塑性铰长度对平面框架滞回耗能计算影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于位移的抗震设计非常重视建筑结构在强烈地面运动作用下的最大位移反应,需要结构具有足够的延性。而为了保证结构的弹塑性变形能力,我国抗震规范规定按照不同的抗震等级对梁和柱进行加固(如对结构构件端部的箍筋加密等)。但经研究发现规范用层间位移角达到或超过2%的限值来判断结构整体失效的标准并不能反应地面运动持续时间引起结构累积破坏的影响。而基于能量概念设计方法能够很好的反映结构地震动的持时、强度和频谱特性。尤其能够反应强震持续时间对结构的累积损伤破坏的影响。其概念十分明确、形式又非常简单。因此,基于能量概念设计方法越来越受到国内外地震工程研究界的重视。为了减小柱发生破坏的可能性,降低结构发生整体倒塌的概率,人们通常采取强柱弱梁的结构抗震设计,使梁端先于柱端出铰,以滞回耗能的形式耗散掉地震波输入给结构的总能量。然而,人们往往把塑性铰看作一个截面,忽视了塑性铰长度对结构能量耗散的影响。因为考虑塑性铰长度与不考虑塑性铰长度计算出的滞回耗能有可能不同,所以对同一个结构而言,考虑塑性铰长度与不考虑塑性铰长度得出的结论可能相差甚远。因此,了解塑性铰长度对结构的滞回耗能影响是非常有必要的。
     本文主要从位移和滞回耗能两个方面对两种情况作了对比研究。研究内容主要做了如下工作:
     ①本文按照中国抗震规范8度设防烈度设计了7个3跨框架结构,分别为4层、5层、7层、9层、11层、13层和15层,采用大型商业有限元软件ABAQUS分别对以上7个平面框架进行建模和弹塑性分析,求出相应的能量和位移的地震反应和相应的时程曲线。而且采用的恢复力模型与以往的不同,不是将梁柱看做一个单元的构件恢复力模型,将质量全部集中在梁或柱的两端,而是从结构材料的本构关系出发,采用材料恢复力模型,将梁柱进行划分为若干单元,采用一致质量矩阵和刚度矩阵,这样就可以避免由于过多的假设所导致误差增加。
     ②在综合考虑地震动因素和结构自身动力特性的情况下,分析不考虑塑性铰长度和考虑三种不同的塑性铰长度模型时平面框架结构总输入能及总输入能分配的变化规律,重点求出由于不考虑塑性铰长度与考虑不同塑性铰长度时对计算总输入能及总输入能的耗散所带来的差异,初步定性和定量地得出了这些差异的规律。
     ③采用不考虑塑性铰长度和考虑塑性铰长度模型,在综合考虑地震动因素和结构自身动力特性情况下,平面框架结构在梁柱之间滞回耗能的分配规律,求出由于选取不同的塑性铰长度模型对计算梁柱的滞回耗能在总滞回耗能的比例所带来的差异,初步定性和定量地得出了这些差异的规律。
     ④过去对塑性铰长度的研究是基于试验的构件层面的研究,并没有从结构整体方面去考虑塑性铰长度的影响。本文与以往从构件的层面出发对塑性铰进行分析研究不同,从结构整体角度出发,在地震动作用下分别计算不考虑塑性铰长度、考虑选取的塑性铰长度模型和梁实际塑性铰长度三种情况对单根梁滞回耗能的差异影响。
     ⑤通过以上研究分析给出适合用于平面框架结构滞回耗能量反应分析的塑性铰长度模型的建议。
The displacement-based seismic design highly regards maximum displacement response of structures under strong ground motion, it requires that the structure has enough ductility.For guaranteeing the elastic-plastic deformation capacity of structure, Chinese Code for Seismic Design of Buildings orders that the beam and column must be reinforced according to different seismic grade (such as stirrup densification at the ends of members of structure). Although the research shows that the establishment of the allowed storye-drift-angle which is 2% is used to judge structure failure, it can’t reflect the structural cumulative damage failure caused by the duration of strong earthquake. The analysis and design methods based on energy not only is clear in concept and simple in form, but also better reflects the the duration、intensity of ground motion and spectral characteristics, particularly structural cumulative damage failure caused by the duration of strong earthquake. Therefore, seismic response analysis based on energy has been increasingly paid concern by domestic and international earthquake engineering research community. To reduce the possibility of failure of column and the probability of collapse of overall structure,strong column-weak beam seismic design of structures is adopted so that the plastic hinge of the beam-end appers before column-end. Hysteretic energy dissipates the total energy of structure input by seismic waves. However, plastic hinge is often seen as a section and neglected the impact of the plastic hinge length. For the difference of the hysterectic energy between considering the plastic hinge length or not, the analysis on the same structure using different plastic hinge lenth model may be very different in conclusion. Therefore understanding the influence of the hysterectic energy of the plastic hinge length is very necessary.
     In this paper, Mainly compared with the displacement and hysteretic energy between the two conditings, this article has done the following work:
     ①In accordance with Chinese Code for Seismic Design of Building, seven three-bay reinforced concrete plane frame of 4 layers, 5 layers, 7 layers, 9 layers, 11 layers, 13 layers and 15 layers are designed. And then these frames are modeled and analyzed using large commercial finite element software ABAQUS. The energy dissipation and relative displacement response is calculated. Different from the previous energy-based analysis in which the beam and column are regarded as an element and the mass of a beam and a column is set at the two ends of the beam and column, this paper apply material restoring force model based material constitutive model, divide elements and use consistent mass matrix and consistent stiffness matrix, avoiding increasing errors due to too many hypothesis.
     ②Considering changes of ground motion factors and structural dynamic properties, changing law of total input energy and its distribution of plane frame structure for using different plastic hinge length model is analyzed, and then it is obtained that the difference of the total input energy and its distribution as a result of different plastic hinge length model selection, reaching a preliminary understanding of these quantitative and qualitative differences in the law.
     ③Considering changes of ground motion factors and structural dynamic properties, changing law of distribution of hysteretic energy and damping energy of beams and columns for adopting different plastic hinge length model or not is analyzed, and then it is obtained that the difference between beam and column distributions of hysteretic energy as a result of considering plastic hinge length model or not, getting a preliminary understanding of these quantitative and qualitative differences in the law.
     ④The previous researchs of plastic hinge are based on structural members by test. They can’t reflect the impact of the structure to plastic hinge length. Different from the previous researchs of plastic hinge on structural members, this paper analyzes the plastic hinge length through the plan frame. It analyzes the different impact of hysteretic energy of single beam considering plastic hinge, plastic hinge length model selected and the actual plastic hinge length .
     ⑤This paper gives a suggestion on the selection of plastic hinge length model for the energy-based analysis by the above analysis.
引文
[1]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报.2008, 9, Vol.41(9).
    [2]周定松,吕西林,蒋欢军.钢筋混凝土框架结构基于性能的抗震设计方法[J].四川建筑科学研究, 2005.
    [3]吕西林,章红梅,杨雪平. RC框架结构在中震作用下不同性能目标的弹塑性分析[J].结构工程师2009,2, Vol.25(1).
    [4] Freeman S ANicoletti J PTyrdl J VEvaluation of existing buildings for seismic risk-a case study of puget sound naval shipyard National ConfEarthquake EngngEERI 1975.
    [5]瞿岳前,梁兴文,田野.基于能量分析的地震损伤性能评估[J].世界地震工程.2006.3.
    [6] Housner G W. Limit design of structures to resist earthquakes[C]. Proc. of First World Conf. on Earthquake Engrg., Berkeley, CA, 1956.
    [7] Akiyajna H, Earthquake resistant limit-state design for buildings[J]. University of Tokyo Press, 1985.
    [8] Uang C M,BerteroV.V,Evaluation of seismic energy in structures[J].Earthquake Engrg. and Struct. Dynamics, 1990, 19(1).
    [9]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报,1996.6.
    [10]盛明强.基于滞回耗能的结构抗震性能评价方法研究[D],同济大学,2008.
    [11]盛明强,罗奇峰等.考虑场地类别与强震持时的滞回耗能谱的特征分析[J].地震研究2007.
    [12] Fajfar P, Vidic T,Fisehinger M,Seismic demand in medium and long-period Structures,Earthquake Engrg. and Struct. Dyn, 1989, 18(4).
    [13] Cheng G, Ye L Energy Demand of Inelastic SDOFS ystems [M].2006.
    [14] Cheng G, Ye L. Earthquake Input Energy Spectra of Elastic SDOF Systems[J]. Earthquake Resistant Engineering and Retrofiting, 2006, 28(5):1~8.
    [15] Riddell R, Garcia J E. Hysteretic energy spectrum and damage control[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(12):1791~181.
    [16] Wei X, Zhou Y, Yu J, et al. Researches on new methods of aseismic design of structures based on energy concept[J]. World Information On Earthquake Engineering, 2003, 19(3):62~6.
    [17]程光煜,叶列平.弹塑性MDOF系统地震输入能量研究[J].工程抗震与加固改造2007.12.
    [18]王光远等著. :工程结构与系统抗震优化设计的实用方法[J].中国建筑工业出版社,1999.
    [19] AkiyajnaH,Earthquakeresistantlimit一statedesignforbuildings,University of TokyoPress, 985.
    [20]张玉辉,赵忠虎.地震力作用下钢筋混凝土框架结构倒塌的数值模拟研究[J].工业建筑2004, Vol.34(3).
    [21]冯世平.钢筋混凝土框架结构屈服后性能的研究[D].清华大学1985.
    [22]刘春明.钢筋混凝土框架结构倒塌分析[D].清华大学1991.
    [23]倪强.钢筋混凝土框架结构地震倒塌机理的集成计算机仿真系统研究[D].华中科技大学1999.
    [24]魏琏,王亚勇等.钢筋棍凝土框架结构地震破坏机理探讨[J].工程抗震,1998, 1.
    [25]徐培福,肖从真.高层建筑混凝土结构的稳定设计[J]建筑结构2001.
    [26]杜修力.钢筋混凝土房屋结构弹塑性地震反应分析文献综述[J]世界地震工程1990(4)1-7.
    [27]江近仁,孙景江.砖结构的地震破坏模型[J].地震工程与工程振动,1987.7.
    [28]白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法研究述评[J].建筑结构,1997.4.
    [29]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究[J]世界地震工程2005.6 .
    [30] Takizawa H, Aoyama H. Biaxial effects in modeling earthquake response of R/C structures[J]. Earthquake Engineering and Structural Dynamics, 1976, 4(6): 523-552.
    [31] Giberson M F. Two non-linear beams with definitions of ductility[J]. Journal of Struct. Div., ASCE,1969, 95(ST7):870~878.
    [32] SHING-SHAM LAI,GEORGE T WILL,SHUNSUKE OTANI.Model for inelastic biaxial bending of concrete members〔J〕.Journal of Structural Engineering,1984,110(11):2563-2583.
    [33]焦双健,魏巍.钢筋混凝土框架地震破坏研究概述[J]世界地震工程2000.4.
    [34]翁义军,沈聚敏,马宝民.复合箍筋对钢筋混凝土结构柱延性的改善[J]建筑结构学报1985.
    [35]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004(5).
    [36]王震宇.香港地区钢筋混凝土框架柱的抗震性能试验研究[J].哈尔滨建筑大学学报,2001,34(2):6-11.
    [37]李军旗,赵世春.钢筋混凝土构件损伤模型[J].《兰州铁道学院学报》2000(3).
    [38]冯仲齐,钢筋混凝土框架杆件弹塑性动力分析模型的改进[J].应用力学学报2001(4).
    [39]王彬,大震下钢筋混凝土框架结构塑性铰破坏机制研究[D]吉林大学2009.
    [40]姜锐,苏小卒.塑性铰长度经验公式的比较研究[J].工业建筑2008,Vol.38.
    [41] Park R,Paulay T.Reinforced Concrete Structures,John Wiley &Sons,New York,1975.
    [42]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985 .
    [43]袁必果.钢筋混凝土压弯构件塑性铰的试验研究[J].南京工学院学报,1981(3):117-129.
    [44]王福明,曾建民,段炼.钢筋混凝土压弯构件塑性铰的试验研究[J].太原工业大学学报,1989,20(4):20-2.
    [45]段炼,王文长,郭苏凯.钢筋混凝土结构塑性铰的研究[J].四川建筑科学研究,1983 (3) :16-2.
    [46]杨春峰,郑文忠,于群.钢筋混凝土受弯构件塑性铰的试验研究[J].低温建筑技术,2003(1):38-40.
    [47]沈聚敏,翁义军.钢筋混凝土构件的变形和延性[J].建筑结构学报,1980,1(2):47-5.
    [48] Paulay T, Priestley M J N.钢筋混凝土和砌体结构抗震设计.
    [49]高振世,庞同和.钢筋混凝土框架单元的延性和塑性铰性能[J].南京工学院报,1987,17(1):106-11.
    [50] J.Lubliner, J.Oliver, S.Oller, eds. A Plastic-Damage Model for Concrete. International Journal of Solids and Structures, 1989, 25(3): 299~326.
    [51] J. Lee, G L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 1998, 124(8):892~900.
    [52]王勖成,邵敏.有限单元法基本原理和数值方法[M] .北京:清华大学出版社, 2001.
    [53]汪大绥,周建龙,王建等.建筑结构非线性时程分析进展[J] .建筑结构, 2006 ,36(6).
    [54]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [55] ABAQUS Theory Manual [M]. ABAQUS, Inc, 2006.
    [56]方秦,还毅,张亚栋等. ABAQUS混凝土塑性损伤模型的静力性能分析[J].解放军理工大学学报(自然科学版),2007,8(3): 254-260.
    [57]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [58] Clough R W等.1985.结构动力学[M],王光远等译,北京:科学出版社.
    [59]中华人民共和国建设部,混凝土结构设计规范(GB50010-2002),中国建筑工业出版社,2002.
    [60]赵国藩.高等钢筋混凝土结构学[M].机械工业出版社.
    [61]程印.不同阻尼模型对抗震结构能量耗散影响分析[D]重庆大学2009.
    [62]姬守中.高层钢筋混凝土框一剪结构在地震作用下的弹塑性时程反应分析[D].同济大学. 2002.
    [63]韦锋.钢筋混凝土框架和框架-剪力墙结构非弹性地震反应性态的识别[D]重庆大学2005.
    [64] ATC-40.Seismic Evaluation and Retrofit of Concrete Buildings[R].Applied Technology Council. Red Wood City, California, 1996.
    [65] FEMA 273.NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[R]. Federal Emergency management Agency, Washington, D.C. September, 1996.
    [66] SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building[R] Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995.
    [67]尹保江.地震作用下结构弹塑位移反应规律研究[D].重庆建筑大学.1997.
    [68]丰定国,王社良主编.抗震结构设计[M].武汉工业大学出版社,2001.
    [69]魏琏著.高层及多层钢筋混凝土建筑抗震设计手册[M].中国建筑科学研究院工程抗震研究所,1985.
    [70]中华人民共和国建设部,建筑抗震设计规范(GB50011-2001)[s].中国建筑工业出版社2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700