机械结合面动态特性分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体封装技术的不断发展,开发高精度、高效率、高可靠性的引线键合机变得越来越重要。本文从机械结构的角度分析,主要研究影响引线键合机的一个主要因素——结合面的动态特性。
     机械结合面作为机械系统中一种固有的结构形式,由于它在外加载荷的作用下表现出既有弹性又有阻尼的复杂动力学特性,对机械系统整体的动态性能产生显著的影响,所以结合面对机构整体动态性能有着关键的影响。
     本文结合目前国内外研究现状,针对机械结构中结合面的特点,对典型的固定结合面动态特性进行研究。在充分考虑了构成结合面的子结构之间相对运动的基础上,本文建立了结合面有限单元模型。与目前结合面的研究成果相比,该模型考虑了各自由度之间的耦合关系,能更准确地反映结合面的动力学特性。基于结合面的动力学模型,提出了动力学参数辨识的方法;运用有限元分析与实验模态分析相结合的方法测试结构的关键频率,有力证明了本文所建立的固定结合面动力学模型的有效性和模型参数识别方法的准确性。为进一步的结构优化提供参考。
With the development of wire bonding technology, the invention and innovation of high-precision, high-efficiency and high-reliability wire bonder is an imperative requirement for packaging manufacturing. From the point of view of mechanical structure, this thesis focuses on an important factor----the dynamic characteristics of the joint surface.
     Mechanical joints are natural structure of all mechanical systems. When loaded with force, it behaves complex dynamical characteristic with damping and elasticity and affects so much dynamical characteristic of mechanical systems, so joints affect dynamical characteristic of machine tools very much.
     Upon the analysis of the current research development at home and abroad, this thesis has studied the dynamic characteristics of a typical joint surface. This research has fully considered the relative movement state of the sub-structure, established a finite element model of the joint surface. Compared with the recent research achievements of the joint surface, the coupling relationship between the various degrees of freedom is considered in this modal, which can reflect the dynamics of joint surface more accurately. According to the dynamic model, a new parameter identification method is proposed to testing the key frequency of the joint surface with the finite element analysis and experimental modal analysis method. The result is a strong proof of the validity of dynamic model of the fixed joint surface and the accuracy of model parameter identification methods, which is a preparation for the further structural optimization.
引文
1 C. Y. Lin, Y. G. Tsuei. The Prediction of Substructure and System Modes by the Extended Complex Mode Indication Function. Journal of Vibration and Acoustics, 120:671-677, 1998.
    2 Y. Ren, C. F. Beards. Identification of Properties of Nonlinear Joints Using Coupling and Joints Using Coupling and Joint Identification Techniques. Journal of Vibration and Acoustics, 120:331-337, 1998.
    3 CUI Zhi-qin, JING Yin-ping. Application of virtual material in joint surface of complex assembled structures. J. Cent. South Univ. Technol. ,15(s2): 421?424, 2008.
    4 N. G. Napitolela. A mass or stiffness addition technique for structural parameter updating. The International Journal of Analytical and Experimental Modal Analysis , 7 (3) : 157-168 , 1992.
    5 K.M.Mao, B. Li. Dynamic modeling of the movable joint on rolling linear guide. J . Huazhong Univ. of Sci. & Tech. ,8(36):85-88, 2008.
    6 Ralf Bachmayer, Louis L. Whitcomb. Adaptive parameter identification of an accurate nonlinear dynamical model. Journal of Dynamic System, Measurement, and Control, 125(5): 489?491, 2003
    7 T. NEZU. Three-dimensional analysis of elastic stress distribution of indented ceramic surface by finite element method. Trans. Nonferrous Met. Soc. China, 16(3): 551?557, 2006.
    8 G. Wang, S. J. Liu, L. Li. FEM modeling for 3D dynamic analysis of deep-ocean mining pipeline and its experimental verification. Journal of Central South University of Technology, 14(6): 808?813, 2007.
    9 M. Dalenbring. Damping function estimation based on measured vibration frequency responses and finite-element displacement modes. Mechanical Systems and Signal Processing, 13(4):547-569, 1999.
    10 Y. M. Huang, W. P. Fu, J. X. Tong. A method of acquiring applied tangential damping parameters of joint surfaces. Journal of Xi’an University of Technology, 12(1):1~5,1996.
    11 J. M. Berthelot, A. Mustapha. Damping analysis of composite materials and structures. Composite Structures, 85:189-204, 2007
    12 Damjan, B. Miha. Identification of the dynamic properties of joints using frequency–response functions. Journal of Sound and Vibration, 317: 158–174, 2008.
    13 J. Woodhouse. Linear damping models for structural vibration. Journal of Sound and Vibration, 215(3), 547-567, 2008.
    14 W. Chen, X. Deng. Structural damping caused by micro-slip along frictional interfaces. International Journal of Mechanical Sciences, 47: 1191–1211, 2005.
    15 Y. D. Gong, B. Wang, W. S. Wang. The simulation of grinding wheels and ground surface roughness based on virtual reality technology. Journal ofMaterials Processing Technology, 138:123-126, 2002.
    16 S. Ganti, B. Bhushan. Generalized fractal analysis and its applications to engineering surfaces. Elsevier Science B.V., 180(1-2): 17-34, 1995.
    17 W. Yan, K. Komvopoulos. Contact analysis of elastic-plastic fractal surfaces. Journal of Applied Physics, 84(7): 10-18, 1998.
    18 X. L. Zhang, G. N. Xu, S. H. Wen. Review and prospect of the research on the static and dynamic characteristics of machine joint surfaces. Journal of Taiyuan Heavy Machinery Institute, 23(3): 226?232, 2002.
    19 S. T. Wang, L. H. Wang, P. Zhang. A summary of research on the damping generation theory of machine joint surface. Journal of Machine, 34(12): 1?4, 2007.
    20 Q. Nykamp, D. L. Ringach. Full identification of a linear-nonlinear system via cross-correlation analysis. Journal of Vision, 2(1): 1-11, 2002.
    21 K. Yasuda, K. Kamiya. Experimental identification technique of nonlinear beams in time domain. Nonlinear Dynamics, 18(2): 185-190, 1999.
    22李德葆,陆秋海。实验模态分析及其应用。科学出版社。2001,2。
    23李邦国,路华鹏,胡仁喜等。Patran 2006与Nastran 2007有限元分析实例指导教程。机械工业出版社。2008,1。
    24 X. Z. Xie, W. J. Yi. Study on structural parameter identification in time domain based on virtual response [J]. Chinese Journal of Computational Mechanics, 24(6): 859?863, 2007.
    25 Y. Ren, T. M. Lim, M. K. Lim. Identification of properties of nonlinear joints using dynamic test data. Journal of Vibration and Acoustics, 120: 324-330, 1998.
    26 J. Lardies, N. Larbi. A New Method for Modal Order Selection and Modal Parameter Estimation in Time Domain. Journal of Sound and Vibration, 245(2):187-203, 2001.
    27 K. A. Petsounis, S. D. Fassois. Parametric Time-domain Methods for the Identification of Vibrating Structures-A Critical Comparison and Assessment. Mechanical Systems and Signal Processing, 15(6):1031-1060, 2001.
    28 E. Ventura, W. D. Finn, Lord. Dynamic Characteristics of a Base Isolated Building from Ambient Vibration Measurements and Low Level Earthquake Shaking. Soil Dynamics and Earthquake Engineering, 23:313~322, 2003.
    29 T. Inamura, T. Sata. Stiffness and damping identification of the elements of a machine tool structure. Annals of CIRP, 28:76-83, 1979.
    30 G. K. Kaleh, R. Vallet. Joint parameter estimation and symbol detection for linear or nonlinear unknown channels. IEEE Transactions on Communications, 42(7): 2406-2413, 1994.
    31 M. H. Schwartz, A. Rozumalski. A new method for estimating joint parameters from motion data. Journal of biomechanics, 38: 107-116, 2005.
    32 M. S. Wulfsohn, A. A. Tsiatis. A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53(1): 330-339, 1997.
    33 R. Henderson, P. Diggle, A. Dobson. Joint modeling of longitudinal measurements and event time data. Biostatistics, 1:465-480, 2000.
    34 Y. Wang, Z Wang. A temporal finite element method for the dynamic analysis of flexible mechanisms. Journal of Sound and Vibration, 213(3): 569-576, 1998.
    35 K. W. CHAN, W. H. LIAO, M. Y. WANG. Experimental Studies for Particle Damping on a Bond Arm. Journal of Sound and Vibration, 12(3): 297–312, 2006.
    36 B. Ozdoganlar, B. D. Hansche, T. G. Carne. Experimental modal analysis for microelectromechanical systems. Experimental Mechanics, 45(6): 498-506, 2006.
    37 S. J. I. Walker, G. S. Aglietti, P. Cunningham. A study of joint damping in metal plates. Acta Astronautica, 65: 184–191, 2009.
    38 C. S. Liu. Identifying time-dependent damping and stiffness functions by a simple and yet accurate method. Journal of Sound and Vibration, 318:148–165, 2008.
    39 Celic, M. Boltezar. Identification of the dynamic properties of joints using frequency–response functions. Journal of Sound and Vibration, 317(1-2): 158-174, 2008.
    40 D. J. Whitehouse, J. F. Archard. The properties of random surfaces of significance in their contact. Proceedings of the Royal Society of London, 45(3):97-121, 1970.
    41 R. A. Onions,J. F. A rchard. The contact of surfaces having a random structure. Journal of Physics D Applied Physics, 77(6):289-304, 1973.
    42 T. Yang, S. H. Fan, C. S. Lin. Joint stiffness identification using FRF measurements. Computers and Structures, 81:2549–2556, 2003.
    43 J. H. Wang, S. C. Chuang. Reducing errors in the identification of structural joint parameters using error functions. Journal of Sound and Vibration, 273:295–316, 2004.
    44Т. R. Kim, S. M. Wu, K. F. Eman. Identification of Joint Parameters for a Taper Joint. Journal of Engineering for Industry, 111:282-287, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700