再生丝素蛋白结构转变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往国内外研究者将γ-射线辐照、超声波、多元醇、剪切应力等因素对家蚕丝素蛋白结构转变的影响进行了一定程度的研究,但目前为止,国内外关于这些因素对天蚕丝素、柞蚕丝素蛋白结构转变的影响的相关研究还很少。本文主要探讨γ-射线、超声波、多元醇、剪切应力对天蚕丝素、柞蚕丝素蛋白结构转变的影响,并与这些因素对家蚕丝素蛋白结构转变的影响进行对比,初步探讨了丝素凝胶的形成机理。
     通过对天蚕、柞蚕、家蚕丝素膜进行XRD、FTIR、DSC及力学性能的测试,研究了γ-射线辐照对天蚕、柞蚕、家蚕丝素蛋白结构转变的影响。结果表明:经γ-射线辐照处理后的天蚕、柞蚕、家蚕丝素膜,其结晶结构及分子构象均未发生明显的改变;随着辐照剂量的增加,丝素膜的热稳定性稍有下降,断裂强度、断裂伸长率明显下降。
     通过对天蚕、柞蚕、家蚕丝素凝胶进行XRD、FTIR测试,研究了不同功率的超声波对天蚕、柞蚕、家蚕丝素溶液胶凝时间及对最终形成的丝素凝胶结构的影响。结果表明:对于天蚕丝素溶液,当超声波功率小于400 W时,随着功率的增大,胶凝时间减小;当超声波功率大于400 W时,随着功率的增大,胶凝时间增大。而对于柞蚕丝素溶液,当超声波的功率小于500 W时,随着功率的增大,胶凝时间减小;当超声波的功率大于500 W时,胶凝时间急剧增大。对于家蚕丝素溶液,随着超声波功率的增大,胶凝时间急剧减小。超声波作用能加快丝素溶液中丝素蛋白分子的构象由无规卷曲向β-折叠结构的转变,但对最终形成的天蚕、柞蚕和家蚕丝素凝胶的结晶结构及分子构象的影响不显著。
     通过对天蚕、柞蚕、家蚕丝素凝胶进行XRD、FTIR、Raman光谱测试,研究了不同添加比例的多元醇(乙二醇,聚乙二醇600)对天蚕、柞蚕、家蚕丝素溶液胶凝时间及对最终形成的丝素凝胶结构的影响。结果表明:无论是向丝素溶液中添加乙二醇还是聚乙二醇600,当添加比例小于300%时,随着添加比例的增加,天蚕、柞蚕丝素溶液胶凝时间急剧减小;当添加比例大于300%时,随着添加比例的增加,胶凝时间稍有增大。而对于家蚕丝素溶液,随着添加比例的增加,胶凝时间急剧减小。多元醇的添加能加速丝素溶液中丝素蛋白分子的构象由无规卷曲向β-折叠结构的转变,但对最终形成的天蚕、柞蚕、家蚕丝素凝胶的结晶结构及分子构象均无明显影响。当乙二醇的添加量为300%时,丝素凝胶具有较均匀的孔隙。
     通过对天蚕、柞蚕、家蚕丝素溶液进行CD测试及对天蚕、柞蚕、家蚕丝素凝胶进行XRD、FTIR测试,研究了剪切作用对天蚕、柞蚕、家蚕丝素溶液中分子构象、胶凝时间及凝胶结构的影响。结果表明:对于天蚕、柞蚕丝素溶液,随着剪切作用时间的增大,胶凝时间减小。而对于家蚕丝素溶液,当剪切作用时间小于45min时,随着剪切作用时间的增大,胶凝时间稍有减小;当剪切作用时间大于45min时,胶凝时间急剧减小。对于三种丝素溶液,在相同剪切作用时间时,剪切速率越大,胶凝时间亦越小;剪切作用时间越长,剪切速率越大,剪切作用后放置的时间越长,溶液中丝素分子β-折叠化的程度越高。剪切作用能加速丝素溶液中丝素蛋白分子的构象由无规卷曲向β-折叠结构的转变,但对最终形成的天蚕、柞蚕、家蚕丝素凝胶的结晶结构及分子构象均无明显影响。
     综上所述,γ-射线辐照处理对天蚕、柞蚕、家蚕丝素膜内分子构象及结晶结构均无明显影响,但使丝素膜的热稳定性、断裂强度及断裂伸长率下降。超声波、多元醇、剪切作用均能促进丝素溶液中丝素蛋白分子的构象由无规卷曲向β-折叠结构的转变,但对最终形成的丝素凝胶的分子构象及结晶结构均无明显影响。丝素凝胶的形成主要是丝素分子不断β-折叠化的过程。
Researchers at home and abroad had studied the effects ofγ-ray irradiation, ultrasonic, polyalcohol and shear stress on the structural transformation of regenerated Bombyx mori silk fibroin, to a certain extent. But so far, the research on the structural transformation of regenerated Antheraea yamamai, Antheraea perny silk fibroin by these factors has been very rare. In this paper, we have focused on the effects ofγ-ray irradiation, ultrasonic, polyalcohol and shear stress on the structural transformation of regenerate Antheraea yamamai, Antheraea perny silk fibroin, compared with the behavior of Bombyx mori silk fibroin affected by these factors, further to discuss the formation mechanism of silk fibroin gel.
     The structural transformation of silk fibroin molecules in the regenerated Antheraea yamamai, Antheraea perny, Bombyx mori silk fibroin films with different doses ofγ-ray radiation treatment was studied by analyzing the experiments of X-ray diffraction, FTIR spectroscopy, Differential Scanning Calorimetry and Mechanical Properties Test. The results showed that there were not noticeable changes in the crystal structure and molecular conformation of those silk fibroin films. However, with the increase in radiation dose, the thermal stability of those silk fibroin films becomes a slight weaker, the broken strength and the broken elongation rate of those silk fibroin films decreased greatly.
     The effects of ultrasonic on the structural transformation of the regenerated Antheraea yamamai, Antheraea perny, Bombyx mori silk fibroin molecules were studied. The gelation time of the silk fibroin solution was determined and the structure of silk fibroin gels was analyzed by X-ray diffraction and FTIR spectroscopy. The results show that when the power was lower than 400 W, with the increase of ultrasonic power, the gelation time of Antheraea yamama silk fibroin solution decreased gradually, and when the ultrasonic power was higher than 400W, as the ultrasonic power increased, the gelation time raised slightly. When the power was lower than 500 W, with the increase of ultrasonic power, the gelation time of Antheraea perny silk fibroin solution decreased gradually. And when the ultrasonic power was higher than 500W, as the ultrasonic power increased, the gelation time also raised sharply. As the ultrasonic power increased, the gelation time of Bombyx mori silk fibroin solution decreased sharply. The ultrasonic can accelerate the gelation of silk fibroin solution and promote the structural transformation of silk fibroin molecules from random coil orα-helix toβ-sheet, but the crystal structure and molecular conformation of silk fibroin gels are not significant.
     The effects of polyalcohol (EG, PEG600) on the structural transformation of the regenerated Antheraea yamamai, Antheraea perny, Bombyx mori silk fibroin molecules were studied. The gelation time of the silk fibroin solution was determined and the structure of silk fibroin gels was analyzed by X-ray diffraction, FTIR spectroscopy, Raman spectroscopy, Scanning electron microscopy. The results show that when the adding percentage is less than 300%, either EG or PEG600, with the increase in the adding percentage of polyalcohol, the gelation time of the Antheraea yamamai or Antheraea perny silk fibroin solution decreased sharply, and when the adding percentage is more than 300%, with the increase in the adding percentage, the gelation time raised slightly. The gelation time of the Bombyx mori silk fibroin solution dropped sharply with the increase in the adding percentage. Polyalcohol can accelerate the gelation of silk fibroin solution and promote the structural transformation of silk fibroin molecules from random coil orα-helix toβ-sheet, but the crystal structure and molecular conformation of silk fibroin gels are not significant by the polyalcohol. When the adding percentage of EG was 300%, the silk fibroin gel has relatively uniform pores.
     The effects of shearing force on the structural transformation of the regenerated Antheraea yamamai, Antheraea perny, Bombyx mori silk fibroin molecules were studied by X-ray diffraction, FTIR spectroscopy and Circular Dichrosim, and the gelation time of the silk fibroin solution was determined. The results show that the gelation time of the Antheraea yamamai or Antheraea perny silk fibroin solution decrease sharply with the increase in the shearing time. When the shearing time is less than 45 min, the gelation time of Bombyx mori silk fibroin solution decreases slightly with the increase in the shearing time, but when the shearing time is more than 45 min, the gelation time dropped sharply. The longer the shearing time or the bigger the shear rate or the longer the positioned time, the bigger the percentage ofβ-sheet silk fibroin in solution. Shearing force can accelerate the gelation process of silk fibroin solution and promote the structural transformation of silk fibroin molecules from random coil orα-helix toβ-sheet, but the crystal structure and molecular conformation of silk fibroin gels are not significant.
     In summary, silk fibroin films withγ-ray irradiation treatment have no changes in the molecular conformation and crystal structure, but the mechanical properties of those films become weaker. Ultrasonic, polyalcohol and shearing force can accelerate the gelation of silk fibroin solution and promote the structural transformation of silk fibroin molecules from random coil orα-helix toβ-sheet, but the crystal structure and molecular conformation of silk fibroin gels are not significant changed. The formation of silk fibroin gels mainly contains aβ-sheet process of silk fibroin molecules.
引文
[1] Hwang J S, Lee J S, Goo T W, Yun E Y, Lee K S, Kim YS, Jin B R, Lee S M, Kim K Y, Kang S W, Suh D S. Cloning of the fibroin gene from the oak silkworm, Antheraea yamamai and its complete sequence. Biotechnology Letters, 2001, 23(16): 1321-1326
    [2] Shaw J T B, Smith S G. Biochimica et Biophysica Acta, 1961, 52(2):305-318
    [3] Sofia S, McCarthy M B, Gronowicz G, Kaplan D L. Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 2001, 54(1):139-148
    [4]Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan D L. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26(2):147-155
    [5] Tanaka T, Magoshi J, Magoshi Y, ichi Inouse S,Kobayashi M,Tsuda H,Becher M, Nakamura Sh. Thermal Properties of Bombyx Mori and Several Wild Silkworm Silks: Phase transition of liquid silk. Journal of Thermal Analysis and Calorimetry, 2002, 70(3):825-832
    [6]刘冠峰,王晓玲.天蚕丝的热分析与分子结构.浙江丝绸工学院学报, 1993,10(1):1-4
    [7]郑忠厚.再生丝素蛋白材料的制备与性能研究.硕士学位论文.苏州:苏州大学, 2007.
    [8]纪涛,腾瑛.天蚕茧层红外光谱研究.丝绸, 1991, 1:19-20
    [9] Zheng Z H, Wei Y Q, Yan S Q, Li M Z. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. Journal of Applied Polymer Science, 2010, 116(1): 461-467
    [10] Nakamura S, Saequsa Y, Yamaguchi Y, Maqoshi J, Kamiyama S. Physical properties and structure of silk.xi.glass transition temperatures of wild silk fibroins. Journal of Applied Polymer Science, 1986, 31(2): 955-956
    [11] Sezutsu H, Yukuhiro K. Dynamic Rearrangement within the Antheraea pernyi Silk Fibroin Gene Is Associated with Four Types of Repetitive Units. Journal of Molecular evolution, 2000, 51:329-338
    [12] Lucas F, Shaw J T B, Smith, S G.. The Silk Fibroins. Advances in Protein Chemistry, 1958,13:107-242
    [13] Mori H, Tsukada M. New silk protein: modification of silk protein by gene engineering for production of biomaterials. Reviews in Molecular Biotechnology, 2000, 74:95-103
    [14] Marcelo C L, Kim Y G, Kaine J L, Voorhees J J. Stratification, Specialization and proliferation of primary keratinocyte cultures. Evidence of a functioning in vitro epidermal cell systerm. The Journal Of Cell Biology, 1978, 79:356-361
    [15] Tsukada M, Gotoh Y, Freddi G, Matsumura M, Shiozaki H, Ishikawa H. Structure and physical properties of epoxide-treated tussah silk fibers. Journal of Applied Polymer Science, 1992, 44:2203
    [16] Norihiko M, Sei-Ichi A, Tsukada M. Attachment and growth of fibroblast on silk fibroin. Biochemical and biophysical Research comMunications, 1995,208:511-516
    [17] Tsukada M, Freddi G, Gotoh Y, Kasai N. Physical and Chemical Properties of Tussah Silk Fibroin Films. Journal Polymer Science Part B:Polymer Physics, 1994,32:1407
    [18] Li W L, Jin L J, Fin Q, An L J. Scientia Agricultura Sinica, 2002,35(2):218-221
    [19] Kondo Y, Hirabayashi K, Iizuka E, Go Y. Sen-I Gakkaishi, 1967, 23(7):311–315
    [20] Iizuka E. Biochimica et Biophysica Acta, 1968, 160:454
    [21] Tsukada M. J. Sericult. Sci. Japan, 1979, 48:347
    [22] Hirabayashi K, Kondo Y, Go Y. Sen-i Gakkaishi, 1967, 23(5):199-207
    [23] Kondo Y, Hirabayashi K, Iizuka E, Go Y. Sen-i Gakkaishi, 1967, 23(7):311-315
    [24] Hirabayashi K, Tsukada M. J. Sericult. Sci. Japan, 1976, 45(6):473-478
    [25] Magoshi J, Nakamura S. J. Polym. Sci. Polym. Phys. Ed., 1985, 23:227
    [26] Tsukada M. J. Polym. Sci. Polym. Phys. Ed., 1986, 24:457-460
    [27] Freddi G, Monti P, Nagura M, Gotoh Y, Tsukada M. J. Polym. Sci. B: Polym. Phys., 1997, 35:841-847
    [28] Tsukada M, Freddi G, Kasai N, Monti P. J. Polym. Sci. B: Polym. Phys., 1998, 36:2717-2724
    [29] Magoshia J, Magoshib Y, Becker A M. Crystallization of silk fibroin from solution. Thermochimica Acta, 2000, 352-353: 165
    [30] Kweon H Y, Park Y H. Dissolution and Characterization of Regenerated Antheraea pernyi Silk Fibroin. Journal of Applied Polymer Science, 2001, 82: 750-758
    [31] Tao W, Li M Z, Zhao C X. Structure and Properties of Regenerated Antheraea pernyi silk fibroin in aqueous solution. International Journal of Biological Macromolecules, 2007, 40: 472
    [32]赵春霞,李明忠,王春雷,龚俊杰,刘佳佳,郑忠厚,徐巍巍.γ-射线辐射处理对柞蚕生丝性能的影响.丝绸, 2006, (02):20-23
    [33] Tsukada M. Physical and chemical properties of Tussah silk fibroin films. Journal of polymerscience: Part B: Polymer physics, 1994, 32: 1407
    [34] Kweon H Y. Effect of heat treatment on the structural and conformational changes of regenerated Antheraea pernyi silk fibroin films. Journal of Applied Polymer Science, 2001, 81: 2271
    [35] Kweon H Y, Park Y H. Structural and Conformational Changes of Regenerated Antheraea pernyi Silk Fibroin Films Treated with Methanol Solution. Journal of Applied Polymer Science, 1999, 73: 2887
    [36] Kweon H Y, Um I C, Park Y H. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer, 2000, 41: 7361
    [37] Li M Z, Tao W, Kuga S, Nishiyama Y. Controlling Molecular Conformation of Regenerated Wild Silk Fibroin by Aqueous Ethanol Treatment. Polym. Adv. Technol., 2003, 14: 694
    [38] Li M Z, Tao W, Lu S Z, Kuga S. Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking. International Journal of Biological Macromolecules, 2003, 32:159-163
    [39] Li M Z, Tao W, Lu S Z, Kuga S. Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking. International Journal of Biological Macromolecules, 2003, 32:159-163
    [40] Tsukada M, Freddi G., Kasai N. Physical Properties and Phase Separation Structure of Antheraea pernyi/Bombyx mori Silk Fibroin Blend Films. Journal of Polymer Science: Part B: Polymer Physics, 1994, 32: 1175
    [41] Kweon H Y, Um I C, Park Y H. Structural and thermal characteristics of Antheraea pernyi silk fibroin/ chitosan blend film. Polymer, 2001, 42: 6651
    [42] Tsukada M. Structural Changes Induced in Tussah Silk (Antheraea Pernyi) Fibroin Films by ImMersion in Methanol. Journal of Polymer Science: Part B: Polymer Physics, 1986, 24:1227-1232
    [43] Tsukada M, Freddi G, Monti P, Bertoluzza A. Structure and Molecular Conformation of Tussah Silk Fibroin Films: Effect of Methanol. Journal of Polymer Science: Part B: Polymer Physics, 1995, 33:1995-2001
    [44] Magoshi J, Magoshi Y, Nakamura S. Physical Properties and Structure of Silk.Ⅲ. The Glass Transition and Conformational Changes of Tussah Silk Fibroin. J. Polym. Sci., 1977, 21:2405-2407
    [45] Nagura M, Yamazaki S, Tsukada M. In: Proc. 7th Int. Wool Text. Res. Conf., N. Sakamoto, Tokyo:1985, 1:345
    [46] Freddi G, Monti P, Nagura M, Gotoh Y, Tsukada M. Structure and molecular conformation of tussah silk fibroin film: effect of heat treatment. Journal of Polymer Science: Part B: Polymer Physics, 1997, 35: 841-847
    [47]黄君霆,朱万民,夏建国,向仲怀.中国蚕丝大全.四川:四川科学技术出版社,1995.
    [48] Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Miauno S. Silk fibroin of bombyx mori is secreted, assembling a high moleculai mass elementary unit consisiting of H-chain, L-chain, and P25, with a 6:6:1 molar ration. Journal of Biological chemistry, 2000, 275: 40517-40528
    [49] Zhou C Z, Confalonieri F, Jacquet M, Perasso R, Li Z G, Janin J. Silk fibroin: structural implication of a remarkable aminl acid squence. Proteins, 2001, 44: 119-122
    [50] Mori K, Tanaka K,Kikuchi Y, Waga S,Mizuno S. Production of a chimeric fibroin light-chain polypetide in a fibroin secretion-deficient naked pupa mutant of the silkworm bombyx mori. Journal of Molecular Biology, 1995, 251(2): 217-228
    [51] Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by bombyx mori. Insect biochemistry and, molecular biology, 1999, 29(3): 269-276
    [52] Yu T Y, Cai Z S, Huang W D. Chemical Journal of Chinese Universities-Chinese, 1996, 17:829
    [53] Magoshi J, Magoshi Y, Nakamura S. Polymer Communications, 1985, 26:309-311
    [54] Yamaura K, Okumura Y, Matsuzawa S. Journal of Macromolecular Science-Physics,1982, B21:49-69
    [55] Ajisawa A. J.Sericult. Sci. Japan, 1969,38:340-346
    [56] Ajisawa A. J.Sericult. Sci. Japan, 1969, 38:365-370
    [57] Tsukada M, Gotoh Y, Minoura N. Nippon Sanshi Gakkaishi, 1990, 59(5):325-330
    [58] Asakura T, Murakami T. Macromolecules, 1985, 18:2614-2619
    [59] Asakura T, Kuzuhara A, Tabeta R, Saito H. Macromolecules, 1985, 18:1841-1845
    [60] Asakura T, Kashiba H, Yoshmizu H. Macromolecules, 1988, 21:644-648
    [61] Asakura T, Yoshimizu H, Yoshizawa F. Macromolecules, 1988, 21:2038-2041
    [62] Iizuka E. Applied Polymer Symposia, 1985:131-147
    [63] Yamaura K, Okumura Y, Ozaki A, Matsuzawa S. Applied Polymer Symposia, 1985:205-220
    [64] Chen X, Knight D P,Shao Z Z, Vollrath F. Polymer, 2001, 42:9969-9974
    [65] Chen X, Shao Z Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophysical Chemistry, 2001, 89:25-34
    [66] Zhou L, Chen X, Shao Z Z, Zhou P, Knight D P, Vollrath F. Febs Letters, 2003, 554:337-341
    [67] Kaplan D L, Wade W W, Farmer B, Viney C. Silk Polymers Materials Science and BiotechnologySymposium series,1994, 544:2-16
    [68] Hossain K S, Ochi A, Ooyama E, Magoshi J, Nemoto N. Biomacromolecules, 2003, 4:350-359
    [69]宗小红,周平,邵正中,王洪海,淳于利娟.再生丝素蛋白在水溶液中构象转变的Cu(Ⅱ)离子效应.科学通报, 2005, 50(11):1080-1084
    [70]杨宇红.再生家蚕丝素蛋白在水溶液中结构和性质的研究[D].复旦大学, 2004
    [71]解芳,邵惠丽,胡学超.再生丝素水溶液在存放过程中的结构变化[J].东华大学学报(自然科学版), 2006,32(06):5-8
    [72] Shimizu M. Bull. Imp. Sericult. Expt. Sta, 1941, 10:475
    [73] Kratky O. Disc. Faraday Soc, 1951, 196:538
    [74] Lotz B, Keith H D. A model for silk I. J Mol Biol, 1971, 61:201-215
    [75] Ishikawa H, Nagura M. Structure and physical properties of silk fibroin. Sen-i Gakkaishi, 1983, 39(10): 353-363
    [76] Marsh R E, Corey R B, Pauling L. Crystal structure of silk fibroin. Biochemical Biophysical Acta, 1955, 16:1-86
    [77] Valluzzi R, Gido S P, Zhang W P, Muller W S, Kaplan D L. Trigonal Crystal Structure of Bombyx mori Silk Incorporating a Threefold Helical Chain Conformation Found at the Air-Water Interface. Macromolecules, 1996, 29:8606-8614
    [78] Masuhiro T, Guiliano F, Norihiko M. Changes in the fine structure of silk fibroin fibers following gamma irradiation. Journal of Applied Polymer Science, 1994, 51(5):823-829
    [79] Magoshi J, Magoshi Y. J. Polym. Phys. Ed., 1979, 17:515
    [80] Tsukada M, Goyoh Y. Structural changes of silk fibroin membranes induced by immersion in methanol Aqueous Solutions. Journal of Polymer Science: part B: polymer physics, 1994, 32: 961-968
    [81] Taketani S, Nakayama. The secondary structure control of silk fibroin thin films by post treatment. Applied Surface Science, 2005, 244: 623-626
    [82] Yoshimizu H, Asakura T. J. Appl. Polym. Sci., 1990, 40: 1745-1756
    [83] Tsukada M, Gotoh Y, Minour N, Kasai N, Freddi G. J. Polym. Sci. Pt. B: Polym. Phys., 1994, 32:961-968
    [84] Magoshi J, Magoshi Y, Nakamura S, Kasai N, Kakudo M. J. Polym. Sci. Polym. Phys. Ed., 1977, 15:1675-1683
    [85]吴徵宇,金宗明等.丝素的结晶度和结构变化的研究.蚕业科学, 1993, 19(2):105-110
    [86]石川博等.丝素的结构和物理性质.纤维学会志,1983, 39:353
    [87]马越淳.蚕丝的结晶化和液晶.高分子,1985, 34:98
    [88]卢神州,高鸭坤等.剪切应力对丝素膜结构与性能的影响.江苏丝绸, 2003, 3: 1-3
    [89]卢神州,李明忠等.应力对丝素膜结构与性能的影响.苏州大学学报(工科版), 2004,24(1): 2-4
    [90] Zhou L, Chen X. X-ray Photoelectron Spectroscopic and Raman Analysis of Silk Fibroin-Cu(Ⅱ) Films. Biopolymers, 2006, 82: 144-151
    [91]韩龙龙,张幼珠等.稀土对丝素膜结构及溶解性的作用研究.丝绸, 2002,4:8-13
    [92]卢神州,李明忠等.聚乙二醇缩水甘油迷对丝素蛋白膜的改性.高分子材料科学与工程, 2003, 19(1):104—107.
    [93]朱良均,胡国梁,姚菊明等.丝素蛋白在胶凝时的分子结构、结晶性的探讨[J].蚕业科学,1998, 24(4): 226-229.
    [94]闵思佳,陈芳芳,吴豪翔.环氧化合物与丝素蛋白化学交联凝胶的结构[J].高等学校化学学报,2005,26(5):964-967.
    [95] Hirabayashi K, Ayub Z H, Kume Y. Gelation of silk fibroin[J]. SEN-I GAKKAISHI, 1990, 46(11): 521-524
    [96] Ayub Z H, Arai M, Hirabayashi K. Mechanism of the Gelation of Fibroin Solution. Bioscience, biotechnology, and biochemistry. 1957,(11):1910-1912
    [97]倪莉,王璋,许时婴等.丝素蛋白结构的研究2探讨丝素形成凝胶的机理[J].中国食品学报,2001,1(2):10-13
    [98]胡国梁,朱良均,姚菊明等.丝素蛋白的胶凝和凝胶稳定性的研究[J].浙江工程学院学报, 1999,16(3):172-175.
    [99] Matsumoto A, Jingsong C, Collette A. Mechanisms of silk fibroin sol-gel transitions[J]. Journal of Physical Chemistry B, 2006, 110(43): 21630-21638.
    [100] Wang X Q, Kluge J A, Leisk G G, Kaplan D L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials, 2008, 29: 1054-1064
    [101] Minour N, Tsukada M, Nagura M. Physic-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 1990, 11: 430-434
    [102] Opdahl A, Kim S H, Koffas T S. Surface mechanical properties of pHEMA contact lenses: Viscoelastic and adhesive property changes on exposure to controlled humidity. J. Biomed. Mater. Res.A., 2003, 67(1): 350-356
    [103] Nowak A P, Breedveld V, Pakstis L. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002, 417 (6887): 424-428
    [104] Kim U J, Park J, Li C M. Structure and properties of silk hydrogels. Biomacromolecules, 2004(5): 768-792
    [105]胡国梁,朱良均.丝素和丝胶的凝胶特性及其结构.浙江丝绸工学院学报,1997,14(3):154-157
    [106] Yasuyoshi N, Hirofusa S, Nobumase H. Gelation from fibroin aqueous solutions in presence of metal ions. Kobunshi Ronbunshu, 1988, 45(11): 889-894
    [107] Lotz B, Keith H D. Crystal structure of poly(-Ala-Gly)II: A model for silk I. [J] Mol Biol, 1971, 61: 201
    [108] Ilaria D P, Freddi G.. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials, 2005, 26: 1978
    [109] Inouye K, Kurokawa M, Nishikawa S, Tsukada M. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. Biochemical and Biophysical methods, 1998, 37: 159
    [110] Panilaitis B, Altman G H. Macrophage responses to silk. Biomaterials, 2003, 24: 3079
    [111] Li C, Vepari C, Jin H, Kim H J, Kaplan D L.Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27: 3115.
    [112] Meinel L, Betz O, Kaplan D L. Silk based biomaterials to heal critical sized femur defects. BON-07447, 2006, 4C:10
    [113] Fang Q, et al. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. Mat. Sci. and Eng. C (2009), doi: 10.1016/j.msec, 2008. 12: 007
    [114] Hirabayashi K, Kondo Y, Go Y. Sen-i Gakkaishi, 1967, 23(5): 199–207
    [115] Li M Z, Tao W, et al. Controlling Molecular Conformation Regenerated Wild Silk Fibroin by Aqueous Ethanol Treatment. Polymers for advanced technaologies, 2003, 14: 694-698
    [116] Kondo Y, Hirabayashi K, Iizuka E, Go Y. Sen-i Gakkaishi1, 1967, 23(7):311–315
    [117] Hirabayashi K, Tsukada M. J. Sericult. Sci., Japan, 1976, 45(6): 473–478
    [118] Tsukada M. J. Polym. Sci., Polym. Phys., 1986, 24: 457–460
    [119] Li M Z, Wu Z Y, Lu S Z, et al. Study on Silk Fibroin Materials. Journalof Dong Hua University (Nature Science Edition), 2001, 27(2): 12-19
    [120] Li M Z, Lu S Z, Wu Z Y, et al.. Study on Silk Fibroin Materials: 1. Fine Structure of Freeze-dried Silk Fibroin. J Appl Polym Sci., 2001, 79: 2185-2191
    [121]刘永成,邵正中,孙玉宇等.蚕丝蛋白的结构和功能[J].高分子通报, 1998, (3): 17-23
    [122]周文,陈新,邵正中.红外和拉曼光谱用于对丝素蛋白构象的研究[J].化学进展, 2006, 18(11): 1514-1522
    [123] Magoshi J. J. Poly. Sci.Poly. Phy. Ed, 1977, 5:1675
    [124] Hirabayashi K, Ishikava H. Sen-i Gakkaishi, 1967, 23:538
    [125] Konishi T. Sen-i Gakkaishi, 1968, 24:550
    [126] Ishikava H, Nagura M. Sen-i Gakkaishi,1983,39:353
    [127] Magoshi J. Kobunshi Ronbunshu, 1974,31:648
    [128] Paulusse J M J, Sijbesma R P. Ultrasound in polymer chemistry:revival of an established technique. J Polym Sci-Polym Chem, 2004, 44: 5445-5453
    [129] Kemmere M F, Kuijpers M W A, Prickaerts R M H, Keurentjes J T F. A novel process for ultrasound-induced radical polymerization in CO2-expanded fluids. Macromol Mater Eng, 2005, 290: 302-310
    [130] Brahms S, Branhm J. J. Mol. Biol, 1980, 138:149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700