兔三维子宫培养系统的优化及胚胎植入的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对早期胚胎发育,尤其是在体内子宫上的发育过程知之甚少,而其体内的变化受激素、神经、体液以及内分泌的影响,鉴于子宫在胚胎发育以及人类生殖研究中具有无法替代的重要作用与功能,越来越多的国内外研究人员意识到体外人造子宫具有重要的科学研究价值和临床应用前景,建造组织工程化人造子宫已成为组织工程研究领域的热点之一。
     本研究通过对兔子宫内膜细胞和平滑肌细胞的分离和培养方法的探讨,结果在体外成功的分离和纯化了三种细胞;以这三种细胞为种子细胞将其接种在鼠尾胶原和Matrigel的混合胶内,在体外构建具有三层细胞结构(从下到上依次为平滑肌层,基质层和上皮层)的三维子宫片层;体外优化三维培养系统,改变培养条件,如改变雌激素和孕激素的浓度或者在培养液中添加一些生长因子,体外诱导腺管结构和血管结构,使其更类似于在体结构;以三维子宫组织为模型,在雌激素和孕激素的作用下,诱导基质层细胞发生蜕膜化,模拟在体的接受态子宫。发育到囊胚期的小鼠胚胎与三维子宫组织共培养,观察胚胎在子宫片层上的发育情况,以期对胚胎早期发育事件有更深入的了解,尤其是希望能够部分模拟胚胎在体内子宫早期发育阶段的生理过程,主要结果如下:
     1.本研究采用筛网法和差速离心法分离子宫内膜细胞,比较2种分离方法,结果差速离心法比较简单快捷,而且污染少,获得的细胞量大。再通过差速贴壁法纯化2种细胞,结果能够获得较纯的子宫内膜基质细胞和上皮细胞。
     2.通过免疫组织化学染色法鉴定细胞的类型,结果发现小鼠抗人的CK18染色,上皮细胞的胞质呈棕色阳性;小鼠抗人的Vimentin染色,基质细胞胞质呈棕色阳性;小鼠抗人的α-actin免疫组织化学染色,平滑肌细胞的胞质呈棕色阳性。免疫荧光染色鉴定细胞的纯度,结果发现上皮细胞的纯度为97%,基质细胞的纯度为98%,平滑肌细胞的纯度为98%。
     3.以体外培养3代以内的兔子宫内膜细胞和平滑肌细胞为种子细胞,以液态I型鼠尾胶原和Matrigel为支架材料,在静态拉力存在的条件下,体外构建三维子宫组织。培养14d左右的子宫组织取出后固定,H.E染色和免疫组织化学染色观察结构。结果构建的子宫组织具有明显的三层细胞结构,细胞在静态拉力的作用下具有一定的方向性,上皮细胞表现为一定的极性,呈柱状分布。通过扫描电镜和透射电镜观察子宫组织的结构,结果细胞结构完整,细胞表面出现微绒毛,细胞间存在紧密连接。
     4.以原代分离的兔子宫内膜细胞和平滑肌细胞为种子细胞,将上皮细胞和基质细胞混合接种在鼠尾胶原和Matrigel内。在此基础上优化培养条件,促进子宫内膜细胞中混有的血管内皮细胞和腺上皮细胞形成一定的形态结构。首次构建出类似于在体子宫的形态和功能的子宫组织,体外构建的子宫组织出现类似于在体的腺管结构和血管结构,而且还观察到组织表面出现大的弯曲结构,弯曲处聚集大量的细。CK7和Ⅷ因子分别进行免疫组织化学染色,结果发现构成腺管和血管的细胞分别呈阳性,说明原代分离的子宫内膜细胞中混有血管内皮细胞,而且细胞具有一定的移动性和方向性。这些结构的形成为人造子宫的实现带来了希望。
     5.通过改变雌激素和孕激素的比例,诱导三维子宫处于容受状态,即“植入窗口期”,H.E染色观察,结果基质细胞发生蜕膜化,基质层细胞变大,变为多核细胞。囊胚与三维子宫组织共培养,结果发现,20h胚胎黏附到三维子宫组织上,32h后胚胎侵入到三维子宫组织中,胚胎周围出现凹陷,可能胚胎在体外构建的三维子宫组织上成功的植入。
People learn a little of the development of early embryo, especially the course of development in uterus, while hormone ,nerve, body fluid and endocrine influence the change in vivo. Respecting uterus have an unable to be substituted important contribution and function in the development of embryos and the study of human generation, more and more researchers aware that artificial uterine have important value of science and perspective in the clinical application, establishing tissue engineering artificial uterine has become one of the hot spot in the research sphere of tissue engineering.
     The study on isolation and culture of rabbit endometrial cells and smooth muscle cells, the results showed that three kinds of cells were successful isolated and purified in vitro; these three kinds of cells acted as seed cells, which were seeded in the mixture of collagen and Matrigel, three dimensional uterine lamellar were built in vitro, which composed of three layers of cells (smooth muscle cell, stromal cell and epithelial cell), through changing the condition of culture , for example: the concentration of estrogen and progestin or added to some growth factors in the culture medium, glandular tube and blood vascular were induced in vitro, three dimensional endometrium was similar to normal structure; Under the effect of estrogen and progestin, three dimensional uterine tissue acted as a model, stromal cells generated decidualization, which imitated normal receptive uterus. Mouse blastocysts and three dimensional uterine tissue coculture, which was used to observe embryos development on the uterine slice, in order to even more learn the early development event of embryo, which is more feasible for deeply learned on early event of embryos development, especially wished that the model could imitate the normal physiological course of embryo early development in the uterine. The mainly results of the research as following:
     1. The research adopted the way of filtration through copper screen and centrifuge at different speed to isolate endometrial cells, comparing two kinds of ways, the conclusion indicated that the way of centrifuge at different speed was more simple and shortcut, and cells were less contaminated, the number of acquired cells was a great quantity. Two kinds of cells were purified through differential attachment technique, which could acquire more purify endometrial stromal cells and epithelial cells.
     2. Immunohistochemisty identified the type of cells, mouse antihuman cytokeratin 18 stained, epithelial cells positive, cells show brown, mouse antihuman vimentin stained, stromal cells positive, cells show brown, mouse antihumanα-actin stained, smooth muscle cells positive, cells show brown. The purity of cells was identified by immunofluorescence, the purity of epithelial cells was 97%, the purity of stromal cells was 98%, and the purity of smooth muscle cells was 98%.
     3. Endometrial cells and smooth muscle cells ahead of 3 generation acted as the seed cells, liquidⅠtype collagen and Matrigel acted as scaffold, under the condition of static state tensile force, uterine tissue were established in vitro. Cultured uterine tissue were taken out of the flask and fixed on 14th days, the structure were observed through H.E staining and immunohistochemistry staining. Conclusion indicated that established uterine tissue emerged evident three layers of structure, the growth of cells showed directionality under condition of static state tensile force, epithelial cells showed some polarity and column aspect. Through scan electron microscope and transmission electron microscope observed cells structure of uterine tissue, the conclusion indicated that the cellular structure integrity, the surface of epithelial cells emerge some microvilli, between cells and cells had tight junction.
     4. Primary endometrial cells and smooth muscle cells of rabbit acted as seed cells, the mixture of epithelial cells and stromal cells seeded in liquidⅠtype collagen and Matrigel, in this base, the condition of culture was optimized, which precipitated vascular epithelial cells and glandular epithelial cells to emerge shape and construction. First time established uterine tissue was similar to normal uterus in shape and function, which emerged glandular tube and blood vessel, and the surface of tissue emerged big crook, which aggregated some cells. Immunohistochemisty stained respectively with CK7 andⅧ, the conclusion indicated that cells of glandular tube and blood vessel were positive respectively, cells had property of migration and directivity. The emergence of these structures brings hope for the implementation of artificial uterus.
     5. Through changing the concentration of hormone, three dimensional uterus was induced to being receptive state, that is to say“the window of implantation”, H.E staining observed the uterine structure; the stromal cells took place decidualization, cells turned to be dilatants and multinuclear. Blastula and three dimensional uterine tissue cocultured, the result indicated that embryos stick to the three dimensional uterine tissue after being cultured 20h, embryos invaded into three dimensional uterine tissue after being cultured 32h, around of embryos appeared umbilication, embryo implanted three dimensional uterine tissue in vitro.
引文
[1] Casslen B G, Harper M J. Human endometrial epithelial cells grown on collagen in serum-free medium. Estrogen responsiveness and morphology[J]. Acta endocrinol, 1991, 125(1):101-108.
    [2] Bentin-Ley U, Pedersen B, Lindenberg S, et al. Isolation and culture of human endometrial cells in a three-dimensional culture system[J]. J Reprod Fertil, 1994, 101(2):327-332.
    [3] Ghosh D, Sengupta J. Morphological characteristics of human endometrial epithelial cells cultured on rat-tail collagen matrix. Hum Reprod, 1995, 10(4):785-90.
    [4] Park D W, Choi D S, Ryu H S, et al. A well-defined in vitro three-dimensional culture of human endometrium and its applicability to endometrial cancer invasion[J]. Cancer Lett, 2003, 195(2): 185-192.
    [5] Stevenson A F. Tissue engineering: in vitro embryonal nidation in a murine endometrial construct[J]. Indian J Exp Biol, 2003, 41(6):563-569.
    [6] Lacroix M C, Guibourdenche J, Fournier T, et al. Stimulation of human trophoblast invasion by placental growth hormone[J]. Endocrinology, 2005, 146(5):2434-2444.
    [7] Newby D, Marks L, Cousins F, et al. Villous explant culture: characterization and evaluation of a model to study trophoblast invasion[J]. Hypertens Pregnancy, 2005, 24(1): 75-91.
    [8] Nejad, Valojerdi, Ashtiani. A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development[J]. J Exp Assist Reprod, 2005, 2(1): 67-70.
    [9] 薛庆善. 体外培养的原理与技术[M]. 北京:科学出版社,2001:98-99.
    [10] Peter S J, Miller M J, Yasko A W, et al. Polymer concepts in tissue engineering[J]. J Biomed Mater Res, 1998, 43(4):422-427.
    [11] Freed L E, Vunjak-Novakovic G, Biron R J, et al. Biodegradable polymer scaffolds for tissue engineering[J]. Bioltechnology, 1994, 12(7):689-693.
    [12] Mikos A G, Sarakinos G, Leite S M, et al. Laminated three-dimensional biodegradable forms for use in tissue engineering[J]. Biomaterials, 1993, 14(5):323-330.
    [13] Kim B S, Mooney D J. Development of biocompatible synthetic extracelluar matrices for tissue engineering[J]. Trend Biotechnol, 1998, 16(5):224-230.
    [14] Kurita T, Young P, Brody J R, et al. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis[J]. Endocrinology, 1998, 139(11):4708-4713.
    [15] Satyaswaroop P G, Bressler R S, de la Pena M M, et al. Isolation and culture of culture of human endometrial glands[J]. J Clin Endocrinol Metab, 1979, 48(4):639-641.
    [16] Periwal S B, BhargavaV L, Vij U, et al. Rapid isolation of human endometrial stromal cells with high yield and purity[J]. In Vitro cell Dev Biol Anim, 1995, 31(10):744-748.
    [17] Arnold T J,Kaufman D G,Seppala Markku,et al. Endometrial stromal cells regulate epithelial cell growth in vitro:a new co-culture model[J]. Hum Reprod,2001,16(5): 836-845.
    [18] Mylonas I, Winkler L, Jeschke U, et al. Investigations on isolation, purification and cultivation of human endometrial cells and on the in vitro inhibin expression in glandular epithelial cells[J].Zentralbl Gynakol, 2003, 125(10):415-423.
    [19] Chan R W, Schwab K E, Gargett C E. Clonogenicity of human endometrial epithelial and stromal cells[J]. Biol Reprod, 2004, 70(6):1738-1750.
    [20] Terracio L, Ronnstrand L, Tingstrom A, et al. Induction of platelet-derived growth factor receptor expression in smooth muscle cells and fibroblasts upon tissue culturing[J]. J Cell Biol, 1988, 107(5):1947-1957.
    [21] Giudice L C. Growth factors and growth modulators in human uterine endometrium: their potential relevance to reproductive medicine[J]. Fertil Steril, 1994, 61(1):1-17.
    [22] Hansard L J, Healy-Gardner B E, Drapkin A T, et al. Human endometrial transforming growth factor alpha: a transmembrane,surface epithelial protein that transiently disappears during the midsecretory phase of the menstrual cycle[J]. J Soc Gynecol Investiq, 1997, 4(3):160-166.
    [23] Chegini N, Rossi M J, Masterson B J. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and EGF and PDGF beta-receptors in human endometrial tissue: localization and in vitro action[J]. Endocrinology, 1992, 130(4):2373-2385.
    [24] Neqami A I, Sasaki H, Kawakami Y, et al. Serum human hepatocyte growth factor in human menstrual cycle and pregnancy: a novel serum marker of regeneration and reconstruction of human endometrium[J]. Horm Res, 1995, 44(suppl 2):42-46.
    [25] Kauma S, Huff T, Krystal G, et al. The expression of stem cell factor and its receptor, c-kit in human endometrium and placental tissues during pregnancy[J]. J Clin Endocrinol Metab, 1996, 81(3): 1261-1266.
    [26] Smith C L. Cross-talk between peptide growth factor and estrogen receptor signaling pathways[J]. Biol Reprod, 1998, 58(3): 627-632.
    [27] Glenister T W. Observations on the behaviour in organ culture of rabbit trophoblast from implanting blastocysts and early placenta[J]. J Anat, 1961,95: 474-484.
    [28] Shiotani M. Embryo-dependent induction of uterine receptivity assessed by an in vitro model of implantation in mice[J]. Biol Repord, 1993, 49(4): 794-801.
    [29] Landgern B M, Johannisson E, Stavreus-Evers A, et al. A new method to study the process of implantation of a human blastocyst in vitro[J]. Fertil Steril, 1996, 65(5): 1067-1070.
    [30] Tan Yi,Tan Dongmei,He Mingzhong,et al. A model for implantation:Coculture of Blasto- cysts and uterine endometrium in mice[J]. Biol Reprod,2005,72(3):556-561.
    [31] Cao Y, Vacanti J P, Paige K T, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in shape of a human ear [J]. Plast Reconstr Surg, 1997, 100(2): 297-302.
    [32] Bitar M, Salih V, Brown R A, et al. Effect of multiple unconfined compression on cellular dense collagen scaffold for bone tissue engineering[J]. J Mater Sci Mater Med, 2007, 18(2): 237-244.
    [33] Macneil S. Progress and opportunities for tissue-engineered skin[J].Nature, 2007, 445 (7130): 874-880.
    [34] Zimmermann W H, Schneiderbanger K, Schubert P,et al.Tissue engineering of a differentia- ted cardiac muscle construct[J]. Circ Res, 2002, 90(2): 223-230.
    [35] Levenberg S, Huang N F, Lavik E, et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds[J]. Proc Natl Acad Sci U S A, 2003, 100(22): 12741- 12746.
    [36] Chaw C S, Tan C W, Yang Y Y, et al. Design of physostigmine-loaded polymeric microparticles for pretreatment against exposure to organophosphate agents[J]. Biomaterials, 2003, 24(7): 1271-1277.
    [37] Rinehart C A Jr, Lyn-Cook B D, Kaufman D G. Gland formation from human endometrial epithelial cells in vitro[J]. In Vitro Cell Biol, 1988, 24(10): 1037-1041.
    [38] Kliman H J, Feinberq R F. Human trophoblast-extracellular matrix (ECM) interactions invitro: ECM thickness modulates morphology and proteolytic activity[J]. Proc Natl Acad Sci U S A, 1990, 87(8): 3057-3061.
    [39] White T E, Agnese P A, Miller R K. Human endometrial cells growth on an extracellular matrix form simple colummar epithelia and glands[J]. In Vitro Cell Dev Biol, 1990, 26(6): 636-642.
    [40] Tominaga T. Studies on the mechanism of embryo implantation[J]. Nippon Sanka Fujinka Gakkai Zasshi,1996,48(8):591-603.
    [41] Dawson K M,Baltz J M,Claman P. Culture with matrigel inhibits development of mouse zygotes[J].J Assist Reprod Genet, 1997, 14(9): 543-548.
    [42] Classen-Linke I, Kusche M, Knauthe R, et al. Establishment of a human endometrial cell culture system and characterization of its polarized hormone responsive epithelial cells[J]. Cell Tissue Res, 1997, 287(1): 171-185.
    [43] Trew A J, Lash G E, Baker P N.Investigation of an in vitro model of trophoblast invasion[J]. Early Pregnancy, 2000, 4(3): 176-190.
    [44] Zhang Y L,Davis D L. Morphology of luminal and glandular epithelial cells from pig endometrium grown on plastic or extracellular matrices[J]. J Anim Sci,2000,78(1):131-138.
    [45] 王丽, 周剑萍, 刘银坤, 等. 子宫内膜体外三维重建的形态学研究[J]. 生殖医学杂志, 2002, 11(6): 335-337.
    [46] Montanez E, Casaroli-Marano R P, Vilaro S,et al. Comparative study of assembly in three-dimensional collagen matrix and on Matrigel costs[J]. Angiogenesis, 2002, 5(3): 167-172.
    [47] Fasciani A, Bocci G, Xu J, et al.Three dimensional in vitro culture of endometrial explants minics the early stages of endometriosis[J].Fertil Steril, 2003, 80(5): 1137- 1143.
    [48] Tasaki A, Yamanaka N, Kubo M, et al. Three-dimensional two-layer collagen matrix gel culture model for evaluating complex biological functions of monocyte-derived dendritic cells[J]. J Immunol Methods, 2004, 287(1-2): 79-90.
    [49] Greenlee A R, Kronenwetter-Koepel T A, Kaiser S J, et al. Comparison of matrigel and gelatin substrata for feeder-free culture of undifferentiated mouse embryonic stem cells for toxicity testing[J]. Toxicol in Vitro, 2005, 19(3): 389-397.
    [50] Abilez O, Benharash P, Mehrotra M, et al. A novel culture system shows that stem cells can be grown in 3D and under physiologic pulsatile conditions for tissue engineering of vascular grafts[J]. J Surq Res, 2006, 132(2):170-178.
    [51] Young R C, Schumann R, Zhang P, et al. Three-dimensional culture of human uterine smooth muscle myocytes on a resorbable scaffolding[J]. Tissue Eng, 2003, 9(3): 451-459.
    [52] Mahabeleshwar G H, Somanath P R, Byzova T V. Methods for isolation of endothelial and smooth muscle cells and in vitro proliferation assays[J]. Methods Mol Med, 2006, 129: 197-208.
    [53] Glasser S R, Mulholland J. Receptivity is a polarity dependent special function of hormonally regulated uterine epithelial cells[J].Microsc Res Tech, 1993, 25(2): 106-120.
    [54] Thie M, Fuchs P, Denker H W. Epithelial cell polarity and embryo implantation in mammals[J]. Int J Dev Biol, 1996, 40(1): 389-393.
    [55] Li M L, Aqqeler J, Farson D A, et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells[J]. Proc Natl Acad Sci USA, 1987, 84(1): 136-140.
    [56] Mulholland J, Winterhaqer E, Beier H M. Changes in proteins synthesized by rabbit endometrial epithelial cells following primary culture[J]. Cell Tissue Res, 1988, 252(1): 123-132.
    [57] Paria B C, Huet-Hudson Y M, Dey S K. Blastocyst’s state of activity determines the “window”of implantation in the receptive mouse uterus[J]. Proc Natl Acad Sci, 1993, 90(21): 10159-10162.
    [58] Stewart C L, Kaspar P, Brunet L J, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor[J]. Nature, 1992, 359(6390): 76-79.
    [59] Nardo L G, Sabatini L, Rai R, et al. Pinopode expression during human implantation[J]. Eur J Obstet Gynecol Reprod Biol, 2002, 101(2): 1121-1124.
    [60] Adams S M, Gayer N, Hosie M J, et al. Human uterodomes(pinopods) do not display pinocytotic function[J]. Hum Reprod, 2002, 17(18): 1980-1986.
    [61] Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity[J]. Ann N Y Acad Sci, 2003, 997: 120-123.
    [62] Lessey B A, Castebaum A J, Sawin S W, et al. Integrins as markers of uterine receptivity in women with primary unexplained infertility[J]. Fertil Steril, 1995, 63(3): 535-542.
    [63] Genbacev O D, Prakobphol A, Foulk R A, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface[J]. Science, 2003, 299(5605): 405-408.
    [64] Lessey B A, Castelbaum A J, Buck C A,et al. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy[J]. Fertil Steril, 1994, 62(3): 497-506.
    [65] Lessey B A. Endometrial integrins and the establishment of uterine receptivity[J]. Hum Reprod, 1998, 13(Suppl 3): 247-258.
    [66] Nardo L G, Nikas G, Makrigiannakis A, et al. Synchronous expression of pinopodes and alpha v beta 3 and alpha 4 beta 1 integrins in the endometrial surface epithelium of normally menstruating women during the implantation window[J]. J Reprod Med, 2003, 48(5): 355-361.
    [67] Salehnia M. Different pattern of pinopodes expression in stimulated mouse endometrium [J]. Exp Anim, 2005, 54(4): 349-352.
    [68] Bentin-Ley U, Sjoqren A, Nilsson L, et al. Presence of uterine pinopodes at the embryo- endometrial interface during human implantation in vitro[J]. Hum Reprod, 1999, 14(2): 515-20.
    [69] Quinn C E, Detmar J, Casper R F. Pinopodes are present in LIF null and Hoxa 10 null mice[J]. Fertil Steril, 2007, [Epub ahead of print].
    [70] Quinn C, Ryan E, Claessens E A,et al. The presence of pinopodes in the human endometrium does not delineate the implantation window[J]. Fertil Steril, 2007, [Epub ahead of print].
    [71] Monice F L, Andrade C G, Abrahamsohn P A, et al. Granulated decidual cells in the mouse deciduoma: aputative source of decidual prolactin in mice[J]. Cells Tissues Organs, 2001, 168(4): 252-263.
    [72] Tang B, Guller S, Gurpide E. Mechanisms involved in the decidualization of human endometrial stromal cells[J]. Acta Eur Fertil, 1993, 24(5): 221-223.
    [73] Popovici R M, Kao L C, Giudice L C. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology[J]. Endocrinology, 2000, 141(9): 3510-3513.
    [74] Brar A K, Handwerger S, Kessler C A, et al.Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization[J]. Physiol Genomics, 2001, 7(2): 135-148.
    [75] Tabanelli S, Tang B, Gurpide E. In vitro decidualization of human endometrial stromal cells[J]. J Steroid Biochem Mol Biol,1992,42(3-4):337-344.
    [76] Pollard J W, Jahan M, Butterworth P J. Characterization and expression of uterine and placental alkaline phosphatases in the mouse[J]. J Reprod Fertil, 1990, 89(2): 735-742.
    [77] Wu W X, Brooks J, Glasier A F, et al. The relationship between decidualization and prolactin mRNA and production at different stages of human pregnancy[J].J Mol Endocrinol,1995,14(2):255-261.
    [78] Eyal O, Jomain J B, Kessler C, et al. Autocrine Prolactin inhibits human uterine decidualization: a novel role for prolactin[J]. Biol Reprod, 2007, [Epub ahead of print].
    [79] Huang J R, Tsenq L, Bischof P, et al. Regulation of prolactin production by progestin, estrogen,and relaxin in human endometrial stromal cells[J]. Endocrinology, 1987, 121(6): 2001-2017.
    [80] Tessier C, Deb S, Prigent-Tessier A, et al. Estrogen receptors alpha and beta in rat deciduas cells:cell-specific expression and differential regulation by steroid hormones and prolactin[J]. Endocrinology, 2000, 141(10): 3842-3851.
    [81] Giudice L C, Dsupin B A, Irwin J C. Steroid and peptide regulation of insulin-like growth factor-binding proteins secreted by human endometrial stromal cells is dependent on stromal differentiation[J]. J Clin Endocrinol Metab, 1992, 75(5): 1235-1241.
    [82] Harada M, Osuga Y, Takemura Y, et al. Mechanical stretch upregulates IGFBP-1 secretion from decidualized endometrial stromal cells[J]. Am J Physiol Endocrinol Metab, 2006, 290(2): 268-272.
    [83] Tang B, Guller S, Gurpide E.Mechanism of human endometrial stromal cells decidualization [J]. Ann N Y Acad Sci, 1994, 734:19-25.
    [84] Saito S. Cytokine network at the feto-maternal interface[J].J Reprod Immunol, 2000, 47(2): 87-103.
    [85] Robb L, Li R, Hartley L, et al. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation[J]. Nat Med, 1998, 4(3): 303-308.
    [86] Dimitriadis E, Salamonsen L A, Robb L. Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin[J]. Mol Hum Reprod, 2000, 6(10): 907-914.
    [87] Frank G R, Brar A K, Cedars M I, et al. Prostaglandin E2 enhances human endometrial stromal cell differentiation[J]. Endocrinology, 1994, 134(1): 258-263.
    [88] Lane B, Oxberry W, Mazella J, et al. Decidualization of human endometrial stromal cells in vitro: effects of progestin and relaxin on the ultrastructure and production of decidual secretory proteins[J]. Hum Reprod, 1994, 9(2): 259-266.
    [89] Zournakis E, Margioris A N, Stournaras C, et al. Corticotrophin releasing hormone(CRH) interacts with inflammatory prostaglandins and interleukins and affects the decidualization of human endometrial stroma [J]. Mol Hum Reprod, 2000, 6(4): 344-351.
    [90] Jones R L, Salamonsen L A, Findlay J K. Activin A promotes human endometrial stromal cell decidualization in vitro[J]. J Clin Endocrinol Metab, 2002, 87(8): 4001-4004.
    [91] Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium:a decidualizing affair[J]. J Endocrinol, 2003, 178(3): 357-372.
    [92] Dimitriadis E, Robb L, Salamonsen L A. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells[J]. Mol Hum Reprod, 2002, 8(7): 636-643.
    [93] Du X X, Williams D A. Interleukin-11: a mulfunctional growth factor derived from the hematopoietic microenvironment[J]. Blood, 1994, 83(8): 2023-2030.
    [94] Cork B A, Tuckerman E M, Li T C, et al. Expression of interleukin (IL)-11 receptor by the human endometrium in vivo and effects of IL-11, IL-6 and LIF on the production of MMP and cytokines by human endometrial cells in vitro[J]. Mol Hum Reprod, 2002, 8(9): 841-848.
    [95] Bilinski P, Roopenian D, Gossler A. Maternal IL-11R function is required for normal decidua and fetoplacental development in mice[J]. Genes Dev, 1998, 12(14): 2234-2243.
    [96] Cork B A, Li T C, Warren M A, et al. Interleukin-11(IL-11)in human endometrium: expression throughout the menstrual cycle and the effects of cytokines on endometrial IL-11 production in vitro[J]. J Reprod Immunol, 2001, 50(1): 3-17.
    [97] Li R, Hartley L, Robb L. Cloning of rat intrleukin 11 and interleukin 11 receptor alpha chain and analysis of their expression in rat uterus in the periimplantation period[J]. Reproduction, 2001, 122(4): 593-600.
    [98] Brar A K, Frank G R, Kessler C A, et al. Progesterone-dependent decidualization of the human endocrinetrium is mediated by cAMP[J]. Endocrine, 1997, 6(3): 301-307.
    [99] Fei D T, Gross M C, Lofgren J L, et al. Cyclic AMP response to recombinant human relaxin by cultured human endometrial cells:a specific and high throughput in vitro bioassay[J]. Biochem Biophys Res Commun, 1990, 170(1): 214-222.
    [100] Brosens J J, Hayashi N, White J O. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells[J]. Endocrinology, 1999, 140(10): 4809-4820.
    [101] Bartsch O, Bartlick B, Ivell R . Phosphodiesterase 4 inhibition synergizes with relaxin signaling to promote decidualization of human endometrial stromal cells[J]. J Clin Endocrinol Metab, 2004, 89(1): 324-334
    [102] Luna J J, Riesewijk A, Horcajadas J A, et al. Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle[J]. Mol Hum Reprod, 2004, 10(2): 85-90.
    [103] Zhao L, Roche P J, Gunnersen J M, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups[J]. Endocrinology, 1999, 140(1): 445-453.
    [104] Dimitriadis E, Stoikos C, Baca M, et al. Relaxin and prostaglandin E(2) regulate interleukin 11 during human endometrial stromal cell decidualization[J]. J Clin Endocrinol Metab, 2005, 90(6): 3458-3465.
    [105] Milne S A, Perchick G B, Boddy S C, et al. Expression, localization and signaling of PGE(2) and EP2/EP4 receptors in human nonpregnant endometrium across the menstrual cycle[J]. J Clin Endocrinol Metab, 2001, 86(9): 4453-4459.
    [106] Hamilton G S, Kennedy T G. Uterine vascular changes after unilateral intrauterine infusion of indomethacin and prostaglandin E2 to rats sensitized for the decidual cell reaction[J]. Biol Reprod, 1994,50(4): 757-764.
    [107] Kao L C, Tulac S, Lobo S, et al. Global gene profiling in human endometrium during the window of implantation[J]. Endocrinology, 2002, 143(6): 2119-2138.
    [108] Mino T, Sugiyama E, Taki H, et al. Interleukin-1 alpha and tumor necrosis factor synergistically stimulate prostaglandin E2-dependent production of interleukin-11 in rheumatoid synovial fibroblasts[J]. Arthritis Rheum, 1998, 41(11): 2004-2013.
    [109] Fouladi Nashta A A, Andreu C V, Nijar N, et al. Role of leukemia inhibitor factor(LIF) in decidualisation of murine uterine stromal cells in vitro[J]. J Endocrinol, 2004, 181(3): 477-492.
    [110] Cheng J G, Rodriguez C I, Stewart C L. Control of uterine receptivity and embryo implantation by steroid hormone regulation of LIF production and LIF receptor activity: towards a molecular understanding of“the window of implantation”[J]. Rev Endocr Metab Disord, 2002, 3(2): 119-126.
    [111] Ni X, Luo S, Minegishi T, et al. Activin A in JEG-3 cells:potential role as an autocrine regulator of steroidogenesis in humans[J]. Biol Reprod, 2000, 62(5): 1224-1230.
    [112] Caniggia I, Lye S J, Cross J C. Activin is a local regulator of human cytotrophoblast cell differentiation [J]. Endocrinology, 1997, 138(9): 3976-3986.
    [113] Jones R L, Salamonsen L A, Zhao Y C, et al. Expression of activin receptors, follistatin and betaglycan by human endometrial stromal cells consistent with a role for activins during decidualization[J]. Mol Hum Reprod, 2002, 8(4): 363-374.
    [114] Mather J P, Woodruff T K, Krummen L A.Paracrine regulation of reproductive function by inhibin and activin[J]. Proc Soc Exp Biol Med, 1992, 201(1): 1-15.
    [115] Munz B, Hubner G, Tretter Y, et al. A novel role of activin in inflammation and repair[J]. J Endocrinol, 1999, 161(2): 187-193.
    [116] Yu J, Dolter K E. Production of activin A and its role in inflammation and hematopoiesis[J]. Cytokines Cell Mol Ther, 1997, 3(3): 169-177.
    [117] Hanahan D. Signaling vascular morphogenesis and maintenance[J]. Science, 1997, 277 (5322): 48-50.
    [118] Flamme I, Frolich T, Risau W. Molcular mechanisms of vasculogenesis and embryonic angiogenesis[J]. J Cell Physiol, l997, 173(2): 206-2l0
    [119] Groothuis P G, Nap A W, Winterhager E, et al. Vascular development in endonetriosis[J]. Angiogenesis, 2005, 8(2): 147-156.
    [120] Hermant B, Desroches-Castan A, Dubessay M L. Development of a one-step embryonic stem cell-based assay for the screening of sprouting angiogenesis[J]. BMC Biotechnol, 2007, 7(1): [Epub ahead of print].
    [121] Schumacher J J, Ding R P, Cosin J, et al. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells[J]. Cancer Res, 2007, 67(8): 3683-3690.
    [122] Meduri G, Bausero P, Pereot-Applanat M. Expression of vascular endothelial growth factor receptors in the human endometrium: Modulation during the menstrual cycle[J]. Biol Reprod, 2000, 62(2): 439-447.
    [123] Kayisli U A, Luk J, Guzeloglu-kayisli O, et al. Regulation of angiogenic activity of human endometrial endothelial cells in culture by ovarian steroids [J]. J Clin Endocrinol Metab, 2004, 89(11): 5794-5802.
    [124] Girling J E, Rogers P A. Recent advances in endometrial angiogenesis research[J]. Angiogenesis,2005, 8(2): 89-99.
    [125] Vonnahme K A, Wilson M E, Li Y, et al.Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy[J]. J Physiol, 2005, 565(1): 101-109.
    [126] Leung D W, Cachianes G, Kuang W J, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science, 1989, 246(4935): 1306-1309.
    [127] Punyadeera C, Thijssen V L, Tchaikovski S. Expression and regulation of vascular endothelial growth factor ligands and receptors during menstruation and post-menstrual repair of human endometrium[J]. Mol Hum Reprod, 2006, 12(6): 367-375.
    [128] Smith S K. Regulation of angiogenesis in the endometrium[J]. Trends Endocrinol Metab, 2001, 12(4): 147-151.
    [129] Hyder S M. The role of steroid hormones on the regulation of vascular endothelial growth factor[J]. Am J Pathol, 2002, 161(1): 345-346.
    [130] Breier G, Albrecht U, Sterrer S, et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation[J]. Development, 1992, 114(2): 521-532.
    [131] Matsumoto H, Ma W G, Daikoku T, et al. Cyclooxygenase-2 differentially directs uterine angiogenesis during implantation in mice[J]. J Biol Chem, 2002, 277(32): 29260-29267.
    [132] Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis[J].Physiol Rev, 2002, 82(3): 673-700.
    [133] Reynolds L P, Redmer D A. Utero-placental vascular development and placental function [J]. J Anim Sci, 1995, 73(6): 1839-1851.
    [134] Cordon-Cardo C, Vlodavsky L, Haimovitz-Friedman A, et al. Expression of basic fibroblast growth factor in normal human tissues[J]. Lab Invest, 1990, 63(6): 832-840.
    [135] Wordinger R J, Moss A E, Lockard T, et al. Immunohistochemical localization of basic fibroblast growth factor within the mouse uterus[J]. J Reprod Fertil, 1992, 96(1): 141-152.
    [136] Wei P, Chen X L, Song X X, et al. VEGF,bFGF,and their receptors in the endometrium of rhesus monkey during menstrual cycle and early pregnancy[J]. Mol Reprod Dev, 2004, 68(4): 456-462.
    [137] Robert K, Nuttall, Thomas G, et al. Epidermal growth factor and basic fibroblast growth factor increase the production of matrix metalloproteinases suring in vitro decidual- ization of rat endometrial stromal cells[J]. Endocrinology, 2000, 141(2): 629-636.
    [138] Gospodarowicz D, Ferrara N, Schweigerer L, et al. Structural characterization and biological functions of fibroblast growth factor[J]. Endocr Rev, 1987, 8(2): 95-114.
    [139] Carlone D L, Rider V. Embryonic modulation of basic growth factor in the rat uterus[J]. Biol Repro, 1993, 49(4): 653-665.
    [140] Maglione D, Guerriero V, Viglietto G, et al. Isolation of a human placenta cDNA coding for a protein related to vascular permeability factor[J]. Proc Natl Acad Sci USA, 1991, 88(20): 9267-9271.
    [141] Clark D E, Smith S K, Licence D, et al. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation[J]. J Endocrinol, 1998, 159(3): 459-467.
    [142] Ziche M, Maglione D, Ribatti D, et al. Placenta growth factor-1 is chemotactic, mitogenic, andangiogenic[J]. Lab Invest, 1997, 76(4): 517-531.
    [143] Cao Y, Linden P, Shima D, et al. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor[J]. J Clin Invest, 1996, 98(11): 2507-2511.
    [144] Lacal P M, Failla C M, Paqani E, et al. Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor[J]. J Invest Dermatol, 2000, 115(6): 1000-1007.
    [145] Ghosh D, Sharkey A M, Charnock-Jones D S, et al. Expression of vascular endothelial growth factor(VEGF) and placental growth factor (PIGF)in conceptus and endometrium during implantation in the rhesus monkey[J]. Molecular Human Reproduction, 2000, 6(10): 935-941.
    [146] Hashizume K. Analysis of uteroplacental-specific molecules and their functions during implantation and placentation in the bovine[J]. J Reprod Dev, 2007, 53(1): 1-11.
    [147] Luttikhuizen D T, Amerongen M J, Feijter P C, et al. The correlation between different in foreign body reaction between implant locations and cytokine and MMP expression[J]. Biomaterials, 2006, 27(34): 5763-5770.
    [148] Westermarck J, Kahari V M. Regulation of matrix metalloproteinase expression in tumor invasion[J]. J FASEB, 1999, 13(8): 781-972.
    [149] Sternlicht M D, Werb Z. How matrix metalloproteinases regulate cell behavior[J]. Annu Rev Cell Dev Biol, 2001, 17(1): 463-516.
    [150] Curry T F, Osteen K G. Cyclic changes in the matrix metalioproteinase system in the ovary and uterus[J]. Biol Reprod, 2001, 64(5): 1285-1296.
    [151] Seval Y, Akkoyunlu G, Demir R, et al. Distribution patterns of matrix metalloproteinase (MMP)-2 and -9 and their inhibitors(TIMP-1 and TIMP-2)in the human deciduas during early pregnancy[J]. Acta Histochem, 2004, 106(5): 353-362.
    [152] He X H, Chen S L, Sun L, et al. Expression of matrix metalloproteinases in the cytotrophoblasts and decidual stromal cells in human early pregnancy[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2006, 26(8): 1136-1139.
    [153] Salamonsen L A, Shuster S, Stern R. Distribution of hyaluronan in human endometrium across the menstrual cycle: implications for implantation and menstruation[J]. Cell Tissue Res, 2001, 306(2): 335-340.
    [154] Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinases-9 proteolytica- lly activates TGF-beta and promotes tumor invasion and angiogenesis[J]. Genes Dev, 2000, 14(2): 163-176.
    [155] Martin D C, Fowlkes J L, Babic B, et al. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1[J]. J Cell Biol, 1999, 146(4): 881-892.
    [156] Fernandez-Patron C, Radomski M W, Davidge S T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor[J]. Circ Res, 1999, 85(10): 906-911.
    [157] Patterson B C, Sang Q A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9)[J]. J Biol Chem, 1997, 272(46): 28823 -28825.
    [158] Itoh T, Ikeda T, Gomi H, et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A(matrix metalloproteinase 2)-deficient mice[J]. J Biol Chem, 1997, 272(36): 22389-22392.
    [159] Dubois B, Arnold B, Opdenakker G. Gelatinase B deficiency impairs reproduction[J]. J Clin Invest, 2000, 106(5): 627-628.
    [160] Baker A H, Edwards D R, Murphy G. Metalloproteinase inhibitors:biological actions and therapeutic opportunities[J]. J Cell Sci, 2002, 115(19): 3719-3727.
    [161] Hurskainen T, Hoyhtya M, Tuuttila A, et al. mRNA expression of TIMP-1, -2 and -3 and 92-KD type IV collagenase in early human placenta and decidual membrane as studied by in situ hybridization[J]. J Histochem Cytochem, 1996, 44(12): 1379-1388.
    [162] Ruck P, Marzusch K, Horny H P, et al. The distribution of tissue inhibitor of metalloproteinases-2 (TIMP-2) in the human placenta[J]. Placenta, 1996, 17(4): 263-266.
    [163] Niu R, Okamoto T, Iwase K, et al. Quantitative analysis of matrix metalloproteinase-2 and -9 and their tissue inhibitors-1 and -2 in human placenta throughout gestation[J]. Life Sci, 2000, 66(12): 1127-1137.
    [164] Wang H, Wen Y, Mooney S, et al. Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human preimplantation embryos[J]. Fertil Steril, 2003, 80(suppl 2): 736-742.
    [165] Ramer R, Eichele K, Hinz B. Upregulation of tissue inhibitor of matrix metalloprotei- nases-1 confers the anti-invasive action of cisplatin on human cancer cells[J]. Oncogene, 2007, [Epub ahead of print].
    [166] Chakraborty C, Gleeson L M, McKinnon T, et al. Regulation of human trophoblast migration and invasiveness[J]. Can J Physiol Pharmacol, 2002, 80(2): 116-124.
    [167] Rho S B, Chung B M, Lee J H. TIMP-1 regulates cell proliferation by interacting with the ninth zinc finger domain of PLZF[J]. J Cell Biochem, 2007, [Epub ahead of print].
    [168] Satoh T, Kobayashi K, Yamashita S, et al. Tissue inhibitor of metalloproteinases (TIMP-1) produced by granulosa and oviduct cells enhances in vitro development of bovine embryo[J]. Biol Reprod, 1994, 50(4): 835-844.
    [169] Paria B C, Reese J, Das S K,et al. Deciphering the cross-talk of implantation: advances and challenges [J]. Science, 2002, 296(5576): 2185-2188.
    [170] 宋宇轩, 曹斌云, 王建刚, 等. 不同性腺激素水平对子宫内膜细胞体外增殖的影响[J]. 畜牧兽医学报, 2006, 37(10): 987-991.
    [171] Joan S L, Kathleen M, Clodia O, et al. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation[J]. J National Cancer Institute, 2005, 97(23): 1746-1759.
    [172] Pierelli L, Scambia G, Fattorossi A. Flow cytometric analysis of human hemopoietic differentiation by assessing cell division rate and phenotypic profile[J]. Methods Cell Biol, 2001, 64: 153-170.
    [173] Birkedal H H. Catabolism and turnover of collagens: Collagenases[J]. Methods Enzymol, 1987, 144: 140-171.
    [174] Taub M, Wang Y, Szczesny T M, et al. Epidermial growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel culture in serum-free medium[J]. PNAS, 1990, 87(10): 4002-4006.
    [175] Streuli C H, Bissell M J. Expression of extracellular matrix components is regulated by substratum[J]. J Cell Bio, 1990, 110(4): 1405-1415.
    [176] Streuli C H, Bailey N, Bissell M J. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interactin and morphological polarity[J]. J Cell Biol, 1991, 115(5): 1383-1395.
    [177] Hohn H P, Winterhager E, Busch L C, et al. Rabbit endometrium in organ culture: morphological evidence for progestational differentiation in vitro[J]. Cell Tissue Res, 1989, 257(3): 505-518.
    [178] Neqami A I, Tominaqa T. Gland and epithelium formation in vitro from epithelial cells of the human endometrium[J]. Hum Reprod, 1989, 4(6): 620-624.
    [179] Martin P, Parkhurst S M. Parallels between tissue repair and embryo morphogenesis[J]. Development, 2004, 131(13): 3021-3034.
    [180] Condeelis J, Segall J E. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer, 2003, 3(12): 921-930.
    [181] Knecht A K, Bronner-Fraser M. Induction of the neural crest: a multigene process[J]. Nat Rev Genet, 2002, 3(6): 453-461.
    [182] Dickinson R B, Caro L, Purich D L. Force generation by cytoskeletal filament end- tracking proteins [J]. J Biophys, 2004, 87(4): 2838-2854.
    [183] Wakatsuki T, Kolodney M S, Zahalak G I, et al. Cell mechanics studied by a reconstituted model tissue[J]. J Biophys, 2000, 79(5): 2353-2368.
    [184] Cukierman E, Pankov R, Stevens D R, et al. Taking cell-matrix adhesions to the third dimension[J]. Science, 2001, 294(5547): 1708-1712.
    [185] Lo C M, Wang H B, Dembo M, et al. Cell movement is guided by the rigidity of the substrate[J]. J Biophys, 2000, 79(1): 144-152.
    [186] Munevar S, Wang Y L, Dembo M. Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration[J]. Mol Biol Cell, 2001, 12(12): 3947-3954.
    [187] Zaman M H, Kamm R D, Matsudaira P, et al. Computational model for cell migration in three- dimensional matrices[J]. J Biophysical, 2005, 89(2): 1389-1397.
    [188] Lubarsky B, Krasnow M A. Tube morphogenesis: making and shaping biological tubes[J]. 2003, Cell, 112(1): 19-28.
    [189] Seandel M, Noack-Kunnmann K, Zhu D, et al. Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen[J]. Blood, 2001, 97(8): 2323- 2332.
    [190] Kheradmand, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP mediated activation of gelatinase A/MMP2[J]. J Cell Sci, 2002, 115(4): 839-848.
    [191] Grasselli F, Basini G, Tirelli M, et al. Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier-based three-dimensional fibrin gel[J]. J Physiol Pharmacol, 2003, 54(3): 361-370.
    [192] Tachihara A, Jin E, Matsuoka T, et al. Critical roles of capillary endothelial cells for alveolar remodeling in nonspecific and usual interstitial pneumonias[J]. J Nippon Med Sch, 2006, 73(4): 203-213.
    [193] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression [J]. Nat Rev Cancer, 2002, 2(3): 161-174.
    [194] Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IVis required for angiogenesis and tumor growth in vivo[J]. J Cell Biol, 2001154(5): 1069-1079.
    [195] Tabibzadeh S, BabakaniA. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion[J]. Hum Reprod, 1995, 10(6): 1579-1602.
    [196] Hall P A, Levison D A, Woods A L, et al. Proliferating cell nuclear antigen(PCNA) immunolocalization in paraffin sections:an index of cell proliferation with evidence of deregulated expression in some neoplasms[J]. J Pathol, 1990, 162(4): 285-294.
    [197] Lockwood C J, Nemerson Y, Krikun G, et al. Steroid-modulated stromal cell tissue factor expression:a model for the regulation of endometrial hemostasis and menstruation[J]. J Clin Endocrinol Metab, 1993, 77(4): 1014-1019.
    [198] Nuttall R K, Kennedy T G. Epidermal growth factor and basic fibroblast growth factor increase the production of matrix metalloproteinases during in vitro decidualization of rat endometrial stromal cells[J]. Endocrinology, 2000, 141(2): 629-636.
    [199] Bischof P, Meisser A, Campana A. Mechanisms of endometrial control of trophoblast invasion[J]. Reprod Fertil Suppl, 2000, 55: 65-71.
    [200] Yang H, Han S, Kim S, et al. Expression of integrins,cyclooxygena and matrix metalloproteinases in three-dimensional human endometrial cell culture system[J]. Exp Med, 2002, 34(1): 75-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700