软刻蚀方法制备二氧化钛微图形及其相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入研究仿生工程化生物材料表面的几何性质与物化性能及其生物学性能是改进和设计第三代生物材料的关键。在众多生物材料中,TiO2因其良好的生物相容性而成为人们近几年的研究热点。现有的TiO2表面微纳图形的制备技术主要包括模版法,阳极氧化法和浓碱处理法等。这些方法制备出的是不规则,无序的表面微纳结构。本研究结合微加工技术中的软刻蚀技术和溶胶凝胶法制备出规则的,有序的,单一成分的TiO2微米级沟槽,并对其物化性质和生物相容性进行研究。在软刻蚀中,用聚二甲基硅氧烷(PDMS)复制具有微图形的硅模板得到具有微沟槽PDMS弹性印章。在溶胶凝胶法中,以钛酸四丁酯为前驱体制备TiO2溶胶,经过微图形转移,最终得到锐钛矿型TiO2微沟槽。表面能检测表明具有TiO2沟槽样品比平面TiO2的表面能要小,且与微图形的尺寸相关(γ12μm<γ20μm<γ40μm<γflat surfaces)。TiO2微沟槽样品表面吸附蛋白能力要高于平板表面,且TiO2沟槽样品在整个吸附过程中具有两个解吸附的过程。诱导矿化实验表明TiO2沟槽较平面TiO2更能使磷酸钙(CaP)的形核趋于有序化,且在早期生成的晶核基本上按照微图形的趋向排列。骨细胞培养实验表明TiO2沟槽能在前期约束细胞的形貌和生长状态,使细胞按沟槽的走向生长。对于短期细胞培养(培养时间少于一个星期),微图形化TiO2表面的细胞的繁殖速率和ALP活性都低于平面样品,其趋势与表面能的趋势一致。本文研究成果对生物材料表面设计和功能应用具有一定的借鉴意义。
The effects of implant surface topography and chemistry on biomineralization and cell behavior have been a research focus because of their potential importance in orthopedic and bone replacement applications. While a vast amount of research is focusing on chemical modified surfaces and rough surfaces, little attention has been paid to the well-defined micropatterned surface effects on calcium phosphate mineralization process due to the difficulties in preparing microfabricated biomaterial surfaces. This work focus on the effects of microgrooved TiO2 surfaces on the calcium phosphate mineralization process and its biocompatibilty.
     We developed a new process that can prepare microgrooved TiO2 coatings on glass substrates using the soft-lithography and sol-gel technology. TiO2 sol-gel precursor solution was prepared using a mixture of tetrabutyltitanate/ethanol/hydrochloric acid/distilled water/1,5-pentanediol with a molar ratio of 1/30/0.2/2/2. Polydimethylsiloxane (PDMS) microstamps were used to transfer micropatterns from the silicon wafer to the TiO2 gel. Then microgrooved TiO2 surfaces were used to induce Ca-P mineralization under biomimetic conditions. The results revealed that topography dominated the growth and distribution of mineralization at the initial days and then the effect of topography become weak with the extended immersion days. The surface energies of the TiO2 surfaces were in range ofγ12μm<γ20μm<γ40μm<γflat surfaces.The effect of microgrooved TiO2 surfaces on osteoblast behavior was also evaluated. Osteoblasts (MC3T3-E1) were cultured on the as-prepared microgrooved and flat TiO2 surfaces. Optical microscopy and scanning electron microscopy (SEM) were used to analyze adherent cell behavior by examining the cell morphology. Orientation angle (OA) analysis indicated that cells tended to align along with the microgrooves and this tendency was strong on the microgrooves with small width and became weak with the increase of the width. Alamar blue assay indicated that the microgrooves restricted the growth of cells and alkaline phosphatase (ALP) assay revealed that microgrooves limited the proliferation rate. This restriction increased with the decrease of the width of microgrooves. Osteoblast proliferation and differentiation on micropatterned titanium oxide surfaces was correlated with the surface energy.
引文
[1]俞耀庭,王连永,王深琪.生物医用材料发展状况与对策.2003高技术发展报告.北京:科学出版社,2003.
    [2]HenchLL. A forecast for the future. Biomaterials.1998; 19:1419-1423.
    [3]Bothe RT, Beaton LE, Davenport HA. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet 1940;71:598-602.
    [4]Pohler M. Unalloyed titanium for implants in bone surgery. J Care Injured 2000;31:7-13.
    [5]Ungersbock A, Pohler O, Persen S M. Evaluation of the soft tissue interface at titanium implanrs with different surface treatments:Experimental study on rabbits. Biomed Mater and Eng 1994;4:317-325.
    [6]Williams DF (Ed.), Biocompatibility of clinical implant materials, CRC Press, Boca Raton, FL 1981.
    [7]杨加宏,周明,言峰,郑傲然.微纳表面结构加工技术研究.新技术新工艺.2007年第5期.
    [8]Zachary B, Bharat B. Hydrophobicity, Adhesion, and friction properties of nanopatterned polymers and scale dependence for Micro-and Nanoelectromechanical Systems. Nano Letter 2005:1607-1613.
    [9]徐琳,丁建宁,李伯全,程广贵.蝴蝶翅膀表面超微结构与浸润性机理分析.2009年3月第3卷.
    [10]苏炳煌,李光吉,蒲侠,雷朝媛.鲨鱼皮表面微结构在高分子表面的复制方法初探.材料研究与应用2008年12月第2卷.
    [11]Andreas T, Sylvia S. Polymer-Controlled, Bio-Inspired Calcium phosphate mineralization from aqueous solution. Macromol Biosci 2007;7:1085-1099.
    [12]Sanchez C, Arribart H, Guille MMG Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater 2005;4:277-288.
    [13]Hench LL. Inorganic-organic molecular bonding in porous matrices. J Am Ceram Soc 1998; 81:1705-1728.
    [14]Hutchensa SA, Bensonb RS, Evansc BR, Oneill HM, Rawn CJ. Silver-bacterial cellulosic sponges as active SERS substrates. Biomaterials 2006;27:4661-4670.
    [15]Hench LL, Valk CM, Meijer G, Dalmeijer RAJ, Groot K, Layrolle P. Biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res Part B:Appl Biomater 2003;67B:655-665.
    [16]Xu AW, Ma YR, Colfen H. Biomimetic mineralization. J Mater Chem 2007; 17:415-449.
    [17]Habibovic P, Barrere F, Groot K. Reis RL, Weiner S. New biomimetic coating technologies and incorporation of bioactive agents and proteins, in:Learning from nature how to design new implantable biomaterial. Reis, R.L.Weiner, S. (eds) Kluwer, Dordrecht.2003;105-121.
    [18]Jiang H, Liu XY, Zhang G, Li Y. Cdk5 activator-binding protein C53 regulates apoptosis induced by genotoxic stress via modulating the G2/M DNA damage checkpoint. J Biolog Chem 2005;280:42061-42066.
    [19]Sato K. Inorganic-organic interface interaction in hydroxyapatite mineralization processes. Topic Current Chemistry 2007; 270-127.
    [20]Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Mater 2009; 8:15-23.
    [21]Lu X, Zhao ZF, Leng Y. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng C 2007; 27:700-708.
    [22]Lu X, Leng Y, Zhang XD, Xu JR, Qin L, CW. Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 2005;26:1793-1801.
    [23]Kokubo T. Biomimetic modulation of crystal morphology using gel:From nano to micron-scale architectures. Mater Sci Eng C 2005; 25:97-100.
    [24]Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL. Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide. Biomaterials 2006;27:2201-2212.
    [25]Anselme K, Bigerelle M. Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med 2006;17:471-479.
    [26]Liu X, Lim JY, Donaue HJ, Dhurjati R, Mastro AM, Vogler EA. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19:Phenotypic and genotypic responses observed in vitro. Biomaterials 2007; 28:4535-4550.
    [27]Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomaterial 2005; 1:211-222.
    [28]Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL. Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecu Eng 2004; 21:93-97.
    [29]Khakbaznejad A, Chehroudi B, Brunette DM. Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture. J Biomed Mater Res 2004; 70A:206-218.
    [30]Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 2005; 26:1837-1847.
    [31]Perizzolo D, Lacefield WR, Brunettel DM. Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite-and titanium-coated micromachined surfaces. J Biomed Mater Res 2001; 56:494-503.
    [32]Michailowski A, Aimawlawi D, Cheng GS. Highly regular anatase nanotubule arrays fabrication in porous anodic templantes. Chem Phys Lett 2001;349:1-5.
    [33]Jung JH, Obayashi HK, Villi KJC. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Bommel Chem Mater. 2002;14:1445-1447.
    [34]赖跃坤,孙岚,左娟等.氧化钛纳米阵列制各及机理.物理化学学报.2004年第9期
    [35]Gong D, Grimes CA, Varhese OK. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2001;16:3331-3334.
    [36]Tomoko K, Akihiko H. Formation of titanium oxide nanotube. Langmuir 1998; 4: 3160-3163.
    [37]Chen Q, Zhou WZ, Du GH. Trititanate nanootubes made via a single alkali treatment. Adv Mater 2002;14:1208-1211.
    [38]Masudaa Y, Sugiyamaa T, Linb H, Seoa WS, Koumotoa K, Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin Solid Films 2001;382:153-157.
    [39]王奕.软刻蚀技术.宿州教育学院学报.2006年10月第9期.
    [40]Xia YN, Whitesides G, Annu M. Softlithography. Rev Mater Sci 1998:153.
    [41]陈默.微全分析系统中微传递成模软光刻技术研究.重庆大学硕士学位论文.2004年5月p8-10.
    [42]刘建平,何平笙.TiO2微结构的制作.物理化学学报.2004年4月第17卷.
    [43]John A, Kateri E, Paul J, Jackman. Using an elastomeric phase mask for sub-100nm photolithography in the optical near field. Appl Phys Lett 1997;64:2658-2660.
    [44]In-Sung P, Moonik J, Jinho A. Nanoscale patterning using photo-assisted polymer transfer lithography. Microelectr Eng 2007;84:1511-1514.
    [45]Chiatzun Goh, Kevin M, Coakley, and Michael D, McGehee. Nanostucturing titania by embossing with polymer molds made from anodic alumina templates. Nano letters 2005; 5:1545-1549.
    [46]Claudio DD, Phani AR, Santucci S. Enhanced optical properties of sol-gel derived TiO2 films using microwave irradiation. Optical Mater 2007;30:279-284.
    [47]杨小儒,郭震宁,李君仁,刘明强.纳米二氧化钛薄膜的制备及光致发光研究.功能材料2007年第38卷.
    [48]Zhu J, Yang J, Bian ZF, Ren J, Li YM, Cao Y, Li HX, He HY, Fan KN. Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiC14 and benzyl alcohol. Appl Catalysis 2007;76:82-91.
    [49]Pucher P, Benmami M, Azouani R, KrammerG, Chhor K, Bocquet JF, Kanaev AV. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Optical Materials 2007; 30:192-194.
    [50]Zhang SY, Chen ZH, Li YL, Wang Q, Wan L, You Y. Preparation of TiO2 fibers by two-step synthesis method and their photocatalytic activity. Mater chem and phys 2007;17:1451-1457.
    [51]Zeitle VA, Brown CA. The infrared spectra of some Ti-O-Si, Ti-O-Ti and Si-O-Si Compounds. Phys chem 1957; 61:1133-1260.
    [52]Wenzel RN. Resistance of solid surfaces to wetting by water. Ind. Eng Chem 1936;28:988-994.
    [53]Cassie ABD, Baxter S. Wettabilty of porous surface. Trans Faraday Soc 1944;40:546-551.
    [54]赵宁卢,张晓艳,刘海云,谭帅霞,徐坚.超疏水表面的研究进展.化学进展.2007年6月第19卷.
    [55]Cheng YT, Rodak DE, Angelopoulos A, Gacek T. Microscopic observations of condensation of water on lotus leaves. Appl Phys Lett 2005;87:194112.
    [56]Neo M, Nakamura T, Ohtsuiki C. Apatite formation on three kinds of bioactive materials at an early stage in vivo:a comparative study by transmission electron microscopy. Biomed Mater Res 1993;27:999-1006.
    [57]Kokubo T, Kushitani H, Sakka S. Solutionable to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Biomed Mater Res 1990,24:721-724.
    [58]Kukobo T. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta 1996;280:479-490.
    [59]Salinas AJ, Roman J, Vallet-Regi M. In vivo bioactivity of glass and glass-ceramics of the 3CaOP2O5-CaO·SiO2·MgO2·SiO2 system. Biomaterials 2001;21:251-257.
    [60]Han Y, Hong S, Xu K. Structure and I vivo bioactivity of titania-based films by micro-arc oxidation. Surf Coat Tech 2003; 168:249-258.
    [61]Cui FZ, Li Y, Ge J. Connecting innate immunity to biocidal polymers. Mater Sci Eng R 2007; 57:28-64.
    [62]Markov IV. Crystal growth for beginners:fundamentals of nucleation, crystal growth, and epitaxy. World Scientific, Hong Kong 1995;69.
    [63]Cagin T, Che JW, Gardos MN, Fijany A, Goddard WA. The computational nanotechnology effect at the materials and process. Nanotechnology 1999; 10:278-284.
    [64]Jam M, Areva S, Pore V, Peltonen J, Linden M. Topography and surface energy dependent calcium phosphate formation on sol-gel derived TiO2 coatings. Langmuir 2006; 22:8209-8213.
    [65]Zhou S, Liao X, Li X. Poly-D,L-lactide-copoly(ethylene glycol) micropheres as potential vaccine delivery systems. J Control Release 2003;86:195-205.
    [66]Binassar L. J, Vacanti C.A. Tissue engineering:the first decade and beyond. Cell Biochem 1998;30:297-303.
    [67]James K, Kohn J. New biomaterials for tissue engineering. MRS Bull 1996:22-26.
    [68]Klee D, Hoecker H. Polymers for biomedical applications:improvement of the interface compatibility. Adv Polym Sci 1999; 149:1-57.
    [69]Lucke A, Tessmar J, Schnell E. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials. Biomaterials 2000;21:2361-2370.
    [70]Brunette DM. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimension. Exp Cell Res 1986; 164:11-26.
    [71]Lu X, Leng Y. Comparison of the osteoblast and myoblast behaviors on hydroxyapatite microgrooves. J Biomed Mater. ResB:App Biomater 2009;90B:438-445.
    [72]范能全,彭兰.Alamar Blue法测定细胞毒性.华西药学杂志2007;22:472-474.
    [73]Brien OJ. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytoxicity. Eur J Biochem 2000; 17:5421-5426.
    [74]Liu YR, Qu SX, Maitz MF, Tan R, Weng J. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. J Ethnopharmacology 2007;111:573-583.
    [75]Sabokbar A, Millett PJ, Myer B, Rushton N. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Mineral 1994;27:57-67.
    [76]Ramires P A, Romito A. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials.2001;22:1467-1474.
    [77]Qu J, Chehroudi B, Brunette DM. The use of micromachined surfaces to investigate the cell behavioural factors essential to osseointegration. Oral Diseases 1996;2:102-115.
    [78]Matsuzaka K, Walboomers XF, Ruijter JE, Jansen JA. The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Biomaterials 1999;20:1293-1301.
    [79]Lenhert S, Meier MB, Meyer U, Chi L, Wiesmann HP. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials 2005; 26:563-570.
    [80]Wang JHC, Grood ES, Florer J, Wenstrup R. Alignment and proliferation of MC3T3-E1 osteoblasts in microgrooved silicone substrata subjected to cyclic stretching. J Biomechanics 2000;33:729-735.
    [81]Matsuzaka K, Walboomers F, de Ruijter A, Jansen JA. Effect of microgrooved poly-l-lactic (PLA) surfaces on proliferation, cytoskeletal organization, and mineralized matrix formation of rat bone marrow cells. Clin Oral Implants Res 2000; 11:325-333.
    [82]Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P. Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials 2003;24:649-654.
    [83]Perizzolo D, Lacefield WR, Brunettel DM. Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite-and titanium-coated micromachined surfaces. J Biomed Mater Res 2001;56:494-503.
    [84]Kenar H, Kose GT, Hasirci V. Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials 2006;27:885-895.
    [85]Tan J, Saltzman WM. Biomaterials with hierarchically defined micro-and nanoscale structure. Biomaterials 2004;25:3593-3601.
    [86]Liu X, Lim JY, Donaue HJ, Dhurjati R, Mastro AM, Vogler EA. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19:phenotypic and genotypic responses observed in vitro. Biomaterials 2007;28:4535-4550.
    [87]Lim J, Liu X, Vogler E, Donahue H. Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. J Biomed Mater Res 2004;68A:504-512.
    [88]Lim J, Taylor A, Li Z, Vogler E, Donahue H. Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics. Tissue Eng 2005; 11:19-29.
    [89]Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008;29:1776-1784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700