离子液体型表面活性物质的合成及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体(ILs)型表面活性剂是功能化离子液体和新型表面活性剂的交叉新品种,它同时具有表面活性剂和离子液体的某些特性,是国际上关于离子液体和表面活性剂交叉领域研究的新兴前沿热点之一。本论文以咪唑环为中心连接基、通过侧链基的不同设计,分别得到羟基功能化的ILs阳离子表面活性剂和两性型ILs表面活性剂。
     (1)羟基功能化的ILs阳离子表面活性剂氯化1-(2-羟乙基)-3-十二烷基咪唑([C_2OHC_(12)im]Cl)。采用咪唑与1-溴代十二烷、2-氯乙醇烷基化、季铵化的方法合成了[C_2OHC_(12)im]Cl;其分子结构特征经红外光谱、电喷雾质谱、元素分析和核磁共振谱等手段进行确证;分别采用表面张力法、电导率法和稳态荧光探针法测定[C_2OHC_(12)im]Cl的临界胶束浓度(CMC_1),电导率法和稳态荧光探针法实验结果提示该表面活性剂具有奇特的第二临界胶束浓度(CMC_2);NaX (X=Cl, Br, I)使其CMC值减小,并且阴离子的水化能力越弱,其CMC值降低趋势越强;同时,还使其吸附效率(pC_(20)),在CMC处的表面压(ΠCMC),最大表面过剩(Γm)增加,分子最小截面积(Amin)减小;对于NaBr-[C_2OHC_(12)im]Cl体系而言,其CMC值随NaBr浓度变化呈对数关系;利用稳态荧光淬灭法分别得到[C_2OHC_(12)im]Cl水溶液和无机盐-[C_2OHC_(12)im]Cl体系胶束聚集数(Nm)随其浓度(C)的增加而增大,分别按指数和线性关系拟合方程,推导出其CMC (CMC_1, CMC_2, CMC_x)相对应的临界胶束聚集数(N_(m,c1), N_(m,c2), N_(m,cx)) ,其中存在关系N_(m,c1)     (2)两性型ILs表面活性剂1-羧甲基-3-十二烷基咪唑内盐(CMDim)。采用咪唑与1-溴代十二烷、2-氯乙酸钠烷基化、季铵化的方法合成了产物;其分子结构特征经红外光谱、电喷雾质谱、元素分析和核磁共振谱等手段进行确证;Krafft点和等电点分别为18±0.2 oC和3.8±0.2;分别采用表面张力法、稳态荧光法测定CMC和Nm,结果表明:CMC和Γm值随pH增大而减小,pC20和A_(min)则相应增大,pH改变对ΠCMC影响不大;在pH=7条件下CMDim的Nm随其浓度增加而增大,分别按指数和线性关系方程拟合Nm随CMDim浓度变化的数学方程,并推导出相应的N_(m,c)值。
Ionic liquids (ILs) surfactants possess many characteristics of both surfactants and ionic liquids. Recently, the synthesis and the surface activities of these novel surfactants have been one of the attractive topics in the fields of ILs and surfactants. Here, two novel ILs surfactants, a hydroxy-functional ILs cationic surfactant and a zwitterionic ILs surfactant, have been designed and synthesized using imidazole as the starting material.
     (1) A hydroxy-functionalized ILs cationic surfactant, namely 1-hydroxyethyl-3-dodecyl imidazolium chloride ([C_2OHC_(12)im]Cl). [C_2OHC_(12)im]Cl was synthesized using imidazole, 1-bromododecane and 2-chloroethanol via alkylation and quarter amination. The molecular structure was confirmed by means of fourier transform infrared spectroscopy, electrospray mass spectrometry, elemental analysis and nuclear magnetic resonance. The first critical micelle concentration (CMC_1) was determinated by surface tension method, conductive method and steady-state fluorescence probe method. The experimental results show that [C_2OHC_(12)im]Cl had the second critical micelle concentration (CMC_2). The sodium halides (NaX, X=Cl, Br, I) cause a decrease of CMC values. The smaller the hydration of the anion was, the smaller the CMC was. In the presence of NaX, the adsorption efficiency (pC20), the surface pressure at the CMC (ΠCMC) and the maximum surface excess (Γ_m) values increase, and the minimum molecular cross-sectional area (Amin) values decreases. For NaBr-[C_2OHC_(12)im]Cl systems, the relationship between CMC and the concentration of NaBr (CNaBr) is logarimic. Under the conditions of with or without NaX, the micelle aggregation number (Nm) increase with the concentration of [C_2OHC_(12)im]Cl (C) increasing. The relationship between Nm and C was fitted by power law and linear equation, respectively. Consequently, the critical micelle aggregation number (Nm,c) was deduced by the equations. In NaBr-[C_2OHC_(12)im]Cl system, the Nm exponentially grows with CNaBr increasing.
     (2) A zwitterionic ionic liquid surfactant, namely 1-carboxylmethyl-3-dodecyl imidazolium inner salt (CMDim). CMDim was prepared using imidazole, 1-bromododecane and sodium chloroacetate via alkylation and quarter amination. The molecular structure was confirmed by means of fourier transform infrared spectroscopy, electrospray mass spectrometry, elemental analysis and nuclear magnetic resonance. The Krafft point is 18±0.2 oC, and isoelectric point is 3.8±0.2. The critical micelle concentration (CMC) and the micelle aggregation number (Nm) were determinated by surface tension method and steady-state fluorescence probe method, respectively. The experimental results show that CMC andΓm values decrease, pC20 and Amin values increase,ΠCMC values unchanges with the pH values increasing. In pH=7 aqueous solution, the Nm increase with the concentration of CMDim (C) increasing. The relationship between Nm and C was fitted by power law and linear equation, respectively. Consequently, the critical micelle aggregation number (Nm,c) was deduced by the equations.
引文
[1] Wassercheid P, Welton T. Ionic liquid in synthesis[M]. Weinheim: Wiley-VCH, 2003.
    [2]寇元,杨雅立.功能化的酸性离子液体[J].石油化工, 2004, 33(4): 297-302.
    [3]刘鹰.离子液体在催化过程中的应用[M].北京:化学工业出版社, 2008.
    [4]田鹏,康艳红,宋溪明,等.绿色溶剂—离子液体的相平衡和微观结构[M].北京:科学出版社, 2009.
    [5] Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves[J]. Chem. Commun., 2001, (7): 643-644.
    [6] Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetra?uoroborates; ionic liquids and ionic liquid crystals[J]. J. Chem. Soc., Dalton Trans., 1999, (13): 2133-2139.
    [7] Huddleston J G, Visser A E, Willauer H D, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chem., 2001, 3(4): 156-164.
    [8] Yan F, Texter J. Surfactant ionic liquid-based microemulsions for polymerization[J]. Chem. Commun., 2006, (25): 2696-2698.
    [9] Baltazar Q Q, Chandawalla J, Sawyer K, et al. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 302(1): 150-156.
    [10] Ding Y S, Zha M, Zhang J, et al. Synthesis, characterization and properties of geminal imidazolium ionic liquids[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 298(3): 201-205.
    [11] Thomazeau C, Olivier-Bourbigou H, Magna L, et a1. Determination of an acidic scale in room temperature ionic liquids[J]. J. Am. Chem. Soc., 2003, 125(18): 5264-5265.
    [12] Wasserscheid P, Sesing M, Korth W. Hydrogensulfate and tetrakis(hydrogensulfato)- borate ionic liquids: synthesis and catalytic application in highly Br?nsted-acidic systems for Friedel-Crafts alkylation[J]. Green Chem., 2002, 4(4): 134-138.
    [13] Cole A C, Jensen J L, Ntai I. Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts[J]. J. Am. Chem. Soc., 2002, 124(21): 5962-5963.
    [14] Xing H B, Wang T, Zhou Z H, et a1. Novel Br?nsted-acidic ionic liquids for esterifications[J]. Ind. Eng. Chem. Res., 2005, 44(11): 4147-4150.
    [15]闫海龙,李涛,吾满江·艾力.磺酸型离子液体的合成及其在酯化反应中的催化性能研究[J].化学与生物工程, 2007, 24(4): 40-43.
    [16] Leng Y, Wang J, Zhu D R, et a1. Heteropolyanion-based ionic liquids: Reaction-induced self-separation catalysts for esterification[J]. Angew. Chem. Int. Ed., 2009, 48(1): 168-171.
    [17]黄宝华,黎子进,史娜,等.吗啡啉功能化酸性离子液体的合成、表征及其催化酯化性能[J].有机化学, 2009, 29(5): 770-775.
    [18] Fraga-Dubreuil J, Bazureau J P. Rate accelerations of 1,3-dipolar cycloaddition reactions in ionic liquids[J]. Tetrahedron Lett., 2000, 41(38): 7351-7355.
    [19]李雪辉,张磊,王乐夫,等.羧基吡啶功能化离子液体的表征[J].物理化学学报, 2006, 22(4): 430-435.
    [20] Geng W G, Li X H, Wang L F, et al. Synthesis of multiester-appended imidazolium task-specific ionic liquids[J]. Chin. Chem. Lett., 2006, 17(2): 169-172.
    [21] Nockemann P, Thijs B, Parac-Vogt T N, et al. Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides[J]. Inorg. Chem., 2008, 47(21), 9987-9999.
    [22] Branco L C, Rosa J N, Romos J J M, et al. Preparation and characterization of new room temperature ionic liquids[J]. Chem. Eur. J., 2002, 8(16): 3671-3677.
    [23] Holbrey J D, Turner M B, Reichert W M, et al. New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methyl imidazole and acid with propylene oxide[J]. Green Chem., 2003, 5(6), 731-736.
    [24] Bicak N. A new ionic liquid: 2-hydroxy ethyl ammouium formate[J]. J. Mol. Liq., 2004, 116(1): 15-18.
    [25] Yeon S H, Kim K S, Choi S, et al. Physical and electrochemical properties of 1-(2- hydroxyethyl)-3-methylimidazolium and N-(2-hydroxyethyl)-N-methylmorpholinium ionic liquids[J]. Electrochimica Acta, 2005, 50(27): 5399-5407.
    [26]李健,张晟卯,代闯,等.羟基功能化离子液体中Ag纳米材料制备及结构表征[J].无机化学学报, 2006, 22(10): 1879-1882.
    [27]代闯,张晟卯,李健,等.羟基功能化离子液体中Pd纳米微粒制备与结构表征[J].无机化学学报, 2007, 23(9): 1653-1656.
    [28]王传颖,李学良.羟基功能化咪唑离子液体的合成与表征[J].山东化工, 2008, 37(1): 16-18.
    [29]刘刚,刘春萍,孙琳,等. N-甲基-N’-(2-羟基-3-苯甲酰氧基丙基)咪唑盐离子液体的合成[J].山东化工, 2008, 37(1): 1-3.
    [30] Zhao H, Jones C L, Cowins J V. Lipase dissolution and stabilization in ether- functionalized ionic liquids[J]. Green Chem., 2009, 11(8): 1128-1138.
    [31] Kolbeck C, Killian M, Maier F, et al. Surface characterization of functionalized imidazolium-based ionic liquids[J]. Langmuir, 2008, 24(17): 9500-9507.
    [32] Valente A A, Petrovski Z, Branco L C, et al. Epoxidation of cyclooctene catalyzed by dioxomolybdenum (VI) complexes in ionic liquids[J]. J. Mol. Catal. A: Chem., 2004, 218(1): 5-11.
    [33] Zhao H, Song Z Y, Olubajo O. High transesterification activities of immobilized proteases in new ether-functionalized ionic liquids[J]. Biotechnol. Lett., 2010, 32(8): 1109-1116.
    [34] Prasad A K, Kumar V, Malhotra S, et al. Green’methodology for efficient and selective benzoylation of nucleosides using benzoyl cyanide in an ionic liquid[J]. Bioorg. Med. Chem., 2005, 13(14): 4467-4472.
    [35] Luo H M, Dai S, Bonnesen P V, et al. Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment[J]. J. Alloys Comp., 2006, 418(1), 195-199.
    [36] Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids[J]. J. Am. Chem. Soc., 2004, 126(4): 994-995.
    [37] Branco L C, Crespo J G, Afonso C A M. Ionic liquids as an efficient bulk membrane for the selective transport of organic compounds[J]. J. Phys. Org. Chem., 2008, 21(7): 718-723.
    [38] Schrekker H S, Silva D O, Gelesky M A, et al. Preparation, cation-anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids[J]. J. Braz. Chem. Soc., 2008, 19(3): 426-433.
    [39] Lei?ūnaite J, K?imenkovs I, Kviesis J, et al. Liquid chromatography and characterization of ether-functionalized imidazolium ionic liquids on mixed-mode reversed-phase/cation exchange stationary phase[J]. C. R. Chimie, 2010, 13(10): 1335-1340.
    [40] Revelli A L, Mutelet F, Jaubert J N, et al. Study of ether-, alcohol-, or cyano- functionalized ionic liquids using inverse gas chromatography[J]. J. Chem. Eng. Data, 2010, 55(7): 2434-2443.
    [41] Schrekker H S, Stracke M P, Dupont J, et al. Ether-functionalized imidazolium hexafluorophosphate ionic liquids for improved water miscibilities[J]. Ind. Eng. Chem. Res., 2007, 46(22): 7389-7392.
    [42] K?rn? M, Lahtinen M, Valkonen J. Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality[J]. J. Mol. Structure, 2009, 922(1-3): 64-76.
    [43] K?rn? M, Lahtinen M, Hakkarainen P L, et al. Physicochemical properties of new dicationic ether-functionalized low melting point ammonium salts[J]. Aust. J. Chem., 2010, 63(7): 1122-1137.
    [44] Herrmann W A, Goossen L J, Koecher C, et al. Heterocyclic carbenes-9-Chiral heterocyclic carbenes in asymmetric homogeneous catalysis[J]. Angew. Chem. Int. Ed., 1997, 35(23), 2805-2807.
    [45] Howarth J, Hanlon K, Fayne Darren, et al. Moisture-stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction[J]. Tetrahedron Lett., 1997, 38(17): 3097-3100.
    [46] Biedron T, Kubisa P. Ionic liquids as reaction media for polymerization processes: Atom transfer radical polymerization (ATRP) of acrylates in ionic liquids[J]. Polymer Int., 2003, 52(10): 1584-1588.
    [47] Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids[J]. Green Chem., 1999, 1(1): 23-25.
    [48] Wasserscheid P, B?smanna A, Bolm C. Synthesis and properties of ionic liquids derived from the chiral pool[J]. Chem. Commun., 2002, (3):200-201.
    [49] Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids from natural amino acids[J]. J. Org. Chem., 2003, 68(2): 591-593.
    [50] Siyutkin D E, Kucherenko A S, Struchkova M I, et al. A novel (S)-proline-modified task-specific chiral ionic liquid, an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water[J]. Tetrahedron Lett., 2008, 49(7): 1212-1216.
    [51] Tosoni M, Laschat S, Baro A. Synthesis of novel chiral ionic liquids and their phasebehavior in mixtures with smectic and nematic liquid crystals[J]. Hel. Chim. Acta, 2004, 87(11): 2742-2749.
    [52] Van-Buu, O N, Aupoix A, Vo-Thanh G, et al. Chiral ionic liquids derived from isosorbide: Synthesis, properties and applications in asymmetric synthesis[J]. New J. Chem., 2009, 33(10): 2060-2072.
    [53] Kim E J, Ko S Y, Dziadulewicz E K. Mitsunobu alkylation of imidazole: A convenient route to chiral ionic liquids[J]. Tetrahedron Lett., 2005, 46(4): 631-633.
    [54] Winkel A, Wilhelm R. New chiral ionic liquids based on imidazolinium salts[J]. Tetrahedron: Asy., 2009, 20(20): 2344-2350.
    [55] Zhang L, Luo S Z, Mi X L, et al. Combinatorial synthesis of functionalized chiral and doubly chiral ionic liquids and their applications as asymmetric covalent/non-covalent bifunctional organocatalysts[J]. Org. Biomol. Chem., 2008, 6(3): 567-576.
    [56] Dong B, Li N, Zheng L Q, et al. Surface Adsorption and micelle formation of surface active ionic liquids in aqueous solution[J]. Langmuir, 2007, 23: 4178-4182.
    [57] El Seoud O A, Pires P A R, Bastos E L, et al. Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides[J]. J. Colloid Interface Sci., 2007, 313: 296-304.
    [58] Pino V, Yao C, Anderson J L. Micellization and interfacial behavior of imidazolium- based ionic liquids in organic solvent-water mixtures[J]. J. Colloid Interface Sci., 2009, 333: 548-556.
    [59] Zhao Y, Gao S J, Wang J J, et al. Aggregation of ionic liquids [Cnmim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study[J]. J. Phys. Chem. B, 2008, 112(7): 2031-2039.
    [60] Kang W P, Dong B, Gao Y N, et al. Aggregation behavior of long-chain imidazolium ionic liquids in ethylammonium nitrate[J]. Colloid Polym. Sci., 2010, 288:1225-1232.
    [61] Jungnickel C, ?uczak J, Ranke J, et al. Micelle formation of imidazolium ionic liquids in aqueous solution[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 316: 278-284.
    [62] Wang H Y, Wang J J, Zhang S B, et al. Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions[J]. J. Phys. Chem. B, 2008, 112(51): 16682-16689.
    [63] Inoue T, Ebina H, Dong B, et al. Electrical conductivity study on micelle formation oflong-chain imidazolium ionic liquids in aqueous solution[J]. J. Colloid Interface Sci., 2007, 314: 236-241.
    [64] Dong B, Zhao X Y, Zheng L Q, et al. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317: 666-672.
    [65] Safavi A, Maleki N, Farjami F. Phase behavior and characterization of ionic liquids based microemulsions[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 355: 61-66.
    [66] Li X W, Zhang J, Dong B, et al. Characterization of lyotropic liquid crystals formed in the mixtures of 1-alkyl-3-methylimidazolium bromide/p-xylene/water[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 335: 80-87.
    [67] Ao M, Xu G, Pang J, Zhao T. Comparison of aggregation behaviors between ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer[J]. Langmuir, 2009, 25: 9721-9727.
    [68] Ding Y S, Zhang J, Wang S S, et al. Synthesis, characterization and properties of geminial imidazolium ionic liquids[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 298: 201-205.
    [69] Blesic M, Swad?ba-Kwa?ny M, Holbrey J D, et al. New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n+1mim][CmH2m+1SO3]: meso- morphism and aggregation[J]. Phys. Chem. Chem. Phys., 2009, 11: 4260-4268.
    [70] Li X W, Gao Y A, Liu J, et al. Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution[J]. J. Colloid Interface Sci., 2010, 343: 94-101.
    [71] Tondo D W, Leopoldino E C, Souza B S, et al. Synthesis of a new zwitterionic surfactant containing an imidazolium ring. Evaluating the chameleon-like behavior of zwitterionic micelles[J]. Langmuir, 2010, 26: 15754-15760.
    [72] Huddleston J G, Willauer H D, Swatloski R P, et al. Roomtemperature ionic liquids as novel media for‘clean’liquid-liquid extraction[J]. Chem. Commun, 1998, (16): 1765-1766.
    [73]顾彦龙,石峰,邓友全.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物[J].化学学报, 2004, 62(5): 532-536.
    [74] Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate: electrochemical couples and physical properties[J]. J. Elect-rochem Soc., 1997, 144(11): 3881-3885.
    [75] Abbott A P, Capper G, Davies D L, et al. Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions[J]. Green Chem., 2002, 4(1): 24-26.
    [76] Zhang S G, Zhang Z C. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature[J]. Green Chem., 2002, 4: 376-379.
    [77] Ray G B, Chakraborty I, Ghosh S, et al. Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation[J]. Langmuir, 2005, 21(24): 10958-10967.
    [78] May S, Ben-Shaul A. Molecular theory of the sphere-to-rod transition and the second CMC in aqueous solutions[J]. J. Phys. Chem., 2001, 105: 630-640.
    [79]. Gonzalez-Perez A, Czapkiewicz J, Prieto G, et al. Second critical micelle concentration of dodecyldimethylbenzylammonium chloride in aqueous solution at 25 oC[J]. Colloid Polym. Sci., 2003, 281: 1191-1195.
    [80]卢惠娟,陈冲,郭宏涛,等.无探针紫外光谱法测定CTAB的第二临界胶束浓度[J].化学学报, 2006, 64(24): 2437-2441.
    [81] Romani A P, Hora Machado A E, Hioka N, et al. Spectro?uorimetric determination of second critical micellar concentration of SDS and SDS/Brij30 systems[J]. J. Fluoresc., 2009, 19: 327-332.
    [82] Mu J H, Li G Z, Zhang W C, et al. Determination of the second CMCs of dodecyl polyoxyethylene polyoxypropylene ether by the methods of cloud point, ?uorescence, and viscosity[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2001, 194: 1-6.
    [83] Gonzalez-Perez A, Czapkiewicz J, Ruso J M, et al. Temperature dependence of second critical micelle concentration of dedecyldimethylbenzyl ammonium bromide in aqueous solution[J]. Colloid Polym. Sci., 2004, 282: 1169-1173.
    [84] Varade D, Joshi T, Aswal V K, et al. Effect of salt on the micelles of cetyl pyridinium chloride[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 259: 95-101.
    [85]黄肖容,徐卡秋.精细化工概论[M].北京:化学工业出版社, 2008.
    [86] Hat? M, Shinoda K. Krafft points of calcium and sodium dodecylpoly(oxyethylene) sulfates and their mixtures[J]. J. phys. Chem., 1973, 77: 378-381.
    [87] Tsujii K, Saito N, Takeuchi T. Krafft points of anionic surfactants and their mixtures with special attention to their applicability in hard water[J]. J. Phys. Chem., 1980, 84: 2287-2291.
    [88] Rosen M J. Surfactants and interfacial phenomena[M]. New Jersey: John Wiley & Sons Inc., 2004.
    [89] Amin-Alami A, Kamenka N, Partyuka S. Interfacial properties of zwitterionic surfactants: N-dodecylbetaine[J]. Thermochim Acta, 1987, 122: 171-179.
    [90] Kalyansundaram K, Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems[J]. J. Am. Chem. Soc., 1977, 99: 2039-2044.
    [91] Turro N J, Kuo P L. Pyerene excimer formation in micelles of noionic detergents and of water-solubie polymers[J]. Langmuir, 1986, 4(2): 438-422.
    [92]张荣明,林士英,李柏林.十八烷基羟基磺基甜菜碱的合成及应用[J].精细石油化工进展, 2006, 7(12): 1-3.
    [93]陈正国,钱勇,高庆,等. 3-氯-2-羟基丙磺酸钠的合成研究[J].胶体与聚合物, 2003, 21(2): 17-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700