微波预处理污泥上清液为燃料的微生物燃料电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是当今世界的一个重要问题,随着人类活动的增加天然能源被逐渐消耗,导致了化石燃料枯竭和全球变暖。随着能源危机的日益严重,人们纷纷把眼光投向了可再生能源技术以及可变废为宝的能源技术。利用微生物作为催化剂将储存在有机物中的化学能转变成为电能的装置叫做微生物燃料电池(Microbial full Cell,MFC)。由于所用原料可以是有机高浓度废水、城市垃圾或者污水处理厂的剩余污泥,来源丰富价格低廉且不消耗矿物资源而且能有效降解污染物,因此微生物燃料电池越来越受到人们的关注。活性剩余污泥中含有丰富的有机物质如蛋白质、多糖类和脂肪类等是一种极具潜力的生物燃料。利用剩余污泥直接作为MFC燃料的研究已经不少,但是目前利用直接剩余污泥作为微生物燃料电池产电所获得的输出功率密度非常小。为了进一步提高电池输出功率密度本研究首次将污泥预处理技术与MFC技术联合起来。
     将微波预处理的污泥上清液作为微生物燃料电池的底物通过接种剩余污泥为燃料的微生物燃料电池的细菌悬液后成功启动了单室无膜微生物燃料电池。考查了微波时间和功率对微生物燃料电池最大输出功率密度的影响、可能影响输出功率密度的相关因素以及一个周期内燃料性质变化规律并且对不同外接电阻下MFC阳极表面附着的微生物形态差异进行了分析。结果表明长时间和适度较高的微波功率(<900W)能够有效提高MFC的产电能力,在最佳微波处理条件(300s,720W)时输出功率密度可达306.2mW·m-2;电池阳极面积越大,输出功率密度反而越小。阴阳极距离从5.0cm缩小到0.5cm时,输出功率密度先增加后降低,在距离为2.0cm时输出功率密度达到最大值282.7mW·m-2,说明阴阳极距离过近时溶解氧可能通过空气阴极传递到阳极影响了阳极表面上厌氧微生物的活性。采用NaCl作为离子添加剂时,随着投加量的增加,内阻显著降低输出功率密度相应增加,最大输出功率密度为362.6mW.m-2;不同外接电阻(30Ω、500Ω、2000Ω)下库仑效率依次为83.3%、79.0%、33.6%;通过扫描电镜观察到在外接电阻较高为2000Ω时阳极表面附着的微生物以球菌为主外接电阻较低为30Ω时形态较为复杂主要是丝状菌、球菌和杆菌;外接电阻对SCOD去除率的影响不大;采用最优条件时最大输出功率密度高达387.6mW·m-2。
Energy is an important issue in today's world.Increasing human activities are consuming the natural energy sources leading to depletion of fossil fuel and global warming.In the ever-increasing search for renewable and environmental friendly energy alternatives to fossil fuels,various approaches to derive energy from renewable sources especially from waste have been examined. MFC is a biochemical-catalyzed system,which generates electricity by oxidizing biodegradable organic matter in the presence of either catalytic activity of microorganisms or enzyme.Since the MFC can trap renewable energy by using a variety of substrates including carbohydrate,protein, food wastewaterand swine wastewater, the application of MFC were studied quite extensively.The excess sludge from wastewater treatment plant is rich in polysaccharides and proteins and thus it is regarded as a potential substrate for MFC.Recently, some studies have been focused on using sludge to produce electricity with MFC.However, the reported maximum power density is very low by using the excess sludge as MFC fuel.Due to the low electricity yield from raw sewage, the pretreatment technology and the MFC technology were first combined to improve the power density.
     After inoculating with the supernatant in the cell operating with surplus sludge,a single-chamber and membrane-less microbial fuel cell was successfully started up by using the supernatant fluid of pretreated sludge as substrate.The effect of microwave power and time on the maximum output power destinies were investigated.Moreover, the features of electricity production and the substrates of the cell during one cycle were investigated, and the difference influences of external resistance on the performance of MFC and the morphologies of the microorganisms forming on the anode surface were also analyzed.The results indicated that the sludge on the pretreatment condition of longer irradiation time and moderate higher microwave power(<900W) could effectively improve the performance of MFC.On the optimal treatment conditions of (300s,720W),the maximum output power destinies could reach up to 306.2mW·m-2.The larger anode area of the cell made the output power density smaller. When the distance between cathode and anode decreased from 5cm to 0.5cm,the output power density first increased and then decreased later, which mainly due to the diffuseness of oxygen from the air-cathode may affect active of the anaerobic bacteria on anode.The maximum output destiny was observed while the distance was 2cm.When using NaCl as an ionic additive, it had a corresponding decrease in internal resistance with the dosage increased resulting an increase in output power density, and the maximum was 362.6mW·m-2.The coulombic efficiency were decreased obviously with the increase of external resistance(30Ω、500Ω、2000Ω) as shown in the following sequence:83.3%、79.0%、33.6%.The SEM observation showed that the surface of the anodic electrode was covered by spherical bacteria at higher external resistance of 2000Ω.However, it was covered by server kinds of bacteria at a lower external resistance of 30Ω, such as filamentous bacteria, spherical bacteria and bacilliform bacteria. The external resistance had minimal impact on the removel efficiency of SCOD.Finally, the output power density of microbial fuel cell with excess sludge as fuel was successfully raised to 387.6 mW·m-2 under optimal experimental conditions.
引文
[1]Liu H,Ramnarayanan R, Logan B E.Production of electricity during wastewater treatment using a single chamber microbial fuel cell.Environ.Sci. Technol.,2004, 38:2281-2285.
    [2]Demain A L.Microbial biotechnology. Trends Biotechnol,2000,18:26-31.
    [3]Logan B E.Simutaneous wastewater treatment and biological electricity generation.Water. Sci Technol.,2005,52(7):31-37.
    [4]Kreysa G, Schenck K, Vuorilehto K, et al.Bioelectrochemical hydrogen production.Int. J Hydrogen Energy,1994,19(8):673-676
    [5]叶新嗥,王永红,储矩,等.生物质燃料.生物学杂志,2004,21(2):14-18
    [6]贾斌,刘志华,李小明等.剩余污泥为燃料的微生物燃料电池产电特性研究.环境科学,2009,30(4):1227-1231.
    [7]洪义国,郭俊,孙国萍等.产电微生物及微生物燃料电池最新研究进展.微生物学报,2007,47(1):173-177.
    [8]关毅,张鑫.微生物燃料电池.化学进展,2007,19(1):74-79.
    [9]Kim H J, Park H S,Hyun M S,et al.A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciense.Enzyme Microbial. Technol., 2002(30):145-152.
    [10]Rabaey K, Lissens G, Siciliano S D,et al.A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol.Lett., 2003,25:1531-1535.
    [11]Rabaey K, Boon N, Siciliano S D, et al.Biofuel cells select for microbial consortia that self mediate electrontransfer. Appl.Environ. Microbiol.,2004,70 (9):5373-5382.
    [12]Rabaey K, Boon N,HEfteM,et al.Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci.Technol.,2005,39(9): 3401-3408.
    [13]Liu H, Grot S,Logan B E.Electrochemically assisted microbial production of hydrogen from acetate.Environ. Sci. Technol.,2005,39(11):4317-4320.
    [14]Kim J R, Min B,Logan B E.Evaluation of procedures to acclimate a microbial fuel cell for electricity production.Microbial Biotechnol,2005,68(1):23-30.
    [15]Oh S E, Min B,Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells.Environ. Sci. Technol.,2004,38(18): 4900-1904.
    [16]Logan B E,Murano C,Scott K, et al.Electricity generation from L-cysteine in a microbial fuel cell.Water Res.,2005,39(5):942-952.
    [17]Min B,Cheng S,Logan B E.Electricity generation using membrane and salt bridge microbial fuel cells.Water Res.,2005,39:1675-1686.
    [18]Min B,Logan B E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.Environ. Sci. Technol., 2004,38(21):5809-5814.
    [19]He Z, Minteer S D,Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell.Environ.Sci. Technol.,2005,39(14): 5262-5267.
    [20]Bruce E L.Simultaneous wastewater treatment and biological electricity generation.Water. Sci. Technol.,2005,52:31-37.
    [21]Liu H,Logan B E.Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ.Sci. Technol.,2004,38:4040-4046.
    [22]Tayhas G, Palmore R, Whitesides M.Microbial and enzymatic biofuel cells.In: Eds Himmel M E.Baker J O,Overend R P. Enzymatic conversion of biomass for fuels production. Washington D C:American Chemical Society,1994:271-290.
    [23]Thurston C F, Bennetto H P, Delaney G M, et al.Glucose metabolism in a microbial fuel cell.Stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yield.J Gen Microbial, 1985,131(6):1393-1401.
    [24]Bennetto H P, Delaney H P, Mason J R, et al.The sucrose fuel cell:efficient biomass conversion using a microbial catalyst.Biotechnol Lett.,1985,7:699.
    [25]Lithgow A, MRomero L, Sanchez I C, et al.Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.Part 1. Selective improvement of the performance of biofuel ceils with 2, 6-disulphonated thionine as mediator. J Chem Res.,1986,5:178.
    [26]Veag C A, Fernandez I.Mediating effect of ferric chelate compounds in microbial fuel cells with lactobaeillns plan tarnm, streptoeocius laetes,and erwina dissolvens.Bioelectrochem Bioeng.,1987,17:217.
    [27]宝玥,吴霞琴.生物燃料电池的研究进展.电化学,2004,10(1):1-8.
    [28]Tokuji I,Kenji K.Vioelecrocatalyses-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells.Biochim Biophy. Acta,2003,1647:121-126.
    [29]Tanaka K,Vega C A,Tamamushi R. Thionine and Ferric Chelate Compounds as Coupled Mediators in Microbial Fuel Cells.Bioelectrochem. Bioenerg.,1983, 11:289-297.
    [30]Kim N,Choi Y, Jung S,et al.Effect of initial carbon sources on theperformance of microbial fuel cells containing proteus vulgaris.Biotechnol. Bioeng.,2000, 70(1):109-114.
    [31]连静,冯雅丽,李浩然,杜竹玮.微生物燃料电池的研究进展,过程工程学报,2006,6(2):334-338.
    [32]连静,祝学远,李浩然,等.直接微生物燃料电池的研究现状及应用前景.科学技术与工程,2005,5(22):1747-1752.
    [33]Korneel R, Willy V. Mecrobial fuel cells:novel biotechnology for energy generation.Trends in Biotechnology.2005,23(6):291-298.
    [34]Aswin K M,Florian M.The Internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions.Electrochimica Acta,2009, 54(6):1664-1670.
    [35]Aelterman P, Rabaey K, Pham H T, et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.Environ. Sci. Technol.,2006,40(10):3388-3394.
    [36]Menicucci J, Beyenal H,Marsili E,et al.Procedure For Determining Maximum Sustainable Power Generated by Microbial Fuel Cells Environ.Environ. Sci. Technol.,2006,40(3):1062-1068.
    [37]莫志军,胡林会,朱新坚.燃料电池表观内阻的在线测量.电源技术,2005,29(2):95-98.
    [38]Makbaria R, Mathias M F, Bakerb D R. Measurement of Catalyst Layer Electrolyte Resisitance in PEFCs Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc.,2005,152(5):970-977.
    [39]Katsaounis A, Balomenou S P, Tsiplakides D,et al.The Role of Potential-dependent Electrolyte Resistance in the Performance,Steady-state Multiplicities and Oscillations of PEM Fuel Cells:Experimental Investigation and Macroscopic Modeling.Electrochimica Acta.,2005,50:5132-5143.
    [40]Diard J P, Gorrec B L,Montella C,et al.Impedance Measurements of Polymer electrolyte Membrane Fuel Cells Running on Constant Load.J Power Sources, 1998,74:244-245.
    [41]Bruce E L.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.Environ. Sci. Technol.,2004, 5(38):5809-5814.
    [42]Michal G, Gryzelda P.Microbial fuel cells (MFCs) with interpolymer cation exchange membranes.Microbial Sep. Purif. Technol,2005,41:321-328.
    [43]Chaudhuri S K, Lovley D R. Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel cells.Nat. Biotechnol,2003,21:1229-1232.
    [44]Reimers C E,Tender L M,Fertig S,et al.Harvesting Energy from the Marine Sediment-Water Interface.Environ. Sci. Technol.,2001,35:192-195.
    [45]Uwe S,Juliane N, Fritz S.A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude.Angew. Chem.Int.Ed. 2003,42:2880-2883.
    [46]Doo H P,Gregory Z.Improved Fuel Cell and Electrode Designs for Producing Electricity from Microbial Degradation.Biotechnol.Bioeng,2003,81(3): 348-355.
    [47]SangEun Oh, Bruce E.Logan.Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res.,2005,39(19):4673-4682.
    [48]Kim H J, Park H S, Hyun M S,et al. Enrichment of Microbial Community Generating Electricity Using a Fuel-cell-type Electrochemical Cell.Appl. Environ.Microbiol.,2003,63:672-681.
    [49]Pham C A, Jung S J, Phung N T, et al.A Novel Electrochemically Active and Fe(III)-reducing Bacterium Aeromonas Hydrophoila Related to Clostridium Butyricum Isolated from a Microbial Fuel Cell.FEMS Microbiol. Lett.,2003, 223:129-134.
    [50]Park D H, Zeikus J G.Improved fuel cell and electrode designs for producing electricity from Microbial degradation.Biotechnol. Bioeng.,2003,81:348-355.
    [51]Park D H, Laivenieks M, Guettler M V,et al.Microbial utilization of electrically reduced neutral red as the sole elecrton donor for growth and metabolite production.Appl. Environ. Microb.,1999,65(7):2912-2917.
    [52]Rabaey K, Clauwaert P,Aelterman P,et al.Tubular microbial fuel cells for efficient electricity generation. Environ. Sci.Technol.,2005,39(20): 8077-8082.
    [53]Hoogers G, Ed. Fuel Cell Technology Handbook. Boca Raton, Florida:CRC Perss,2003.
    [54]Larminie J, Dicks A.Fuel Cell Systems Explained. Chichester:J.Willey and Sons,New York,2000.
    [55]Niessen J, Schroder U, Scholz F.Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch Electrochemistry Communications,2004,6:955-958.
    [56]牟艳艳,于鑫,郑正,袁守军,崔磊,严晓明.污泥厌氧消化预处理方法研究进展,中国给排水.2004,20:31-33.
    [57]胡亚冰,张超杰,谭学军,张辰,朱洪光,周琪.强化污泥厌氧消化预处理技术的研究进展.安徽农业科学.2009,37(4):1737-1747.
    [58]Jeongsik K, Chulhwan P, Takhyun K, et al.Efects of various pretreatments for enhanced anaerobic digestion with waste activated sludge.J Biosci Bioeng., 2003,95(3):271-275.
    [59]Neis U,Uhrosound in waterwastewater and sludge treatment.Water,2000,21: 36-39.
    [60]Tiehm A, Nickl K, Zeiihorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.Water Res.,2001,35(8): 2003-2009.
    [61]饶姗姗,李玉金,段德宏,王根霞.微波技术在环境样品预处理中的应用,甘肃联合大学学报,2005,19(1).
    [62]刘伟.密闭微波样品消解原理及常识.现代科学仪器.2000(3):51-54.
    [63]Park B,Ahn J H,Kim Jet.al.Use ofmicrowave pretreatmentfor enhanced anaerobiesis of secondary sludge.Environ.Sci.Technol.,2004,50(99):17-23.
    [64]GTayhas R, George M.Microbial and enzymatic biofuel cells.Am Chem Soc Symp Ser,1994,52(566):271-290.
    [65]Kim H J,Hyun M S,Chang I S,et al.A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, shewanella putrefaciens.Microbiol. Biotechnol.,1999,3:365-367.
    [66]Kim B H, Chang I S,Gil G C, et al.Novel BOD (Biological Oxygen Demand) Sensor Using Mediatorless Microbial Fuel Cell.Biotechnol. Lett.,2003,25: 541-545.
    [67]Du Z, Li H, Gu T. A state of art review on microbial fuel cells:a promising technology for wastewater treatment and bioenergy.Biotechnol. Adv.,2007,25: 464-482.
    [68]Logan B E,Cassandro M, Keith S,et al.Electricity Generation from Cysteine in a Microbial Fuel Cell.Water Res.,2005,39:942-952.
    [69]Kapdan I K, Kargi F.Bio-hydrogen production from waste materials. Enzyme Microb.Technol.,2006,38:569-582.
    [70]谢波,郭亮,李小明,等.三种预处理方法对污泥的破解效果.中国环境科学,2008,28(5):417-421.
    [71]Wang C C,Chang C W, Chu C P, et al. Producing hydrogen from wastewater sludge by Clostridium bifermentans.J.Biotechnol.,2003,102(1):83-92.
    [72]Guo L, Li X M, Xie B, et al. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge.Bioresour. Technol.,2008,99:3651-3658.
    [73]Park B,Ahn J H, Kim J, et al. Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge.Water Science and Technology,2004,50 (99): 17-23.
    [74]Oh S E,Logan B E.Hydrogen and electricity production from a food processing Wastewater using fermentation and microbial fuel cell technologies.Water Res. 2005,39(19):4673-4682.
    [75]Toreci I, Kennedy K J, Droste R L, Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Res.,2009,43:1273-1284.
    [76]Chan W I, Wong W T, Liao P H, et al. Sewage sludge nutrient solubilization using a single-stage microwave threatment.Environmental Science and Health Part,2007,42(1):59-63.
    [77]Cigdem E, Nicolas T,Kevin J K.Athermal microwave effects for enhancing digestibility of waste activated sludge.Water Res.,2007,41(11):2457-2466.
    [78]Cheng S,Logan B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells.Electrochem. Commun.,2007 (9): 492-496.
    [79]Liu H,Cheng S,Logan B E.Power generation in Fed-Batch Microbial Fuel cells as a Function of Ionic strength:temperature and reactor configuration.Environ. Sci.Technol.,2005,39:5488-5493.
    [80]Holmes D E,Bond D R. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microb Ecol.,2004, 48:178-190.
    [81]Rabaey K, Lissens G, Siciliano S D, et al.A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.2003,25:1531 1535.
    [82]Fan Y Z,Hu H Q,Liu H.Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.J.Power Sources,2007,171(2):348-354.
    [83]Marcus R A,Sutin N Electron transfers in chemistry and biology.Biochim. Biophys.Acta.,1985,811(3):265-322.
    [84]Ghangrekar M M, Shinde V B.Performance of membrance-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production.Bioresour.Technol.,2007, (98):2879-2885.
    [85]孔晓英,李连华,孙永明,袁振宏,吴创之.微生物燃料电池产能原理及输出功率的影响因素.现代化工,2007,27(2):282-286.
    [86]徐伟.微生物燃料电池的基础研究.扬州:扬州大学,2007,57-58.
    [87]Jeong C M, Rae Choi J D,Ahn Y, et al. Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence.Korean J. Chem. Eng.,2008,25(3): 535-541.
    [88]Min B,Kim,J R,Oh S E,et al. Electricity generation from swine wastewater using microbial fuel cells.Water Res.,2005,39(20):4961-4968.
    [89]Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.Bioresour. Technol.,2007,98:2568-2577.
    [90]Oh S E,Logan B E.Proton exchange membrane and electrode surface areas as factors that a direct power generation in microbial fuel cells.Appl. Microbiol. Biot.,2005,70(2):162-169.
    [91]You S J, Zhao Q L, Zhang J N, Jin, et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions.J. Power Sources,2007,173:172-177.
    [92]Ren Z,Ward T E,Regan J M.Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture.Environ. Sci.Technol.,2007,41: 4781-4786.
    [93]Zuo Y, Cheng S,Call D & Logan B E Tubular membrane cathodes for scalable power generation in microbial fuel cells.Environ. Sci. Technol.,2007,41(9): 3347-3353.
    [94]Heilmann J & Logan B E Production of electricity from proteins using a microbial fuel cell.Water Environ. Res.,2006,78(5):531-537.
    [95]Yu E H,Cheng S,Scott K & Logan B Mictobial fuel cell performance with non-Pt cathode catalysts.J.Power Sources,2007,171:275-281.
    [96]Liu Z H,Li X M,Jia B,et al.Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell.Water Environ. Res., 2009,60(9):2399-2404.
    [97]Cheng, S,Liu, H & Logan, B E Increased power generation in a contionuous flow MFC with advective flow through the porous anode and reduced electrode spacing.Environ. Sci. Technol.,2006,40(7):2426-2432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700