclopropyl group is good at stabilizing a cation but poor at transmitting substituent effects. J. Am. Chem. Soc.1973, 95,8192-8193. (b) Walsh, A. D. The structures of ethylene oxide, cyclopropane, and related molecules. Trans, Faraday. Soc.1949,45,179-190. (d) Hoffmann, R.; Davidson, R. B. Valence orbitals of cyclobutane. J. Am. Chem. Soc.1971,93,5699-5705. (e) Schlever, P. v. R.; Van, G. W. Substituent effects on cyclopropylcarbinyl solvolysis rates. evidence for symmetrical transition states. J. Am. Chem. Soc.1966,88,2321-2322.
    [39](a) Chen, W.-L.; Huang, X.; Zhou, H.-W.; Ren, L.-J. Synthesis 2006,609-614. (b) Huang, J.-W.; Shi, M. J. Org. Chem.2005,70,3859-3863.
    [40](a) Umehara, T.; Inouye, Y.; Kakisawa, H. Intramolecular [2+2] photocycloaddition of the 3-(3-butenyloxy)-2-cyclohexenone system. Bull. Chem. Soc. Jpn.1981,54, 3492-3494. (b) Pirrung, M. C.; Webste, N. J. G. Mechanism of intramolecular photocycloadditions of cyclooctenones. J. Org. Chem.1987,52,3603-3613. (c) Bischof, E. W.; Mattay, J. Radical anionic cyclization reactions via photochemically induced electron transfer. Tetrahedron Lett.1990,31,7137-7140; (d) Mattay, J.; Banning, A.; Bischof, E. W.; Heidbreder, A.; Runsinlc, J. Photoreactions of enones with amines-cyclization of unsaturated enones and reductive ring opening by photoinduced electron transfer (PET). Chem. Ber.1992,125,2119-2127; (e) Cossy, J.; Salle, L. Reactivity of tris(trimethylsilyl)silyl radical with P-alkenyloxyenones. Tetrahedron Lett.1995,36, 7235-7238.
    [41](a) Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Palladium-catalyzed [3+2] cycloaddition of alkylidenecyclopropanes with imines. Tetrahedron Lett.2001,42, 6203-6205. (b) Oh, B.-H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Synthesis of 3-methylenepyrrolidines by palladium-catalyzed [3+2] cycloaddition of alkylidenecyclopropanes with imines. Heterocycles,2003,61,247-257. For palladium-catalyzed [3+2] cycloaddition reaction of MCPs with 1,2-diazines, see:(c) Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. Synthesis of 5-azaindolizine derivatives by the palladium-catalyzed intermolecular formal [3+2] cycloaddition of alkylidenecyclopropanes with 1,2-diazines. J. Org. Chem.2004,69,3202-3204.
    [42](a) Shi, M.; Shao, L.-X.; Xu, B. The Lewis acids catalyzed aza-Diels-Alder reaction of methylenecyclopropanes with imines. Org. Lett.2003,5,579-582. (b) Shao, L.-X.; Shi, M., Montmorillonite ksf-catalyzed one-pot, three-component, aza-Diels-Alder reactions of methylenecyclopropanes with arenecarbaldehydes and arylamines. Adv. Synth. Catal. 2003,345,963-966.
    [43]Bird, C. W. (Ed.), Comprehensive heterocyclic chemistry II, Pergamon:Oxford,1996.
    [44]For a recant review, please see:A. R. Katrizky, S. Rachwal, B. Rachwal, Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines. Tetrahedron 1996,52,15031-15070.
    [45](a) Skraup, Z. H.; Zur kenntniss des chinolins. Ber. Dtsch. Chem. Ges.1880,13, 2045-2048. (b) Skraup Z. H. Synthetische versuche in der chinolinreihe. Monatsh. Chem. 1881,2,139-170.
    [46]Friedlander, P. Ueber einige im pyridinkern substituirte chinolinderivate. Ber. Dtsch. Chem. Ges.1882,75,2679-2685.
    [47]Pfitzinger, W. Chinolinderivate aus isatinsaure. J. Prakt. Chem.1886,33,100-100.
    [48](a) Neef, G.; Eder, U. Sauer, G. One-step conversions of esters to 2-imidazolines, benzimidazoles and benzothiazoles by aluminum organic reagents. J. Org. Chem.1981, 46,2824-2826. (b) Hlasta, D. J.; Luttinger, D.; Perrone, M. H.; Silbernagel, M. J. Ward, S. J.; Haubrich, D. R. Alpha.2-Adrenergic agonists/antagonists:the synthesis and structure-activity relationships of a series of indolin-2-yl and tetrahydroquinolin-2-yl imidazolines. J. Med. Chem.1987,30,1555-1562.
    [49]Selective examples on acid promoted reactions of arylvinylidenecyclopropanes (VDCPs), see:(a) Lu, J.-M.; Shi, M. Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with ethyl (arylimino)acetates:a facile synthetic protocol for pyrrolidine and 1,2,3,4-tetrahydroquinoline derivatives. Org. Lett.2007,9,1805-1808. (b) Zhang, Y.-P.; Lu, J.-M.; Xu, G.-C.; Shi, M. Lewis-acid-catalyzed rearrangement of arylvinylidenecyclopropanes:significant influence of substituents and electronic nature of aryl groups. J. Org. Chem.2007,72,509-516.
    [50]For reviews, see:(a) Binger, P.; Buch, H. M. Cyclopropenes and methylenecyclopropanes as multifunctional reagents in transition metal catalyzed reactions. Top. Curr. Chem.1987,135,77-151. (b) Jennings, P. W.; Johnoson, L. L. Metallacyclobutane complexes of the group eight transition metals:synthesis, characterizations, and chemistry. Chem. Rev.1994,94,2241-2290. (c) Baird, M. S. in Cyclopropenes:transformations, Vol. E17d/2, (Ed:A. De Meijere), Houben-Weyl, Georg Thieme Verlag:Stuttgart,1996, pp 2781-2860. d) Nakamura, M.; Isobe, H.; Nakamura, E. Cyclopropenone acetalssynthesis and reactions. Chem. Rev.2003,103,1295-1326.
    [51]For an example, see:Padwa, A.; Wannamaker, M. W.; Dyszlewski, A. D. Chemical reactivity and configurational properties of cyclopropyl carbanions derived from a silyl sulfonyl substituted cyclopropene. J. Org. Chem.1987,52,4760-4767.
    [52]Lu, J.-M.; Shi, M. Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with acetals:a facile synthetic protocol for the preparation of indene derivatives. Org. Lett. 2006,8,5317-5320.
    [53]Wei, Y.; Singer, T.; Mayr, H.; Sastry, G. N.; Zipse, H. Assessment of theoretical methods for the calculation of methyl cation affinities. J. Comput. Chem.2008,29,291-297.
    [54]Arnold, D. R.; Pincock, J. A.; Morchat, R. Photochemical reactivity of some benzoylthiophenes. I. Electronic absorption and emission spectra. J. Am. Chem. Soc. 1973,95,4599-4606.
    [55]Selective examples of thermolysis of cyclopropenes, see:(a) Stechl, H.-H. Reaktionen von tri-und tetramethyl-cyclopropen. Chem. Ber.1964,97,2681-2688. (b) Srinivasan, R. Thermal isomerization of alkylcyclopropenes. J. Chem. Soc., Chem. Commun.1971, 1041b-1042.
    [56]Srinivasan, R. Kinetics of the thermal isomerization of cyclopropene and 1-methylcyclopropene. J. Am. Chem. Soc.1969,91,6250-6253.
    [57]Padwa, A.; Wannamaker, M. W.; Dyszlewski, A. D. Chemical reactivity and configurational properties of cyclopropyl carbanions derived from a silyl sulfonyl substituted cyclopropene. J. Org. Chem.1987,52,4760-4767.
    [58]For examples, see:Law, D. C. F.; Tobey, S. W. Diels-Alder reactions of tetrahalocyclopropenes. J. Am. Chem. Soc.1968,90,2376-2386. (b) Deem, M. L Cyclopropenes as Reagents for Synthesis. Cycloaddition reactions with cyclopropenes. Synthesis 1972,675-691. (c) Battiste, M. A. Cyclopropenes as dienophiles. The stereochemistry and nuclear magnetic resonance spectra of some diene adducts of triphenylcyclopropene and diphenylcyclopropenecarboxylic acid. Tetrahedron Lett.1964, 3795-3802. (d) Closs, G. L. In Advances in Alicyclic Systems; Hart, H., Karabatsos, G. J., Eds.; Academic Press:New York,1966; p 53-127. (e) Apeloig, Y.; Arad, D.; Kapon, M.; Wallerstein, M. The stereochemistry of Diels-Alder reactions of cyclopropenes. Tetrahedron Lett.1987,28,5917-5920. (f) Battiste, M. A.; Posey, R. G. The Diels-Alder alternative to difluorocarbene additions. J. Fluorine Chem.2000,102,285-292. (g) Muller, P.; Bernardinelli, G.; Pfyffer, J.; Rodriquez, D.; Schaller, J.-P. exo-Stereoselectivity in Diels-Alder addition of halogenocyclopropenes to butadienes and furans. Helv. Chim. Acta 1988,71,544-550. (h) Magid, R. M.; Wilson, S. E. Mechanism of the Diels-Alder reaction of halocyclopropene. J. Org. Chem.1971,36, 1775-1779. (i) Battiste, M. A.; Sprouse, C. T., Jr. Stereochemistry and acid-catalyzed ring opening reactions of the cycloadduct of cyclopropene with 1,3-diphenylisobenzofuran. Tetrahedron Lett.1970,4661-4664. (j) Muller, P.; Bernardinelli, G.; Pfyffer, J.; Schaller, J.-P. Stereo and face selectivity in cycloadditions of 1,2,3-trichloro-3-fluorocyclopropenes to acyclic dienes and furans. Helv. Chim. Acta 1991,74,993-1001.
    [59]Fringuelli, F.; Taticchi A. The Diels-Alder reaction:selected practical methods, Wiley, New York,2002, Page 1.
    [60](a) Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev.2007,107,3180-3211. (b) Furstner, A.; Davies, P. W. Katalytische carbophile aktivierung:platin-und gold-π-sauren als katalysatoren. Angew. Chem.2007,119,3478-3519. (c) Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 2007,446, 395-403. (d) Marion, N.; Nolan, S. P. Propargylic esters in gold catalysis:access to diversity. Angew. Chem. Int. Ed.2007,46,2750-2752. (e) Ma, S.; Yu, S.; Gu, Z. Gold-catalyzed cyclization of enynes. Angew. Chem. Int. Ed.2006,45,200-203. (f) Hoffmann-Roder, A.; Krause, N. The golden gate to catalysis. Org. Biomol. Chem.2005, 3,387-391. (g) Echavarren, A. M.; Nevado, C. Non-stabilized transition metal carbenes as intermediates in intramolecular reactions of alkynes with alkenes. Chem. Soc. Rev. 2004,33,431-436.
    [61]Hoffmann, R. Building bridges between inorganic and organic chemistry. Angew. Chem. Int. Ed Engl.1982,21,711-724.
    [62](a) Bauer, J. T.; Hadfield, M. S.; Lee, A. L. Gold catalysed reactions with cyclopropenes. Chem. Commun.2008,6405-6407. (b) Hadfield, M. S.; Bauer, J. T.; Glen, P. E.; Lee, A. L. Gold(I)-catalysed alcohol additions to cyclopropenes. Org. Biomol. Chem.2010,8, 4090-4095.
    [63]Li, C. K.; Zeng, Y.; Wang, J. B. Au-catalyzed isomerization of cyclopropenes:a novel approach to indene derivatives. Tetrahedron Lett.2009,50,2956-2959.
    [64]Miege, F.; Meyer, C.; Cossy, J. Synthesis of 3-oxa-and 3-azabicyclo 4.1.0 heptanes by gold-catalyzed cycloisomerization of cyclopropenes. Org. Lett.2010,12,4144-4147.
    [65]Oda, M.; Kawase, T.; Okada, T.; Enomoto, T. Organic Syntheses; Wiley & Sons:New York,1998; Collect. Vol.9, p 186.
    [66]Walker, D.; Hiebert, J. D.2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions. Chem. Rev.1967,67,153-195.
    [67]Monti, S. A. The Nentizescu condensation of ethyl 3-aminocrotonate and 1,4-benzoquinonel. J. Org. Chem.1966,31,2669-2672.
    [68]Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene:carbon nanohoop structures. J. Am. Chem. Soc.2008,130,17646-17647.
    [69](a) Brown, R. G.; Davidson, J. M. Reaction of metal-ion complexes with hydrocarbons. Part III. Palladium acetate in the oxidation and autoxidation reactions of cyclohexene, cyclohexa-l,3-diene, and cyclohexa-1,4-diene in acetic acid solution. Journal of the Chemical Society A:Inorganic, Physical, Theoretical 1971,1321-1327. (b) Zeni, G.; Larock, R. C. Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem. Rev.2004,104,2285-2310. (c) Dick, A. R.; Sanford, M. S. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron 2006,62, 2439-2463. (d) Herrerias, C. I.; Yao, X.; Li, Z.; Li, C.-J. Reactions of C-H bonds in water. Chem. Rev.2007,107,2546-2562. (e) Johnson, J. B.; Rovis, T. More than bystanders:the effect of olefins on transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed.2008,47,840-871. (f) Piera, J.; Backvall, J.-E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer-a biomimetic approach. Angew. Chem. Int. Ed.2008,47,3506-3523.
    [70](a) Backvall, J. E.; Nordberg, R. E. Stereocontrolled trans and cis nucleophilic attack by acetate on.pi.-allylpalladium complexes. Applications to stereoselective palladium-catalyzed 1,4-diacetoxylation of cyclic 1,3-dienes. J. Am. Chem. Soc.1981, 103,4959-4960. (b) Backvall, J. E.; Awasthi, A. K.; Renko, Z. D. Biomimetic aerobic 1,4-oxidation of 1,3-dienes catalyzed by cobalt tetraphenylporphyrin-hydroquinone-palladium(II). An example of triple catalysis. J. Am. Chem. Soc.1987,109,4750-4752. (c) Backvall, J.-E.; Hopkins, R. B.; Grennberg, H.; Mader, M.; Awasthi, A. K. Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle quinone system.J. Am. Chem. Soc.1990,112, 5160-5166. (d) Grennberg, H.; Gogoll, A.; Backvall, J. E. Acid-induced transformation of palladium(0)-benzoquinone complexes to palladium(II) and hydroquinone. Organometallics 1993,12,1790-1793. (e) Grennberg, H.; Backvall, J.-E. Mechanism of palladium-catalyzed allylic acetoxylation of cyclohexene. Chem.-Eur. J.1998,4, 1083-1089.
    [71]Chen, M. S.; White, M. C. A Sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J. Am. Chem. Soc.2004,126,1346-1347.
    [72]Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. Palladium-catalyzed alkylation of aryl C-H bonds with sp3 organotin reagents using benzoquinone as a crucial promoter. J. Am. Chem. Soc.2006,128,78-79.
    [73]Wang, D. H.; Engle, K. M.; Shi, B. F.; Yu, J. Q. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C-H olefination Science 2010,327,315-319.
    [74]Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Ligand-accelerated C-H activation reactions: evidence for a switch of mechanism. J. Am. Chem. Soc.2010,132,14137-14151.
    [75]Ishii, S.; Zhao, S.; Helquist, P. Stereochemical probes of intramolecular C-H insertion reactions of iron-carbene complexes. J. Am. Chem. Soc.2000,122,5897-5898.
    [76]Most of the Friedel-Crafts reactions exhibit inverse isotope effects (kH/kD<1,~0.8-0.9). See:(a) Melander, L. Isotope effect on reaction rates; Ronald Press:New York,1960; pp107-123. (b) Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; University Science Books:Mill Valley, CA,2006; pp 428-431.
    [77]For reductive elimination to generate Pd(0) species in the presence of olefin or upon heating, see:(a) Doyle, M. J.; McMeeking, J.; Binger, P. Nickelacyclopentane derivatives as intermediates in the nickel(0)-catalysed cyclodimerisation of strained-ring olefins. J. Chem. Soc., Chem. Commun.1976,376-377.
    [78](a) Cappelli, A.; Anzini, M.; Vomero, S.; Donati, A.; Zetta, L.; Mendichi, R.; Casolaro, M.; Lupetti, P.; Salvatici, P.; Giorgi, G. New pi-stacked benzofulvene polymer showing thermoreversible polymerization:Studies in macromolecular and aggregate structures and polymerization mechanism. J. Polymer Sci. Polymer Chem.2005,43,3289-3304. (b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Mendichi, R.; Giorgi, G.; Paccagnini, E.; Vomero, S. Anionic polymerization of a benzofulvene monomer leading to a thermoreversible pi-stacked polymer. Studies in macromolecular and aggregate structure. Macromolecules 2008,41, 2324-2334. (c) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Synthesis and Spontaneous Polymerization of Oligo(ethylene glycol)-Conjugated Benzofulvene Macromonomers. A Polymer Brush Forming a Physical Hydrogel. Macromolecules 2009,42,2368-2378. (d) Cappelli, A.; Galeazzi, S.; Zanardi, I.; Travagli, V.; Anzini, M.; Mendichi, R.; Petralito, S.; Memoli, A.; Paccagnini, E.; Peris, W.; Giordani, A.; Makovec, F.; Fresta, M.; Vomero, S. A nanocomposite material formed by benzofulvene polymer nanoparticles loaded with a potent 5-HT(3) receptor antagonist (CR3124). J. Nanopart. Res.2010,12,895-903. (e) Cappelli, A.; Paolino, M.; Anzini, P.; Giuliani, G.; Valenti, S.; Aggravi, M.; Donati, A.; Mendichi, R.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Battiato, S.; Paccagnini, E.; Vomero, S. Structure-Property Relationships in Densely Grafted pi-Stacked Polymers. J. Polymer Sci. Polymer Chem.2010,48,2446-2461. (f) Licciardi, M.; Grassi, M.; Di Stefano, M.; Feruglio, L.; Giuliani, G.; Valenti, S.; Cappelli, A.; Giammona, G. PEG-benzofulvene copolymer hydrogels for antibody delivery. Int. J. Pharm.2010,390, 183-190.
    [79]For reviews on coordination chemistry of cyclopropenes, see:(a) Baird, M. S. in Cyclopropenes:transformations; de Meijere, A., Ed.; Houben-Weyl, Thieme:Stuttgart, Germany,1997; Vol. E17d/2, p 2949. (b) Goldschmidt, Z. in The chemistry of the cyclopropyl group; Rappoport, Z., Ed.; Wiley:New York,1995; Vol.2, p 495.
    [80]For the first example of a metal-promoted ring-opening reaction in the cyclopropropene series, see:(a) Mushak, P.; Battiste, M. A. Reaction of 1,2,3-triphenylcyclopropene with palladium(II) chloride. A novel ring-opening reaction in cyclopropene series. J. Organomet. Chem.1969,17,46-49. Following studies on Pd-promoted ring-opening reaction of cyclopropenes, see:(b) Battiste, M. A.; Friedrich, L. E.; Fiato, R. A. Kinetics and mechanism of palladium(II) promoted ring-opening of trisubstituted and tetrasubstituted cyclopropenes. Tetrahedron Lett.1975,45-48. (c) Fiato, R. A.; Mushak, P.; Battiste, M. A. Intramolecular cyclization of pi-l-chloro-3-phenylallylpalladium(II) complexes-novel route to stable indenyl complexes of palladium(II). J. Chem. Soc., Chem. Commun.1975,869-871.
    [81]Donovan, B. T.; Hughes, R. P.; Spara, P. P.; Rheingold, A. L. Unusual chloropalladation of 1,2,3-tri-tert-butyl-3-vinyl-l-cyclopropene to give an.eta.3-(chloromethyl) cyclobutenyl ligand. crystal and molecular structures of di-.mu.-chlorobis[(1-3.eta.)-4-endo-(chloromethyl)-1,2,3-tri-tert-butylcyclobutenyl]dipall adium and tetra-.mu.-chlorobis[(1-3.eta.)-4-endo-(chloromethyl)-1,2,3-tri-tert-butylcyclobutenyl]tripalladium. Organometallics 1995,14,489-494.
    [82]Sanford, M. S.; Valdez, M. R.; Grubbs, R. H. Reaction of Tp(PPh3)Ru(η2-O2CCHPh2) with carbene and vinylidene precursors. Organometallics 2001,20,5455-5463.
    [83]Gilbertson, R. D.; Weakley, T. J. R.; Haley, M. M. Synthesis, characterization, and isomerization of an iridabenzvalene. Chem.-Eur. J.2000,6,437-441.
    [84]Isaeva, L. S.; Peganova, T. A.; Petrovskii, P. V.; Bolesov, I. G.; Kravtsov, D. N. New complexes of nickel(O) with derivatives of methylenecyclopropane and cyclopropene. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1987,36,1904-1907.
    [85]Li, R. T.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Reactions of 3,3-diphenylcyclopropene with iridium(i) complexes:probing the mechanism of cyclopropene rearrangements at transition metal centers. J. Am. Chem. Soc.1994,116, 10032-10040.
    [86]Hughes, D. L.; Leigh, G. J.; McMahon, C. N. New complexes of platinum(O) with cyclopropenes.J.Chem. Soc., Dalton Trans.1997,1301-1308.
    [87]Huges, R. P.; Reisch, J. W.; Rheingold, A. L. Synthesis and crystal and molecular structure of an.eta.-cyclopropene complex of molybdenum. Organometallics 1985,4, 241-244.
    [88]Fischer, H.; Hofmann, J.; Mauz, E. Coupling of alkynes with carbene ligands to tungsten-coordinated cyclopropenes and their stereoselective isomerization to vinylcarbene complexes. Angew. Chem. Int. Ed. Engl.1991,30,998-999.
    [89]Binger, P.; Muller, P.; Benn, R.; Mynott, R. Vinylcarbene complexes of titanocene. Angew. Chem., Int. Ed. Engl.1989,28,610-611
    [90]Shapiro, E. A.; Kalinin, A. V.; Nefedov, O. M. Selective catalytic methoxycarbonylmethylenation of the triple bond of vinylacetylene with methyl diazoacetate. Mendeleev Commun.1992,116-117.
    [91]Dixon, N. E.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M.; Taube, H. Trifluoromethanesulfonates and Trifluoromethanesulfonato-O Complexes. John Wiley & Sons, Inc.:2007; p 70.
    [92]Recent studies on oxidative addition of Pd(0) to allyl/enzylic chlorides, see:(a) Lu, S.; Xu, Z.; Bao, M.; Yamamoto, Y. Carbocycle Synthesis through facile and efficient palladium-catalyzed allylative de-aromatization of naphthalene and phenanthrene allyl chlorides. Angew. Chem. Int. Ed.2008,47,4366-4369. (b) Kabalka, G. W.; Dadush, E.; Al-Masum, M. Microwave-enhanced cross-coupling of allyl chlorides with vinyltrifluoroborates. Tetrahedron Lett.2006,47,7459-7461. (c) Carvajal, M. A.; Miscione, G. P.; Novoa, J. J.; Bottoni, A. DFT Computational study of the mechanism of allyl chloride carbonylation catalyzed by palladium complexes. Organometallics 2005, 24,2086-2096. (d) Bao, M.; Nakamura, H.; Yamamoto, Y. Facile allylative dearomatization catalyzed by palladium. J. Am. Chem. Soc.2001,123,759-760. (e) Nakamura, H.; Shibata, H.; Yamamoto, Y. Palladium-catalyzed cyanoallylation of activated olefins. Tetrahedron Lett.2000,41,2911-2914.
    [93]Recent studies on protonolysis of the Pd-C bond, see:(a) Yang, S.-R.; Jiang, H.-F.; Li, Y.-Q.; Chen, H.-J.; Luo, W.; Xu, Y.-B. Protonolysis of the carbon-palladium bond in palladium(II)-catalyzed enyne cyclization in imidazolium-type ionic liquids. Tetrahedron 2008,64,2930-2937. (b) Cochran, B. M.; Michael, F. E. Mechanistic studies of a palladium-catalyzed intramolecular hydroamination of unactivated alkenes:protonolysis of a stable palladium alkyl complex is the turnover-limiting step. J. Am. Chem. Soc.2008, 130,2786-2792. (c) Bercaw, J. E.; Chen, G. S.; Labinger, J. A.; Lin, B.-L. Hydrogen tunneling in protonolysis of platinum(II) and palladium(II) methyl complexes: mechanistic implications. J. Am. Chem. Soc.2008,130,17654. (d) Shen, Z.; Lu, X. Palladium(II)-catalyzed tandem intramolecular aminopalladation of alkynylanilines and conjugate addition for synthesis of 2,3-disubstituted indole derivatives. Tetrahedron 2006, 62,10896-10899. (e) Feducia, J. A.; Campbell, A. N.; Anthis, J. W.; Gagne, M. R. Protonolysis of cationic Pt-C bonds with mild acids:can ligand torsional effects speed associative processes? Organometallics 2006,25,3114-3117. (f) Zhao, L. G.; Lu, X. Y.; Xu, W. Palladium(II)-catalyzed enyne coupling reaction initiated by acetoxypalladation of alkynes and quenched by protonolysis of the carbon-palladium bond. J. Org. Chem. 2005,70,4059-4063. (g) Wang, Z.; Zhang, Z.; Lu, X. Effect of halide ligands on the reactivity of carbon-palladium bonds:implications for designing catalytic reactions. Organometallics 2000,19,775-780.
    [94](a) Melka, M.; Krepelka, J.; Vancurova, I. Derivatives of benzo(c)fluorene. Ⅶ. Probability model of the dependence of activity on chemical structure in the pharmacological evaluation of antitumor activity of derivatives of benzo(c)fluorene. Cesk. Farm.1984,33,103-106. (b) Koganti, A.; Singh, R.; Rozett, K.; Modi, N.; Goldstein, L. S.; Roy, T. A.; Zhang, F. J.; Harvey, R. G.; Weyand, E. H.7H-benzo c fluorene:a major DNA adduct-forming component of coal tar. Carcinogenesis 2000,21,1601-1609. (c) Skalova, L.; Nobilis, M.; Szotakova, B.; Kondrova, E.; Savlik, M.; Wsol, V.; Pichard-Garcia, L.; Maser, E. Carbonyl reduction of the potential cytostatic drugs benfluron and 3,9-dimethoxybenfluron in human in vitro. Biochem. Pharmacol.2002,64, 297-305. (d) Wang, J. Q.; Weyand, E. H.; Harvey, R. G. Synthesis of suspected carcinogenic metabolites of 7H-benzo c fluorene, a coal tar component implicated in causation of lung tumors. J. Org. Chem.2002,67,6216-6219. (e) Cizmas, L.; Zhou, G. D.; Safe, S. H.; McDonald, T. J.; Zhu, L.; Donnelly, K. C. Comparative in vitro and in vivo genotoxicities of 7H-benzo c fluorene, manufactured gas plant residue (MGP), and MGP fractions. Environ. Mol. Mutagen.2004,43,159-168. (f) Fitzgerald, D. J.; Robinson, N. I.; Pester, B. A. Application of benzo(a)pyrene end coal tar tumor dose-response date to a modified benchmark dose method of guideline development. Environ. Health Perspect.2004,112,1341-1346. (g) Weyand, E. H.; Parimoo, B.; Reuhl, K. R.; Goldstein, L. S.; Wang, J. Q.; Harvey, R. G.7H-benzo c fluorene:A potent systemic lung carcinogen. Polycyclic Aromat. Compd.2004,24,1-20.
    [95]Recent reviews on olefin metathesis, see:(a) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev.2009,110,1746-1787. (b) Deshmukh, P. H.; Blechert, S. Alkene metathesis:the search for better catalysts. Dalton Transactions 2007,2479-2491. (c) Astruc, D. The metathesis reactions:from a historical perspective to recent developments. New J. Chem. 2005,29,42-56. (d) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Synthesis of Phosphorus and Sulfur Heterocycles via Ring-Closing Olefin Metathesis. Chem. Rev. 2004,104,2239-2258. (e) Deiters, A.; Martin, S. F. Synthesis of oxygen-and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev.2004,104, 2199-2238. (f) Grubbs, R. H.,The Role of the "Tebbe Complex" in Olefin Metathesis. Wiley-VCH Verlag GmbH:2008; p 4-7. (g) Furstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed.2000,39,3012-3043.
    [96]Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Polymerisation von athylen und anderen olefinen. Angew. Chem.1955,67,426-426.
    [97]For selected reviews on olefin metathesis in natural product synthesis, see:(a) Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. Catalytic enantioselective olefin metathesis in natural product synthesis, chiral metal-based complexes that deliver high enantioselectivity and more. Angew. Chem. Int. Ed.2010,49,34-44. (b) Clavier, H.; Grela, K.; Kirschning, A.; Mauduit, M.; Nolan, S. P. Sustainable concepts in olefin metathesis. Angew. Chem. Int. Ed.2007,46,6786-6801. (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed.2005,44, 4490-4527.
    [98]For the firtst example of enyne metathesis, see:Katz, T. J.; Sivavec, T. M. Metal-catalyzed rearrangement of alkene-alkynes and the stereochemistry of metallacyclobutene ring opening. J. Am. Chem. Soc.1985,107,737-738.
    [99]Recent reviews on enyne metathesis, see:(a) Mori, M. Synthesis of natural products and related compounds using enyne metathesis. Adv. Synth. Catal.2007,349,121-135. (b) Villar, H.; Frings, M.; Bolm, C. Ring closing enyne metathesis:A powerful tool for the synthesis of heterocycles. Chem. Soc. Rev.2007,36,55-66. (c) Diver, S. T.; Giessert, A. J. Enyne metathesis (enyne bond reorganization). Chem. Rev.2004,104,1317-1382. (d) Lippstreu, J. J.; Straub, B. F. Mechanism of enyne metathesis catalyzed by grubbs ruthenium-carbene complexes:a DFT study. J. Am. Chem. Soc.2005,127,7444-7457.
    [100]Grela, K. The joy and challenge of small rings metathesis. Angew. Chem. Int. Ed. 2008,47,5504-5507.
    [101](a) Binder, W. H.; Kurzhals, S.; Pulamagatta, B.; Decker, U.; Manohar Pawar, G.; Wang, D.; Kuhnel, C.; Buchmeiser, M. R. Homologous poly(isobutylene)s: poly(isobutylene)/high-density poly(ethylene) hybrid polymers. Macromolecules 2008, 41,8405-8412. (b) Singh, R.; Schrock, R. R. Stereospecific Ring-opening metathesis polymerization of 3-methyl-3-phenylcylopropene by molybdenum alkylidene initiators. Macromolecules 2008,41,2990-2993. (c) Bielawski, C. W.; Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci.2007,32,1-29. (d) Singh, R.; Czekelius, C.; Schrock, R. R. Living ring-opening metathesis polymerization of cyclopropenes. Macromolecules 2006,39,1316-1317. (e) Buchmeiser, M. R. Homogeneous metathesis polymerization by well-defined group VI and group VIII transition-metal alkylidenes:fundamentals and applications in the preparation of advanced materials. Chem. Rev.2000,100,1565-1604.
    [102]Giudici, R. E.; Hoveyda, A. H. Directed catalytic asymmetric olefin metathesis. selectivity control by enoate and ynoate groups in Ru-catalyzed asymmetric ring-opening/cross-metathesis. J. Am. Chem. Soc.2007,129,3824-3825.
    [103]Hoveyda, A. H.; Lombardi, P. J.; O'Brien, R. V.; Zhugralin, A. R. H-bonding as a control element in stereoselective ru-catalyzed olefin metathesis. J. Am. Chem. Soc.2009, 131,8378-8379.
    [104]Miege, F.; Meyer, C.; Cossy, J. Ring-rearrangement metathesis of cyclopropenes: synthesis of heterocycles. Org. Lett.2010,12,248-251.
    [105]For original documents of Hoveyda-Grubbs catalyst, see:(a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. A recyclable Ru-based metathesis catalyst. J. Am. Chem. Soc.1999,121,791-799. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc.2000,122,8168-8179. For Zhan-Catalysts, see:(c)詹正云.钌络合物配体、钌络合物、固载钌络合物催化剂及其制备方法和用途:美国,CN200610100377.X[P].2007-02-07.
    [106]Semeril, D.; Bruneau, C.; Dixneuf, P. H. Imidazolium and Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-Catalysed Diene and Enyne Metathesis. Adv. Synth. Catal.2002,344,585-595.
    [107]Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and applications of RuCl2(CHR')(PR3)2:The influence of the alkylidene moiety on metathesis activity. J. Am. Chem.Soc.1996,118,100-110.
    [108](a) Stafford, J. A.; McMurry, J. E. An efficient method for the preparation of alkylidenecyclopropanes. Tetrahedron Lett.1988,29,2531-2534. (b) Utimoto, K.; Tamura, M.; Sisido, K. Preparation and reaction of cyclopropyltriphenylphosphonium salt. Tetrahedron 1973,29,1169-1171.
    [109]A. P. Uijttewaal, F. L. Jonkers, A. V. Gen. Reactions of esters with phosphorus ylides. 2. mechanistic aspects.reactions of esters with phosphorus ylides.2. mechanistic aspects. J. Org. Chem.1978,43,3306-3311.
    [110]S. R. Sandler. Chain elongation of alkenes via gem-dihalocyclopropane: 1,1-diphenyl-2-bromo-3-acetoxy-l-propene. Org. Synth.1977,56,32-35.
    [111]T. Sasaki, S. Eguchi, T. Ogawa. Phase-transfer catalyzed synthesis of dimethylvinylidenecyclopropane derivatives in aqueous medium.J. Org. Chem.1974,39, 1927-1930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700