不同品质类型小麦HMW-GS积累及GMP粒度分布对灌浆期高温胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2007~2009年在山东农业大学试验农场进行,选用不同品质类型的小麦藁城8901(GC8901,强筋)、济南17(JN17,强筋)、山农1391(SN1391,弱筋)和豫麦50(YM50,弱筋)为供试品种,通过改变籽粒灌浆阶段温度,系统研究小麦籽粒氮素转移效率、蛋白质组分含量、谷蛋白大聚合体积累、粒度分布及高分子量谷蛋白亚基积累的变化,明确高温影响籽粒蛋白质形成的生理生化机理。主要研究结果如下:
     1.灌浆期高温胁迫对小麦产量的影响
     灌浆期高温胁迫降低了籽粒穗粒数、千粒重,从而造成产量下降。高温处理对亩穗数影响较小,对粒重影响比对穗粒数影响大,说明高温条件下产量的下降主要是由于粒重下降引起的。灌浆前期、中期、后期高温处理后产量降幅分别为14.25%、17.32%、8.37%(山农1391)和17.87%、17.40%、23.38%(豫麦50);22.67%、27.46%、19.05%(藁城8901)和19.31%、12.11%、25.72%(济南17),不同品种处理间差异显著。
     前期高温处理后不同品种产量下降顺序为藁城8901>济南17>豫麦50>山农1391;中期高温处理后产量下降顺序为藁城8901>山农1391>豫麦50>济南17,后期高温处理后产量下降顺序为济南17>豫麦50>藁城8901>山农1391,说明不同品种对不同时期高温胁迫的响应存在差异。中期高温处理对豫麦50和济南17产量影响较前期和后期大,后期高温处理对山农1391和藁城8901的影响较前期和中期大。
     2.灌浆期高温胁迫对氮素转移效率和蛋白质含量的影响
     花后不同时期高温处理均降低了氮素转移效率,减少了氮素从植株向籽粒的转移,因而植株需要从环境中吸收更多的氮素来满足籽粒生长发育的需要。灌浆前期、中期、后期高温处理后弱筋小麦氮素转移效率降幅为8.05%、3.23%、9.36%(山农1391)和9.89%、13.01%、、8.20%(豫麦50);强筋小麦氮素转移效率降幅为4.63%、2.49%、6.60%(藁城8901)和14.25%、17.73%、7.63%(济南17)。
     在开花后各个时期对小麦进行高温处理,籽粒蛋白质含量均呈现升高的趋势。灌浆前期、中期、后期高温处理后不同品种籽粒蛋白质含量上升幅度不一致。高温胁迫对弱筋小麦山农1391和强筋小麦藁城8901蛋白质含量影响顺序为:后期>前期>中期,对弱筋小麦豫麦50和强筋小麦济南17的影响顺序为中期>前期>后期。山农1391和藁城8901对后期高温胁迫响应比较敏感,而豫麦50和济南17对中期高温胁迫比较敏感。说明不同品种对不同时期温度处理的适应性不同。
     3.灌浆期高温胁迫对蛋白质组分的影响
     对小麦开花后各个时期进行高温处理,籽粒清蛋白、球蛋白、醇溶蛋白以及可溶性谷蛋白含量均提高,谷蛋白/醇溶蛋白比值下降。不同时期对不同品种的影响存在差异,花后24~27天高温胁迫对弱筋小麦山农1391和强筋小麦藁城8901蛋白质组分的影响比花后7~9天和14~17天的影响大,花后14~17天高温胁迫对弱筋小麦豫麦50和强筋小麦济南17蛋白质组分含量影响比花后7~9天和24~27天高温处理影响大。
     4.灌浆期高温胁迫对谷蛋白大聚合体含量的影响
     灌浆期谷蛋白大聚合体(GMP)含量呈现先下降后上升成熟期又略有下降的趋势。山农1391和藁城8901GMP含量在花后25天出现最低值,豫麦50和济南17GMP含量在花后20天左右出现最低值。灌浆前、中、后期高温处理均提高了4个品种GMP含量,其中后期高温胁迫对弱筋小麦山农1391和强筋小麦藁城8901GMP含量的影响比对豫麦50和济南17的影响大,而中期高温处理后弱筋小麦豫麦50和强筋小麦济南17GMP含量上升幅度比弱筋小麦山农1391和强筋小麦藁城8901大。不同时期高温处理间比较,前期高温对GMP含量影响较小。
     5.灌浆期高温胁迫对谷蛋白大聚合体颗粒粒度分布的影响
     谷蛋白大聚合体的体积和表面积分布呈双峰曲线,数目分布呈单峰曲线变化。GMP<10μm颗粒所占体积为21.80%~47.91%,10~100μm颗粒和>100μm颗粒对体积的贡献分别为33.85%~58.81%和9.49%~31.95%。体积加权平均粒径D(4.3)为33.64~78.99μm。<10μm颗粒所占表面积为81.30%~92.81%,10~100μm颗粒和>100μm颗粒对表面积的贡献分别为6.61%~15.30%和0.65%~10.91%,表面积加权平均粒径D(3.2)为5.97~ 11.25μm。<10μm颗粒数目所占比例为99.88%~99.96%,>10μm颗粒数目所占比例为0.06%~0.12%。灌浆期高温胁迫降低了<10μm颗粒所占体积、表面积和数目比例,显著提高了10~100μm颗粒和>100μm颗粒所占体积、表面积和数目比例,同时体积加权平均粒径D(4.3)和表面积加权平均粒径D(3.2)也增大。不同时期高温处理间比较,花后7~9天高温胁迫对GMP粒度分布影响较小;花后24~27天高温胁迫对弱筋小麦山农1391和强筋小麦藁城8901GMP粒度分布的影响比对豫麦50和济南17的影响大,而花后14~17天高温处理后弱筋小麦豫麦50和强筋小麦济南17GMP粒度分布变化幅度大,较另外两个品种差异显著。
     6.灌浆期高温胁迫对高分子量谷蛋白亚基含量的影响
     灌浆前期高温胁迫后4个品种高低分子量谷蛋白亚基含量均提高。灌浆中期高温胁迫降低了山农1391和藁城8901 HMW-GS含量但提高了LMW-GS含量,从而使H/L降低;豫麦50和济南17 HMW-GS含量和LMW-GS含量在灌浆中期高温处理后均升高,但LMW-GS含量上升幅度较大,因而H/L比值也降低。后期高温胁迫后山农1391和藁城8901 HMW-GS含量和LMW-GS含量均升高,豫麦50和济南17 HMW-GS含量降低,LMW-GS含量上升,4个品种H/L比值均降低。强筋小麦藁城8901和济南17位于D位点上的不同类型的亚基对中、后期高温胁迫的响应不同,x-亚基比y-亚基更敏感。弱筋小麦山农1391和豫麦50位于B位点亚基对中、后期高温胁迫的响应不同,y-亚基比x-亚基对高温胁迫的响应更敏感。
The effects of heat stress during grain filling on nitrogen remobilization efficiency (NRE, %), protein content, glutenin macro polymer (GMP) particle size distribution and high molecular weight glutenin subunit (HMW-GS) accumulation were studied, using four winter wheat (Triticum aestivum L.) cultivars, Shannong1391 (SN1391), Yumai50 (YM50), Gaocheng8901 (GC8901) and Jinan17 (JN17) with different HMW-GS compositions, which were grown at Tai’an Experimental Station of Shandong Agriculture University, Tai’an, Shandong, P R China (36°09’N, 117°09’E) during the 2007~2009 growing seasons. Three heat stress treatments were conducted with transparent plastic increasing temperature sheds from 7 days after anthesis (DAA, T1), 14 DAA (T2) and 24 DAA (T3), respectively, and each treatment last for three days during grain filling. The main results were as follows:
     1. Effects of heat stress during grain filling on grain yield and yield components of wheat cultivars
     The results showed that there was significant effect of heat stress on grain yield and yield components of wheat. Heat stress during grain filling reduced grain yield, grain numbers per spike, and kernel weight, but not spike number. The damage degree of heat stress on kernel weight was higher than grain numbers per spike, the results suggested that the decrease of grain yield was result from the reduction of kernel weight under heat stress conditions. For the four cultivars, the reduction of grain yield after T1, T2 and T3 treatments was found with the following rank: 14.25%、17.32%、8.37% for SN1391, 17.87%、17.40%、23.38% for YM50, 22.67%、27.46%、19.05% for GC8901 and 19.31%、12.11%、25.72% for JN17.
     The conclusion also showed that there was a difference in reduction extent of grain yield and grain weight from the four different wheat cultivars under heat stress. The reduction of grain yield after T1 treatment was found with the following rank: GC8901> JN17> YM50> SN1391. And GC8901> SN1391> YM50> JN17 after T2 treatment, JN17> YM50> GC8901>SN1391 after T3 treatment. The damage degree of heat stress on grain yield of YM50 and JN17 at middle grain filling stages was higher than early and later filling stages. On the other hand, heat stress at later grain filling stages affects grain yield of SN1391 and GC8901 more severity.
     2. Effects of heat stress during grain filling on nitrogen remobilization efficiency NRE (%) and protein content in grains
     The NRE (%) varied with heat stress treatments for all the cultivars. In general, comparison of NRE (%) between non-stressed and heat stress conditions, showed a systematic difference. No significant differences of NRE (%) among cultivars were found in the normal condition while the differences were significant under heat stress condition. All heat stress treatments negatively affected the overall remobilization efficiency of nitrogen. For SN 1391 and GC 8901, the largest reduction of NRE (9.36% and 6.60%, respectively) was found in T3 treatment with the following rank: CK>T2>T1>T3. Interestingly, there is a similar trend for both YM 50 and JN 17 under the T2 condition.
     Heat stress during grain filling improved protein content, there was a difference in protein content from the four different wheat cultivars. All heat stress treatments positively affected the protein content. For SN 1391 and GC 8901, the highest r protein content was found in T3 treatment with the following rank: CK>T2>T1>T3. On the other hand, a rank of CK>T2>T1>T3 was fond in both YM 50 and JN 17. Since growing conditions are the same, this can be due to the HMW-GS composition differences.
     3. Effects of heat stress during grain filling on protein components in grains
     The results showed that albumin, globulin, gliadin and soluble glutenin were significantly increased by all heat stress treatments. But glutenin/gliadin ratio was reduced. The effects of heat stress on protein components of SN1391 and GC8901 at later grain filling stages was higher than early and middle filling stages. On the other hand, heat stress at middle grain filling stages affects grain yield of YM50 and JN17 more severity.
     4. Effects of heat stress during grain filling on glutenin macro polymer (GMP) content
     There was a trend of“V”trend in GMP content during grain filling. The lowest content of SN1391 and GC8901 was found at 25 DAA, and for YM50 and JN17, the lowest content was found at 20DAA. The results showed that heat stress during grain filling positively affected GMP content of the four cultivars. And there was a similar trend like protein content under heat stress conditions.
     5. Effects of heat stress during grain filling on GMP size distribution
     The glutenin particle sizes from the four different wheat genotypes ranged from 0.4 and to ca.325μm. The distribution of GMP volume and surface area showed a pattern of two-peak curve, and the GMP number distributed in the pattern of single-peak curve. The number of GMP particle mainly composed by <10μm particle (accounting for 99.88%~99.96%), the volume distribution percentage of <10μm particle ranged from 21.80% to 47.91%. 33.85%~58.81% and 9.49%~31.95% for 10~100μm and >100μm particle. On the other hand, the range of surface area <10μm, 10~100μm and >100μm was 81.30%~92.81%, 6.61%~15.30% and 0.65%~10.91%, 8901, the highest r protein content was found in T3 treatment with the following rank: CK>T2>T1>T3. On the other hand, a rank of CK>T2>T1>T3 was fond in both YM 50 and JN 17. Since growing conditions are the same, this can be due to the HMW-GS composition differences.
     3. Effects of heat stress during grain filling on protein components in grains
     The results showed that albumin, globulin, gliadin and soluble glutenin were significantly increased by all heat stress treatments. But glutenin/gliadin ratio was reduced. The effects of heat stress on protein components of SN1391 and GC8901 at later grain filling stages was higher than early and middle filling stages. On the other hand, heat stress at middle grain filling stages affects grain yield of YM50 and JN17 more severity.
     4. Effects of heat stress during grain filling on glutenin macro polymer (GMP) content
     There was a trend of“V”trend in GMP content during grain filling. The lowest content of SN1391 and GC8901 was found at 25 DAA, and for YM50 and JN17, the lowest content was found at 20DAA. The results showed that heat stress during grain filling positively affected GMP content of the four cultivars. And there was a similar trend like protein content under heat stress conditions.
     5. Effects of heat stress during grain filling on GMP size distribution
     The glutenin particle sizes from the four different wheat genotypes ranged from 0.4 and to ca.325μm. The distribution of GMP volume and surface area showed a pattern of two-peak curve, and the GMP number distributed in the pattern of single-peak curve. The number of GMP particle mainly composed by <10μm particle (accounting for 99.88%~99.96%), the volume distribution percentage of <10μm particle ranged from 21.80% to 47.91%. 33.85%~58.81% and 9.49%~31.95% for 10~100μm and >100μm particle. On the other hand, the range of surface area <10μm, 10~100μm and >100μm was 81.30%~92.81%, 6.61%~15.30% and 0.65%~10.91%, another meaningful trait also found in our experiment was that GS belongs to y-type from SN 1391 and YM 50 reacted to heat stress more sensitively than x-type, and heat stress affected x-type from GC 8901 and JN 17 rapidly than y-types. These results may indicate the essential diversification in HMW-GS accumulation after heat stress is that HMW-GS at different locus have a variety response to the ambient temperature changes.
引文
1.曹广才.温光条件对小麦籽粒蛋白质含量的影响.小麦生态研究,浙江科技出版社,1990:405~410.
    2.曹云英,段骅,杨立年,王志琴,周少川,杨建昌.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报, 2008, 34(12): 2134?2142.
    3.陈锋,田纪春,孟庆伟,赵世杰.短期高温胁迫对高产小麦品系灌浆后期旗叶光系统Ⅱ功能的影响.应用生态学报,2006,17(10):1854~1858.
    4.陈如梅,马俊虎,杜永芹.小麦灌浆成熟过程中蛋白质及其组成变化初报.上海农业学报,1992,8(1):78~80..
    5.程国旺,等.小麦高分子量麦谷蛋白亚基组成与面包烘烤品质关系的研究.安徽农业大学学报,2002,29(4):369~372.
    6.戴廷波,赵辉,荆奇,姜东,曹卫星.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响.生态学报,2006,11:3670~3676.
    7.邓志英,田纪春,胡瑞波,等.适度高温对不同筋力冬小麦蛋白组分、面粉品质和面条加工品质的影响.中国粮油学报, 2006, 21 (4) :25 ~ 31.
    8.杜金哲,李文雄,白祥和.春小麦籽粒蛋白质积累和产量形成规律及施氮的调节作用.第八次全国小麦高产栽培研讨会论文(山东),1998.
    9.封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(4):399~405.
    10.高庆荣,于金凤,柳坤.小麦籽粒品质、高分子量谷蛋白亚基组成类型与面筋质量相关性的研究.麦类作物学报.2003,23(2):30~33.
    11.高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报,2002,22(4):771~779
    12.郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响.作物学报,1998,2(6):957~962
    13.郭文善.灌浆期高温对小麦光合产物运转的影响.核农学报,1998.12(1):21~27.
    14.黄东印,林作揖,雷振生,等.冬小麦品质性状与面条品质性状关系的初步研究.华北农学报,1990,5(l):40~45.
    15.黄祥辉,胡茂兴.小麦栽培生理.上海:上海科学技术出版社,1984.154~172.
    16.蒋纪芸,张宝军,杨慧霞.硬粒小麦灌浆期间营养器官对籽粒蛋白质积累的影响.麦类作物学报,1996,1:22~24.
    17.金善宝.中国小麦学.北京:中国农业出版社, 1996: 58~151.
    18.李保云,王岳光,刘凤鸣,孙辉,刘广田.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报.2000,26(3):322~326.
    19.李木英,石庆华,许锦彪,胡志红,谭雪明,等.不同早稻品种灌浆期高温胁迫后根系生理差异研究.中国生态农业学报, 2006, 14(3):105~107.
    20.李兴洲,杨文彬,陆正铎.不良的气候条件对小麦粒重的影响及防御措施的研究.农业气象.
    21.李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响.植物生态学报,2003,27(2): 164~169.
    22.李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报, 2005, 29 (3): 461~466.
    23.李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报,1998,13(3):1~5.
    24.梁太波,尹燕枰,王振林,等.不同土壤条件下山农12小麦籽粒HMW~GS积累及GMP粒度分布特征.作物学报, 2008, 4(12): 2160?2167.
    25.廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报, 2000, 24, 744– 747.
    26.林作揖,揭声慧,杨会民,等.我国小麦品质概况和优质品种评选.麦类文摘,1996,16(5):9~10.
    27.刘建军等.山东省小麦品质育种研究进展.中澳小麦品质研讨会资料汇编,北京,中国农科院,2001:98~103.
    28.刘萍,郭文善,浦汉春,等.花后短暂高温对小麦籽粒蛋白质含量的影响及其生理机制.作物学报, 2007,33 (9):1516~ 1522.
    29.刘萍,郭文善,浦汉春,封超年,朱新开,彭永欣.灌浆期短暂高温对小麦淀粉形成的影响.作物学报, 2006, 32(2):182~188.
    30.刘萍,郭文善,浦汉春,封超年,朱新开,彭永欣.花后短暂高温对小麦籽粒蛋白质含量的影响及其生理机制.作物学报,2007,33(9):1516~152
    31.刘永环,贺明荣,等.不同氮温组合对小麦籽粒产量和品质的影响.山东农业科学,2008,1: 57~59.
    32.刘柞昌,苏德荫.高温对小麦叶绿体核糖体和叶绿素蛋白质生物合成的影响.植物学报,1985,27(l):63~67.
    33.齐学礼,胡琳,董海滨,张磊,王根松,高崇,许为钢.强光高温同时作用下不同小麦品种的光合特性.作物学报,2008,34(12): 2196?2201.
    34.宋建民,吴祥云,刘建军等.小麦籽粒特性与品质关系研究进展.山东农业科学,2002,(2):47~51.
    35.苏德荫.高温对小麦生理障碍及伤害机理(综述).山西农业科学,1992(5):35~38.
    36.孙辉,姚大年,李宝云,等.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,(12):13~16.
    37.孙辉,姚大年,李保云,等.小麦谷蛋白大聚合体含量的影响因素.麦类作物学报,2000, 20 (2) :23 ~27.
    38.王邦锡,齐明启,等.小麦在干热风条件下的生理变化.干热风对小麦灌浆期14CO2同化作用和14C同化产物累积的影响.植物学报,1978,20(l):37~43.
    39.王宪泽,李菡,张玲.山东省推广小麦品种HMW~GS组成及其对沉淀值的影响.麦类作物学报.1999,19(1):39~41.
    40.王月福,于振文,李尚霞等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,1990,23(6):35~41.
    41.闫素辉,尹燕枰,李文阳,王振林,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报,2008, 34(6): 1092?1096.
    42.于振文等编著, 2001,优质专用小麦品种及栽培,中国农业出版社.
    43.于振文,田奇卓,等.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报,2002,28(5):577~585.
    44.张吉旺,董树亭,王空军,胡昌浩,刘鹏.大田增温对夏玉米产量和品质的影响.应用生态学报,2007, 18 (1) : 52– 56.
    45.张平平,何中虎,夏先春,等.高温胁迫对小麦蛋白质和淀粉品质影响的研究进展.麦类作物学报, 2005, 25 (5) :129 ~132.
    46.赵辉,戴廷波,姜东,荆奇,曹卫星,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报, 2007,18(2):333~338.
    47.赵惠贤,段惠,梁亮,郭蔼光.不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报,2003,23(5):755~758.
    48.郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响.中国农业大学学报,1999,4(1):73~76.
    49.朱金宝,刘广田,张树棒,孙辉.小麦籽粒高、低分子量谷蛋白亚基及其与品质关系的研究.中国农业科学.1996,29(1):34~39.
    50.朱小乔,刘通讯.面筋蛋白及其对面包品质的影响.粮油食品科技,2001,4:18~21.
    51. Beasley, H, Uthayakumaran, S, Stoddard, F, Partridge, S, Daqiq, L, Chong, P, Synergistic and additive effects of three high molecular weight glutenin subunit loci. II. Effects on wheat dough functionality and end-use quality. Cereal Chemistry. 2002.,(79), 301~307.
    52. Benzian B. Protein concentration of grain in relation to some weather and soil factors during 17 years of English winter wheat experiment. J Sci Food Agric, 1986, 37: 435~444.
    53. Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, (31): 491~ 453.
    54. Blumenthal C S, Bekes F, Batey I L, Wringely C W, etal. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res, 1991, (42 ):325~334.
    55. Blumenthal C S, Stone P J, Gras P W,et al. Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat.Cereal Chem,1998,(75):43~50.
    56. Carceller, J, Aussenac, T. Size characterisation of glutenin polymers by HPSEC-MALLS. Journal of Cereal Science, 2001, ( 33), 131~142.
    57. Ciaffi, M, Tozzi, L, Borghi, B, Corbellini, M, Lafiandra, D. Effect of heat shock during grain filling on the gluten protein composition of bread wheat. Journal of Cereal Science. 1996,(24), 91~100.
    58. Corbellin, M, Mazza L, Ciaffii M, etal. Effect of heat shock during grain filling on Protein composition and technological quality of wheats . Euphytica,1998,(100):147~154.
    59. Corbellini, M, Canevar, M, Mazza, L, Ciaffi, M, Lafiandra, D, Borghi, B. Effect ofthe duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Australian Journal of Plant Physiology. 1997, (24), 245.
    60. Cox M, Qualset C, Rains D. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein. Crop Science. 1985b, (25), 435.
    61. Cox, M., Qualset, C., Rains, D., Genetic variation for nitrogen assimilation and translocation in wheat. I. Dry matter and nitrogen accumulation. Crop Science. 1985a, (25), 430.
    62. Crosbicl, Crosbic G B,Roass A S, Morot T, etal. Starch and protein quality requirement of Japanese alkaline noodles. Cereal Chem. 1999, (76):328~334.
    63. Don C, Lichtendonk W J, Plijter J J, Vliet T, Hamer R J. The effect of mixing on glutenin particle properties: aggregation factors that affect gluten function in dough. J Cereal Sci, 2005, 41: 69~83.
    64. Don C, Lichtendonk W, Plijter J J, Hamer R J. Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci, 2003, 37: 1~7.
    65. Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R J. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. J Cereal Sci, 2005, 42: 69~80.
    66. Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. J Cereal Sci, 2006, (44): 127~130.
    67. Don, C., Lichtendonk, W., Plijter, J., Hamer, R. Glutenin macropolymer: a gel formed by glutenin particles. Journal of Cereal Science. 2003a,(37):1~7.
    68. Don, C., Lichtendonk, W., Plijter, J., Hamer, R. Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. Journal of Cereal Science, 2003b,(38): 157~165.
    69. Don, C., Lookhart, G., Naeem, H., MacRitchie, F., Hamer, R. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science. 2005a, (42): 69~80.
    70. Don, C., Mann, G., Bekes, F., Hamer, R. HMW-GS affect the properties of gluteninparticles in GMP and thus flour quality. Journal of Cereal Science.2006,(44): 127~136.
    71. D'Ovidio, R., Masci, S. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science. 2004,(39): 321~339.
    72. Dupont, F., Altenbach, S. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science. 2003, (38): 133~146.
    73. Gebbing, T., Schnyder, H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology. 1999,(121):871.
    74. Gibson, L., Paulsen, G. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science. 1999,(39): 1841.
    75. Gooding, M., Ellis, R., Shewry, P., Schofield, J. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science. 2003,(37), 295~309.
    76. Graveland, A., Bosveld, P., Lichtendonk, W., Marseille, J., Moonen, J., Scheepstra, A. A model for the molecular structure of the glutenins from wheat flour. Journal of Cereal Science. ,1985. (3): 1~16.
    77. Graveland, A., Moonen, H., Lichtendonk, W., Bosveld, P., Scheepstra, A. Extraction and fractionation of wheat flour proteins. Journal of the Science of Food and Agriculture. 1982, (33): 1117~28.
    78. Gupta R B, Batey I L. and MacRitchief. Relationship between protein composition and functional properties of wheat flour. Cereal Chemistry. 1992,(69):125~131
    79. Gupta R B, Khan K, Mac Ritchie F. Biochemical basis of flour properties in bread wheat. I. Effects of variation in the quantity and size distribution of polymeric protein[J]. J Cereal Sci, 1993, (18):23~41.
    80. Gyarboseh,R.A .Enviomnenatl modifieation of hard red winter wheat flour Portein composition Australian Journal of Plant Physiology.,1995,(22):45~51.
    81. Halloran, G. Cultivar differences in nitrogen translocation in wheat. Australian Journal of Agricultural Research. 1981,(32):535~544.
    82. Heitholt, J., Croy, L., Maness, N., Nguyen, H. Nitrogen partitioning in genotypes ofwinter wheat differing in grain N concentration. Field Crops Research (Netherlands). 1990.
    83. Huang D Y,etal. Quantitative determination of HMW-GS of hard red spring wheat by SDS-PAGE2: Quantitative effects of total amounts on bread quality characteristics. Cereal Chem.,1997, (76):781~785.
    84. Jenner C F. The physiology of starch and protein deposition in the endosperm of wheat[J]. Aust J Plant Physiol, 1991,(l8):211~226.
    85. Johnson V V. Genetic advances in wheat protein quantity and composition, Pron.4th Intern.Wheat Genet.Symp.Columbia, 1973.
    86. Liang, T.B., Yin, Y.P., Cai, R.G., Yan, S.H., Li, W.Y., Geng, Q.H., Wang, P., Wu, Y.H., Li, Y., Wang, Z.L. HMW-GS Accumulation and GMP Size Distribution in Grains of Shannong 12 Grown in Different Soil Conditions. Acta Agronomica Sinica. . 2008,(34): 2160~2167.
    87. Luo C, Branlard G, Griffin B, et al. The effect of nitrogen and sulphur fertilization and their interaction with genotype on wheat glutenins and quality parameters. Journal of Cereal cience,2000,(31):185~194.
    88. MacRitchie, F. Wheat proteins: characterization and role in flour functionality. Cereal foods world. 1999,(44): 188~193.
    89. Osborne T B. The proteins of the wheat kernel. Washington D C: Carnegie of institute Washington publication.1907.
    90. Papakosta, D., Gagianas, A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agronomy Journal. , 1991,( 83): 864.
    91. Payne P I,etal.Correlation between ther heritance of certain HMW-GS and bread quality in progenies of six crosses of bread wheat.J sci. Food and Agriculture.1981,(32):591~601
    92. Pritchard, P. The glutenin fraction (gel-protein) of wheat protein-a new tool in the prediction of baking quality. Aspects of Applied Biology (United Kingdom). 1993.
    93. Randall,PJ,Moss HJ. Some effect of temperature regime during grain filling on wheat quality. Australian Journal of Agricultural Research,1990. 41:602~617
    94. Rao A C S,Smith J L,Jnadhyala V K,PaPendikcR J,Parr J F.Cultivar and climatic effets on the proteine content of sotf white winter wheat.Agronomy Joumal,1993,85(5):1023~1028.
    95. Sapirstein H D, Fu B X. Inter cultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to bread making quality. Cereal Chem, 1998, (75): 500?507.
    96. Shcipper A,Modifieations of the dough physical properties of various wheat cultivasr by environmental influenees. Gemrany,Agribiolgoieal rseacrh.1991,(44): 114~132.
    97. Shewry P R,Tatham A S. Biotechnology of wheat quality[J]. J. Sci, Food Agric.1997,(73):397~406.
    98. Shewry PR, Halford NG,Tatham AS. High molecular weight subunits of wheat glutenin.J.Cereal.Sci.1992,(15):105~120.
    99. Shewry, P., Halford, N., Tatham, A., Popineau, Y., Lafiandra, D., Belton, P. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Advances in food and nutrition research. 2003, (45): 219~302.
    100. Singh N K, Donovan G R, Betey I L, et al. Use of sonication and sizeexclusion high-performance liquid chromatography in the study of wheat flour proteins. 1. issolution of total proteins in the absence of reducing agents. Cereal Chem.1997,67(2):150~161.
    101. Sofield I,Evans L T,Cook M G,et al. Factors influencing the rate and duration of grain filling in wheat.Aust.J.Plant Physiol.1977,(4):785~797.
    102. Spiertz, J., Hamer, R., Xu, H., Primo-Martin, C., Don, C., Van, D., Putten, P., Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy. 2006.,(25): 89~95.
    103. Stone P J, Nicolas M E. The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation. Aust J Plant Physiol, l998, (25):13~20.
    104. Stone PJ,Nieolas ME.Wheat cultivars vary widely in their responses of grain yield and quality to Short periods of posy-anthesis heat stress. Australian Journal of PlantPhysiology. 1994,(21):887~900.
    105. Stone PJ. Nieolas ME. The effete of duration of heat stress during grain filling on two wheat Varieties differing in heat toleranee: grain growth and fraction protein accumulation. Australian Journal of Plant Physiology. 1998,(25):13~20.
    106. Stone, P., Nicolas, M. The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation. Australian Journal of Plant Physiology. 1998,(25),13~20.
    107. Tahir, I., Nakata, N. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science. 2005,(191), 106~115.
    108. Uthayakumaran, S., Beasley, H., Stoddard, F., Keentok, M., Phan-Thien, N., Tanner, R., B¨|k¨|s F. Synergistic and additive effects of three high molecular weight glutenin subunit loci. I. Effects on wheat dough rheology. Cereal Chemistry. 2002,(79): 294~300.
    109. Van Herwaarden A F, Richards R A, Farquhar G D,etal.‘Haying-off’, the negative grain yield response of dry land wheat to nitrogen fertiliser. III. The influence of water deficit and heat shock.Australian Journal of Agricultural Research. (49): 1095~1110.
    110. Van, Sanford, D., MacKown, C. Cultivar differences in nitrogen remobilization during grain fill in soft red winter wheat. Crop Science. 1987,(27),:295.
    111. Veraverbeke, W., Larroque, O., B¨|k¨|s F, Delcour, J. In vitro polymerization of wheat glutenin subunits with inorganic oxidizing agents. II. Stepwise oxidation of low molecular weight glutenin subunits and a mixture of high and low molecular weight glutenin subunits. Cereal Chemistry. 2000b,(77): 589~594.
    112. Veraverbeke, W., Larroque, O., Bekes, F., Delcour, J. Oxidation of high and low molecular weight glutenin subunits isolated from wheat. Wheat gluten. 2000a, 223.
    113. Viswanathan, C., Khanna-Chopra, R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science. 2001,(186): 1~7.
    114. Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, (23): 1~18.
    115. Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough pro cessing:Ⅰ. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, (23): 103~111.
    116. Weegels, P., Hamer, R., Schofield, J. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. II. Changes in composition. Journal of Cereal Science. 1997,(25): 155~163.
    117. Weegels, P., Van. De. Pijpekamp. A., Graveland, A., Hamer, R., Schofield, J. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. Journal of Cereal Science. 1996.,(23): 103~111.
    118. Wieser, H., Antes, S., Seilmeier, W. Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chemistry. 1998, (75): 644~650.
    119. Xu, X., Zhang, Y., Wang, Z. Effect of Heat Stress on Photosynthetic Characteristics of Di fferent Green Organs of Winter Wheat During Grain-filling Stage. Acta Botanica Sinica. 2001,(43): 571 ~ 577.
    120. Yang, J.C., Sears, R., Gill, B., Paulsen, G. Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica. 2002,(125): 179~188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700