基于LTCC的超宽带毫米波收发前端
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带毫米波收发前端是毫米波电子战系统中的重要构成部分,低温共烧陶瓷(LTCC)技术给毫米波电子战系统向小型化、轻量化、高集成度方向的发展提供了有效的解决途径。本文从时分信道化理论出发,采用LTCC技术研究覆盖18-40GHz的收发前端,这在国内尚属首次,有着巨大的挑战性。本文在介绍LTCC基本特点和了解国内LTCC加工工艺水平的基础上研究了超宽带毫米波收发前端和其中的关键部件。
     本文从LTCC层间互连结构的集总电路模型出发,基于阻抗匹配理论研究了X波段的微带-带状线过渡,测得背靠背结构损耗小于1.4dB,回波损耗基本优于-10dB,可解决前端中布线交叉的问题;利用LTCC自身多层基板的优势,从平行耦合滤波器的设计理论出发,对传统结构进行了改进,研制出了两种新颖的毫米波LTCC宽带滤波器,插入损耗可分别小于3dB和2dB,带外4GHz处抑制度分别可达30dB和40dB;基于三线耦合滤波器设计理论研究了LTCC三线耦合滤波器,插入损耗小于2dB,带外4GHz处的抑制度优于30dB;基于耦合系数法和外部Qe值设计理论,采用了一种新颖的耦合抽头结构制作了X波段全频段LTCC滤波器,插入损耗小于1.5dB,可作为中频滤波器使用;基于时分信道化理论研究制作的毫米波LTCC五路开关滤波组件,带外抑制度较高,且性能最好的滤波通道损耗小于7.5dB。
     整个超宽带毫米波收发前端制作在一块10层Dupon943 LTCC介质基板上。腔体外形尺寸为108mm×80mm×18mm,重量小于220g。测试结果表明,接收增益在部分频率处大于20dB,最小噪声系数约为7dB。在未接末级功放情况下测得部分频率的发射功率大于-5dBm。
As an important constitute of millimeter-wave electronic war (EW) sytem, ultra-wideband millimeter-wave transceiver front-end with miniaturization, low-weight, high integration can be implemented by LTCC technology. Based on Time Division Channel (TDC) technology, it is the first time to study the chanllenging 18-40GHz transceiver front-end in LTCC technology in China. This thesis introduces the basic features and technological level of LTCC in China and focuses on the research of ultra-wideband millimeter-wave transceiver front-end and its key components.
     First of all, based on lumped parameter model of interconnection between LTCC layers and impedance match theory,a microstrip-to-stripline transision in X-band is developed and perfomes well. Insertion loss is less than 1.4dB and return loss is better than -10dB of the back-to-back structure. It could be used to solve the cross wiring problem in the front-end. Second, from design method of parallel line coupled filter and based on the advantage of multi-layer LTCC substrates, traditional structure is modified and two new millimeter-wave wideband filters have been realized. Insertion loss is lower than 3dB and 2dB respectively. Stopband rejection could reach 30dB and 40dB at 4GHz away from passband respectively. Third, theory of three-line coupled filter is introduced. Insertion loss of the fabricated filter is less than 2dB and stopband rejection could reach 30dB at 4GHz away from passband. Last, based on coupling coefficient and external Qe value design theory, a full X-band band-pass filter is also achieved by using a new input and output coupled structure. Insertion loss is less than 1.5dB and it could be usd as IF filter. At the same time, based on Time Division Channel (TDC) theory, a millimeter-wave LTCC five channel switch-filter module with good stopband rejection is developed and insertion loss of the best channel is about 7.5dB.
     The whole ultra-wideband millimeter-wave transceiver front-end is fabricated in a ten-layer Dupont943 LTCC substrate. Dimension of the cavity is 108mm×80mm×18mm and its weight is lower than 220g. Test results show that receive gain at some frequency points is higher than 20dB and the smallest noise figure is about 7dB. Output power at some frequency points is higher than -5dB without the last power amplifier.
引文
[1]薛良金.毫米波工程基础.哈尔滨:哈尔滨工业大学出版社,2004
    [2] Meinel Holger H. Commercial Applications of Millimeterwaves present status and future trends. IEEE Transactions on Microwave Theory and Techniques, 1995, Vol.43:1639-1653
    [3]石星.毫米波雷达的应用和发展.电讯技术,2006 (1): 1-9
    [4]余宏明,张志坚.毫米波雷达及其对抗.舰船电子工程,2007,27 (2): 168-172
    [5]吴世龙,吴世岭.电子战武器装备的发展趋势和发展重点.舰船电子对抗,2004,27(6):3-6
    [6]龚金楦.电子战的新领域——毫米波电子对抗.电波科学学报, 1991(1):1-6
    [7]李祖新.国外雷达对抗侦察设备发展综述.舰船电子对抗,1998 (3):11-18
    [8]李祖新.毫米波侦察接收机前端技术综述.舰船电子对抗,1998 (7):7-11
    [9]李祖新.国外几种雷达侦察设备的评述.舰船电子对抗, 1999 (4):12-16
    [10] G.W.Anderson, D.C.Webb, A.E.Spoaio, J.N.Lae. Advanced channelization technology for RF microwave and millimeter wave applications. Proc of the IEEE, 1991,Vol.70:654-662
    [11] James Bao-Yen Tsui. Microwave receivers with electronic warfare applications. John Wiley&Sons,1986
    [12] P.Hennessy J.Quick. The channelized receiver comes of age. MSN,1979
    [13] Taub, J. Microwave and millimeter wave technology aids EW wystem design. The microwave system designers handbook, 1984,vol.14:233-262
    [14] L.Cohen. Advanced mm-Wave receivers for EW applications. Microwave Journal April,1986:127-146
    [15] Yamauchi D., Quon R. A compact transceiver for wide bandwidth and high power K-, Ka-, and V-band applications. IEEE Microwave Symposium Digest, 2003, Vol.3:2015-2018
    [16] Highly integrated Ka-Band Tx frontend module including 8x8 antenna array W. Simon, J. Kassner, Asia Pacific Microwave Conference, 2009:5-8
    [17]胡金旺.毫米波SAW信道化接收机技术研究.航天电子对抗, 1995(4):1-4
    [18]赖邱亮.毫米波宽带收发组件技术研究.成都:电子科技大学硕士学位论文, 2009
    [19]徐锐敏,薛良金,唐小宏.一种毫米波电子侦察接收机方案介绍.微波学会第二届全国毫米波亚毫米波学术会议论文集,1996(8):13~19
    [20]周建明,费元春.新一代信道化接收机的研制,现代雷达, 2003, 8(8):44-46
    [21]全寿文,赵敏,苏子毓.电子战侦察技术发展综述,外军信息战, 2007 (6):1-9
    [22]全寿文,夏文成. 2007年外军电子战装备技术发展综述,外军信息战, 2008 (1):1-9
    [23]杨邦朝,张经国.多芯片组件(MCM)技术及其应用.成都:电子科技大学出版社, 2001
    [24]何中伟. LTCC工艺技术的重点发展与应用.集成电路通信, 2008,26(2):1-9
    [25]童志义.低温共烧陶瓷技术现状与趋势.电子工业专业设备, 2008 (166) :1-9
    [26]周琪.低温共烧陶瓷技术发展现状及趋势.科技经济市场, 2009(4):25-26
    [27]毛自灿.超宽带侦察接收机的实现途径.无线电工程, 1995(6):55-60
    [28]甘发袚,吴万春.现代微波滤波器的结构与设计(下).北京:科学出版社, 1973
    [29]廖承恩.微波技术基础.西安:西安电子科技大学出版社, 1994
    [30] Ponchak, G.E., Donghoon Chun, Jong-Gwan Yook. The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages. Advanced Packaging, IEEE Transactions on see also Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, 2000, Volume 23, Issue 1:88-99
    [31]边国辉,方一波.用于制造微波多芯片组件的LTCC技术.半导体技术, 2008,33(5):32-41
    [32]甘发袚,吴万春.现代微波滤波器的结构与设计(上).北京:科学出版社, 1973
    [33] Yu-Meng, Yan, Ying-Tang Chang, Huei, Wang. Highly Selective Microstrip Bandpass Filters in Ka-Band. 32nd European Microwave Conference, 2002:1-4
    [34] Jia-Sheng Hong, Lancaster, M.J. Transmission line filters with advanced filtering characteristics. IEEE MTT-S International, 2000:319-322
    [35] Tatsuo, Itoh, Chi-Yang, Chang. Modified Parallel-Coupled Filter Structure Improves the Upper Stop-Band Performance. 20th European Microwave Conference, 1990, Vol.1:925-927
    [36] Jen-Tsai Kuo, Eric Shih. Wideband bandpass filter design with three-line microstrip structures. IEEE Microwave Symposium Digest, 2001, Vol.3:1593-1596
    [37] Jen-Tsai Kuo, Eric Shih. Wideband bandpass filter design with three-line microstrip structures. Microwaves, Antennas and Propagation, IEE Proceedings, 2002, Vol.149, Issue 56 :243-247
    [38] Dimitrios Pavlidis, Hans L.Hartnagel. The Design and Performance of Three-Line Microstrip Couplers. IEEE transactions on microwave theory and techniques, Vol.24, No.10, 1976: 631-640
    [39]张凯.毫米波LTCC收发组件研究.成都:电子科技大学硕士学位论文, 2007
    [40] J.S.Hong and M.J. Lancaster. Microstrip-filters for RF Microwave Application, Wiley
    [41]吕以哲,王轶龙,居继龙.带有交叉耦合的直线型滤波器的研究,中国传媒大学学报自然科学版2008, 15(1):25-27
    [42] Visser. Equivalent Length Design Equations for Right-Angled Microstrip Bends. Antennas and Propagation, 2007:1-6
    [43] Weisshaar, Tripathi. Frequency-dependent transmission characteristics of curved microstrip bends. Electronics Letters, 1989 Vol.25:1138-1139
    [44] Mehran. Calculation of Microstrip Bends and Y-Junctions with Arbitrary Angle. Microwave Theory and Techniques, 1978, Vol.26: 400-405
    [45] Weisshaar, Tripathi. Perturbation analysis and modeling of curved microstrip bends. Microwave Theory and Techniques. 1990, Vol.38:1449-1454
    [46] R.H Caverly. Characteristic impedance of integrated circuit bond wires. IEEE Trans Microwave Theory Tech. 1986, Vol.34: 982-984
    [47] W. Menzel. Interconnection and packaging for MMIC’s. 27th European Microwave Conference. 1997:649-654
    [48] T. Krems, W. Haydl, J. Rudiger. Millimeter-wave performance of chip interconnections using wire bonding wire and flip chip. IEEE MTT-S Int. Microwave Symp. 1996, Vol.1:247-250
    [49]申明磊. V波段毫米波功率放大器的研究.南京:南京理工大学硕士学位论文, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700