液体环境下螺旋管道机器人的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着内窥镜技术和微创手术的应用范围不断扩展,自主式微型管道机器人的研究已经成为学者们研究的热点。本文针对液体环境的工业管道和充满体液的人体内腔细小管道,提出基于液体环境的内外螺旋和内螺旋无损伤管道机器人,并对该机器人进行了理论分析和实验研究。该机器人有望应用于血管等充满液体的微细管道中实现检查、采样、疏通、定点投药等功能。
     论文首先指出了工业界和医学领域里传统管道检测方法的缺陷,以及管道机器人在工业界和微创外科手术等方面的重要研究意义,并进一步分析了被动式胶囊内窥镜、蠕动管道机器人、主动式胶囊机器人、泳动式机器人、螺旋式机器人以及超微机器人的发展现状和存在的问题,提出本论文的研究切入点和主要研究内容。
     论文提出了螺旋式机器人的两种结构设计方案,建立螺旋机器人运行时的管道内液体的动力学方程,运用计算流体力学方法求解其液体流场,获得螺旋机器人的环境特征与运行参数(液体密度、液体粘度、管道直径、偏心距、弯曲管道、外壳转速、内轴转速、内外表面转速和、机器人运行速度等)对机器人运行性能(包括机器人轴向推进力、管道壁所受最大压力、液体对机器人承载力等)的影响。对比研究了内外螺旋机器人、单节外螺旋机器人和双节外螺旋机器人的轴向推进力、管道壁所受最大压力、液体对机器人的承载力和所受的液体周向阻力矩与其外壳转速的关系。为了验证内外螺旋机器人在液体环境管道中运行的可行性,从机器人工作原理分析出发,设计了一套周转轮系模拟机器人运动时内外两个螺旋体的工作状况,进而对机器人系统进行结构设计,制作了一个内外螺旋机器人系统,进行了空载和管道内的运行实验,并分析了该实验结果。
     论文通过引入脉动血流函数作为血管进口条件,计算了在一个血流脉动周期内,内外螺旋机器人和内螺旋机器人在脉动血流作用下,机器人的轴向推进力、血管壁所受最大和最小压力,并且分析了不同运行速度对机器人轴向推进力和血管壁所受最大压力的影响。
     论文计算了自由状态下螺旋机器人的受力和管道壁所受压力,分析了自由状态下内螺旋机器人的内螺旋槽结构参数(槽口宽、槽底宽、倾角、螺旋槽槽深、螺纹升角和螺纹线数)对机器人能耗指标和内螺旋轴向推进力的影响,并运用正交试验优化设计方法,优化了内螺旋槽结构参数组合,得到一组最优的机器人内螺旋槽结构参数组合。类似地,分析了内外螺旋机器人外螺旋槽结构参数对机器人轴向推进力的影响,并运用正交试验优化设计方法,优化了外螺旋槽结构参数组合,得到一组最优的机器人外螺旋槽结构参数组合。
     论文最后对相关工作进行总结,概括了论文的特色和创新点,并对未来工作提出展望。
With the expanding of applied range of endoscopic technology and minimal invasive surgery technology, studies on the autonomic micro in-pipe robots have been more and more important. In this paper, according to the liquid pipelines in the special industrial environments and the small inner pipelines of the human body filled with body fluid, no invasive inner and outer spiral micro in-pipe robots and inner spiral micro in-pipe robots based on liquid environments are proposed. The theoretical analysis and experimental study on the micro in-pipe robots are conducted. The micro-robot is probably used in the blood vessel, and it can realize of inspection, sampling, drug spot deliverance and other functions.
     The paper firstly puts forward the defects of traditional pipeline detection methods in the industry and the medical field, and depicts important research significance of the micro in-pipe robots in industry and minimally invasive surgery, and further analyzes the developments and existing problems of passive capsule endoscopes, peristaltic robots, active capsule robots, swimming robots, spiral robots and nanorobots. Finally, the research starting point and the main content of research are presented.
     The paper presents two structural design schemes of the spiral micro in-pipe robots, and the dynamic equations of the liquid in pipelines are established while spiral robots running, and then the flow field is solved by the computational fluid dynamics method. The influence of various parameters(liquid density, liquid viscosity, pipeline diameter, eccentricity, curved pipeline, outer spiral speed, inner spiral speed, inner and outer spiral speed sum and robotic running speed, etc.) on robotic motion performance(include axial thrust force, pressure of pipeline wall and load capacity of blood, etc.) is obtained. The relationship between the axial thrust force, pressure of pipeline wall, load capacity of blood and circumferential drag torque of inner and outer spiral micro robots, single sectional outer spiral robots and double sectional outer spiral robots and their outer shell rotating speed is compared. In order to verify the feasibility of inner and outer spiral micro robots in pipelines filled with liquid, from the analysis of the robotic working principle, a set of epicyclic gear train that simulates inner and outer spiral working status of the running robot is designed, and the structure of the robot system is designed, and the inner and outer spiral micro robotic system is made. The unloaded and in-pipe operation experiment of the inner and outer spiral robot are conducted, and the experimental result is analyzed.
     Through the introduction of pulsating blood flow function as the inlet condition, the robotic axial thrust force, maximal and minimal pressure of pipeline wall of the inner and outer spiral robot and the inner spiral robot are numerically calculated in a flow pulsation cycle under the pulsating flow effect, and the influence of the robotic various running speeding on the robotic axial thrust force and the maximal pressure of pipeline wall is analyzed.
     The spiral robotic axial thrust forces and pressures of pipeline wall in the free state are calculated. The influence of the inner spiral structure parameters(notch width, groove bottom width, dip angle, groove depth, spiral angle and thread number) of the inner spiral robot in the free state on the energy consumption index and the inner spiral axial thrust force is numerically analyzed. By the orthogonal optimization design method, the optimal combination of the six inner spiral structural parameters is obtained. Similarly, the influence of the outer spiral structure parameters of the inner and outer spiral robot on the robotic axial thrust force is numerically analyzed. By the orthogonal optimization design method, the optimal combination of the six outer spiral structural parameters is obtained.
     Finally, the paper summarizes all the studies and points out the innovations and discusses which studies should be made in future.
引文
[1]Meron G D. The development of the swallowable video-capsule (M2A). Gastrointestinal Endoscopy,2000,52(6):812-819.
    [2]RF System Lab[EB/OL]. http://www.rfnorika.com/.
    [3]Park H J, Nam H W, Song B S, et al. Design of bi-directional and multi-channel miniaturized telemetry module for wireless endoscopy. The 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, Madison, USA,2002:273-276.
    [4]Maqbool S, Parkman H P, Friedenberg F K. Wireless capsule motility: comparison of the Smartpill GI monitoring with scintigraphy for measuring whole gut transit, Digestive Diseases and Sciences,2009,54(10):2167-2174.
    [5]重庆金山科技有限公司[EB/OL]. http://www.jinshangroup.com/.
    [6]Suzumori K, Miyagawa T, Kimura M, et al. Micro inspection robot for 1-in pipes. IEEE/ASME Transactions on Mechatronics,1999,4(3):286-292.
    [7]Nishikawa H, Sasaya T, Shibata T, et al. In-pipe wireless micro locomotive system. Proceedings of 1999 International Symposium on Micromechatronics and Human Science,1999:141-147.
    [8]Tsuruta K, Sasaya T, Shibata, et al. Control circuit in an in-pipe wireless mico inspection robot. Proceedings of 2000 International Symposium on Micromechatronics and Human Science,2000:59-64.
    [9]Mitumoto N, Tsuruta K, Shibata T, et al. Wireless link system for communication and energy transmission of microrobot. Proceedings of 2001 International Symposium on Micromechatronics and Human Science,2001:57-62.
    [10]Nakazato Y, Sonobe Y, Toyama S. Development of an in-pipe micro mobile robot using peristalsis motion. Journal of Mechanical Science and Technology,2010,24: 51-54.
    [11]Kengaku S, Torii A, Ueda A. The inchworm type self-propelled micro robot using a vibration-type friction control mechanism.2010 International Symposium on Micro-NanoMechatronics and Human Science,2010:240-245.
    [12]Adachi K, Yokojima M, Hidaka Y, et al. Development of endoscopic robot and experiment in the large intestine of dead swine. Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand,2011: 467-472.
    [13]Adachi K, Yokojima M, Hidaka Y, et al. Development of multistage type endoscopic robot based on peristaltic crawling for inspecting the small intestine. 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary,2011:904-909.
    [14]Phee L, Menciassi A, Accoto D, et al. Analysis of robotic locomotion devices for the gastrointestinal tract. Springer Tracts in Advanced Robotics,2003,6: 467-483.
    [15]Kassim I, Phee L, Wan S, et al. Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine,2006,25(3):49-56.
    [16]Kim B, Lee M G, Lee Y P, et al. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A,2006,125(2):429-437.
    [17]Kim B, Lee S, Park J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Transactions on Mehatronics,2005,10(1):77-86.
    [18]Lim J, Park H, An J, et al. One pneumatic line based inchworm-like micro robot for half-inch pipe inspection. Mechatronics,2008,18(7):315-322.
    [19]Choi H R, Ryew S M. Robotic system with active steering capability for internal inspection of urban gas pipelines. Mehcatronics,2002,12(5):713-736.
    [20]Vahabi M, Mehdizadeh E, Kabganian, et al. Design and modeling of a novel in-pipe microrobot using IPMC actuators. Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey,2010:1-8.
    [21]Kheirikhah M M, Khodayari A, Nikpey S M. Design and modeling of a new biomimetic earthworm robot for endoscopy actuated by SMA wires. Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong and Shenzhen, China,2012:148-151.
    [22]Khodayari, Kheirikhah M M, Nikpey M. Fuzzy controller design of a new biomimetic earthworm robot for endoscopy actuated by SMA wires.2012 IEEE International Conference on Electro/Information Technology,2012:1-5.
    [23]Zarrouk D, Sharf I, Shoham M. Worm-like robotic locomotion in flexible environment. Advances in Robot Kinematics:Motion in Man and Machine,2010: 81-89.
    [24]Zarrouk D, Sharf I, Shoham M. Experimental validation of locomotion efficiency of worm-like robots and contact compliance.2012 IEEE International Conference on Robotics and Automation, Minnesota, USA,2012:5080-5085.
    [25]Zarrouk D, Sharf I, Shoham M. Conditions for worm-robot locomotion in a flexible environment:theory and experiments. IEEE Transactions on Biomedical engineering,2012,59(4):1057-1067.
    [26]Brunete A, Hernando M, Torres J E, et al. Heterogeneous multi-configurable chained microrobot for the exploration of small cavities. Automation in Construction,2012,21:184-198.
    [27]颜国正,林良明,丁国清,等.新型机器人驱动内窥镜系统的研究.高技术通讯,2000,5:60-62.
    [28]Yan G Z, Lu Q H, Ding G Q, et al. The prototype of a piezoelectric medical microrobot. Proceedings of 2002 International Symposium on Micromechatronics and Human science,2002:73-77.
    [29]于殿勇,郑钢铁,孙序梁.蠕动式管内移动机构的一种模型.机器人,1994,16(5):303-306.
    [30]孙麟治,陆林海,秦新捷,等.微型机器人用于检查管道内的缺陷.光学精密工程,2003,11(1):11-16.
    [31]徐从启,解旭辉,戴一帆.摩擦接触约束下的微小管道机器人管内运动稳定性分析.机械工程学报,2010,46(15):36-44.
    [32]陈柏,陈笋,蒋素荣,等.仿生介入机器人的运动性能.机器人,2010,32(3):414-418.
    [33]Park S, Prak H, Prak S. A paddling based locomotive mechanism for capsule endoscopes. Journal of Mechanical Science and Technology,2006,20(7): 1012-1018.
    [34]Prak S, Park H, Prak S, et al. Capsular locomotive microrobot for gastrointestinal tract. Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA,2006:2211-2214.
    [35]Kim B, Park S, Park J O. Microrobots for a capsule endoscope.2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore,2009: 729-734.
    [36]Yim S, Jeona D. Capsular microrobot using directional friction spiral.2009 IEEE International Conference on Robotics and Automation, Kobe, Japan,2009: 4444-4449.
    [37]Yim S, Sitti M. Design and analysis of a magnetically actuated and compliant capsule endoscopic robot.2011 IEEE International Conference on Robotics and Automation, Shanghai, China,2011:4810-4815.
    [38]Yim S, Sitti M. Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE transactions on robotics,99:1-5.
    [39]Yim S, Sitti M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE transactions on robotics,2012,28(1):183-194.
    [40]Cavallotti C, Piccigallo M, Susilo E, et al. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators,2009,156: 72-78.
    [41]Simi M, Valdastri P, Quaglia C, et al. Design, fabrication and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. IEEE/ASME Transactions on Mechatronics,2010,15(2):170-180.
    [42]Koga H, Sakata Y, Hirose S, et al. Capsule microrobot for targeting in medical diagnostic treatment. Proceedings of the 16th Solid-State Sensors, Actuators and Microsystems Conference,2011:2835-2838.
    [43]Triantafyllou M S, Barrett D S, Yue D K P, et al. A new paradigm of propulsion and maneuvering for marine vehicles. Transactions of the Society of Naval Architects and Marine Engineers,1996,104:81-100.
    [44]Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Scientific American,1995,272(3):64-70.
    [45]Guo S X, Fukuda T, Oguro K. Development of an artificial fish microrobot.1999 IEEE Intenational symposium on Micromechatronics and Human science,1999: 135-140.
    [46]Guo S X, Toshio F, Kinji A. A New type of fish-like underwater microrobot. IEEE/ASME Transactions on Mechatronics,2003,8(1):136-141.
    [47]Guo S X, Ye X F, Gao B F. Motion planning of underwater multi-microrobot system. Proceedings of 2008 IEEE International Conference on Mechatronics and Automation,2008:690-695.
    [48]Gao B F, Guo S X. Development of an infrared ray controlled fish-like underwater microrobot. Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong and Macau,2010:150-155.
    [49]Guo S X, Gao B F. Motion control of an underwater microrobot system in 3-D space. The 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia,2010:210-214.
    [50]Gao B F, Guo S X. Fluid dynamic analysis of an ICPF actuated fish-like underwater microrobot with 3 DOF. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China,2011:2147-2152.
    [51]Guo S X, Yasuhiro S, Toshio F. A fin type of microrobot in pipe. Proceedings of 2002 International Symposium on Micromechatronics and Human Science,2002: 93-98.
    [52]Guo S X, Sawamoto J, Pan Q X. A novel type of microrobot for biomedical application.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:1047-1052.
    [53]Guo S X, Pan Q X. Mechanism and control of a novel type microrobot for biomedical application.2007 IEEE International Conference on Robotics and Automation, Roma, Italy,2007:187-192.
    [54]Guo S X, Pan Q X, Khamesee M B. Development of a novel type of microrobot for biomedical application, Microsystem Technologies,2008,14(3):307-314.
    [55]Guo S X, Shi L W, Ye X F, et al. A new jellyfish type of underwater microrobot. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China,2007:509-514.
    [56]Yang Y C, Ye X F, Guo S X. A new type of jellyfish-like microrobot. Proceedings of the 2007 IEEE International Conference on Integration Technology, Shenzhen, China,2007:673-678.
    [57]Shi L W, Guo S X, Asaka K. A novel jellyfish-like biomimetic microrobot. The 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia,2010:277-281.
    [58]Punning A, Anton M, Kruusmaa M, et al. A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. IEEE Mechatronics and Robotics,2004,2:241-245.
    [59]Nguyen B K, Boyle J H, Dehghani A A, et al. A C. elegans-inspired micro-robot with polymeric actuators and online vision. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China,2009: 765-770.
    [60]Ghanbari A, Bahrami M. A novel swimming microrobot based on artificial cilia for biomedical applications. Journal of Intelligent & Robotic Systems,2011,63: 399-416.
    [61]Byun D, Choi J, Cha K, et al. Swimming microrobot actuated by two pairs of Helmholtz coils system. Mechatronics,2011,21(1):357-364.
    [62]Tabak A F, Yesilyurt S. Experiment-based kinematic validation of numeric modeling and simulated control of an untethered biomimetic microrobot in channel. The 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, Bosnia and Herzegovina,2012:1-6.
    [63]Tabak A F, Temel F Z, Yesilyurt S. Comparison on experimental and numerical results for helical swimmers inside channels.2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA,2011: 463-468.
    [64]Guan Z Y, Zhou C, Cao Z Q, et al. A 3-D locomotion biomimetic robot fish with information relay. Intelligent Robotics and Applications,2008,5314:1135-1144.
    [65]Mei T, Chen Y, Fu G Q, et al. Wireless drive and control of a swimming microrobot. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, USA,2002:1131-1136.
    [66]Zhang Y, Wang Q M, Zhang P Q, et al. Dynamic analysis and experiment of a 3mm swimming microrobot. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan,2002:1746-1750
    [67]Wang Z L, Hang G R, Li J, et al. A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators A,2008,144(2): 354-360.
    [68]陈柏,顾大强,潘双夏,等.仿蝌蚪与螺旋的泳动机器人系统的设计.机械工程学报,2005,4(10):88-92.
    [69]Zhang Y S, Cong M, Guo D M, et al. Design optimization of a bidirectional microswimming robot using giant magnetostrictive thin films. IEEE/ASME Transactions on Mechatronics,2009,14(4):493-503.
    [70]Liu W, Jia X H, Wang F J, et al. An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film. Sensors and Actuators A,2010,160: 101-108.
    [71]Sun F M, Xu X S. The control mechanism of a new fish-like underwater robot with two tails. Intelligent Robotics and Applications,2008,5314:304-313.
    [72]Chen B, Liu Y D, Chen S, et al. A biomimetic spermatozoa propulsion method for interventional micro robot. Journal of Bionic Engineering,2008,5:106-112.
    [73]Chen B, Jiang S R, Liu Y D, et al. Research on the kinematic properties of a sperm-like swimming micro robot. Journal of Bionic Engineering,2010,7: 123-129.
    [74]Ikeuchi K, Yoshinaka K, Tomita N, et al. Low invasive propulsion of medical devices by traction using mucus. Wear,1997,209:179-183.
    [75]Yoshinaka K, Tomita N, Ikeuchi K, et al. Experimental study of hydrodynamic propulsion of a medical device with a spiral ribbed impeller. Wear,1998,220: 141-144.
    [76]Li H M, Tan J D, Zhang M J. Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Transactions on Automation Science and Engineering,2009,6(2):220-227.
    [77]Ishiyama K, Sendoh M, Yamazaki A, et al. Swimming of magnetic micro-machines under a very wide-range of Reynolds number conditions. IEEE Transactions on Magnetics,2001,37(4):2868-2870.
    [78]Yamazaki A, Sendoh M, Ishiyama K. Three-dimensional analysis of swimming properties of a spiral-type magnetic micro-machine. Sensors and Actuators,2003, 105:103-108.
    [79]Pan Q X, Guo S X. Development of a spiral type of wireless microrobot. Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi'an, China,2008:813-818.
    [80]Pan Q X, Guo S X, Okada T. Development of a wireless hybrid microrobot for biomedical applications. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan,2010:5768-5773.
    [81]Pan Q X, Guo S X, Okada T. Mechanism and control of a spiral type microrobot. Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China,2010:735-740.
    [82]Kim S H, Hashi S, Ishiyama K. Methodology of dynamic Actuation for flexible magnetic actuator and biomimetic robotics application. IEEE Transactions on Magnetics,2010,46(6):1366-1369.
    [83]Lee J S, Kim B, Hong Y S. A flexible chain-based screw propeller for capsule endoscopes. International Journal of Precision engineering and Manufacturing, 2009,10(4):27-34.
    [84]Hong Y S, Kim J Y, Kwon Y C, et al. Preliminary study of a twistable thread module on a capsule endoscope in a spiral motion. International Journal of Precision Engineering and Manufacturing,2011,12(3):461-468.
    [85]Hu C, Chen D M, Meng M Q, et al. A wireless actuation system for micro-robot moving inside pipeline. Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi'an, China,2008:653-658.
    [86]周银生,贺惠农,顾大强,等.医用微型机器人无损伤体内驱动方法.科学通报,1999,44(20):2210-2213.
    [87]穆晓枫,周银生,陈柏.一种医用肠道机器人的理论分析与试验研究.机械工程学报,2004,40(7):124-127.
    [88]Zhang Y S, Jiang S Y, Zhang X W, et al. A variable-diameter capsule robot based on multiple wedge effects. IEEE/ASME Transactions on Mechatronics,2011, 16(2):241-254.
    [89]Lu J, Li H Z, Zhang Y S, et al. Start-up characteristics of a capsule micro robot applied in intestine.2011 International Conference on Mechatronic Science, Electric Engineering and Computer, Jilin, China,2011:605-608.
    [90]Donald B R, Levey C G, Mcgray C D. An untethered, electrostatic, globally controllable MEMS micro-robot. Journal of Microelectromechanical Systems, 2006,15(1):1-15.
    [91]Donald B, Levey C G, Paprotny I. Planar microassembly by parallel actuation of MEMS microrobots. Journal of Microelectromechanical Systems,2008,17(4): 789-808.
    [92]Hagiwara M, Kawahara T, Feng L, et al. High performance magnetically driven microtools with ultrasonic vibration for biomedical innovations.2011 IEEE International Conference on Robotics and Automation, Shanghai, China,2011: 3453-3454.
    [93]Hagiwara M, Ichikawa A, Kawahara T, et al. High speed enucleation of oocyte using magnetically actuated microrobot on a chip.2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems,2012:364-367.
    [94]Park S, Park J O. Frontier research program on biomedical microrobot for intravascular therapy. Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA,2008:360-365.
    [95]Jeong S, Choi H, Choi J, et al. Novel electromagnetic actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot. Sensors and Actuators A,2010,157(1):118-125.
    [96]Yu C, Kim J, Choi H, et al. Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sensors and Actuators A,2010,161:297-304.
    [97]Jeon S M, Jang G H, Choi H C, et al. Utilization of magnetic gradients in a magnetic navigation system for the translational motion of a micro-robot in human blood vessels. IEEE Transactions on Magnetics,2011,47(10):2403-2406.
    [98]Peyer K E, Zhang L, Kratochvil B E, et al. Non-ideal swimming of artificial bacterial flagella near a surface.2010 IEEE International Conference on Robotics and Automation, Anchorage, USA,2010:96-101.
    [99]Arcese L, Fruchard M, Ferreira A. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Transactions on Biomedical Engineering,2012,59(4):977-987.
    [100]梁亮,彭辉,陈柏.新型医用微小管道机器人的研究.高技术通讯,2012,22(4):410-415.
    [101]约翰安德森.计算流体力学基础及其应用.北京:机械工业出版社,2009.
    [102]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004.
    [103]陈柏.基于液体环境的内窥镜机器人的研究.[博士学位论文]杭州:浙江大学,2005.
    [104]张凯,王瑞金,王刚.Fluent技术基础与应用实例.北京:清华大学出版社,2010.
    [105]陈柏,蒋素荣,陈笋,等.螺旋式单链介入微机器人的研究.中国机械工程,2009,20(17):2100-2103.
    [106]梁亮,周银生.医用微型机器人的体内运行实验研究.润滑与密封,2004,4:17-18.
    [107]陈柏,蒋素荣,顾大强.运行环境特性对螺旋内窥镜机器人性能的研究.仪器仪表学报,2006,27(11):1391-1394.
    [108]周银生,李立新,赵东福.一种新型的微型机器人.机械工程学报,2001,37(1):11-13.
    [109]穆晓枫,周银生,陈柏.一种医用肠道机器人的理论分析与试验研究.机械工程学报,2004,40(7):124-127,144.
    [110]何斌,岳继光,周群,等.新型医用微型机器人运行环境研究.中国机械工程,2005,16(24):2234-2238.
    [111]梁亮,彭辉,胡冠昱,等.螺旋微型机器人对人体肠道壁损伤的数值仿真.系统仿真学报,2011,23(3):460-464.
    [112]张永顺,王殿龙,阮晓燕,等.肠道内多胶囊机器人的控制策略.中国科学:技 术科学,2011,41(11):1551-1560.
    [113]陈柏,蒋素荣,顾大强,等.螺旋内窥镜机器人非线性仿真分析模型研究.中国机械工程,2006,17(21):2256-2260.
    [114]Ikeuchi K, Yoshinaka K, Hashimoto S, et al. Locomotion of medical micro robot with spiral ribs using mucus. Proceedings of the Seventh International Symposium on Micro Machine and Human Science, Nagoya, Japan,1996:217-222.
    [115]周银生,贺惠农,全永昕.无损伤肠道机器人运行速度的研究.摩擦学学报,1999,19(4):299-303.
    [116]张永顺,于宏海,阮晓燕.新型肠道胶囊式微型机器人的运动特性.机械工程学报,2009,45(8):18-23.
    [117]张永顺,李治贵,敬双萍.肠道胶囊式微机器人轴向磁拉力特性.中国机械工程,2007,18(14):1709-1713.
    [118]张炜,黄平.胶囊微机器人在离体生物环境下的力学实验研究.润滑与密封,2007,32(6):15-18,22.
    [119]申永胜.机械原理教程(第2版).北京:清华大学出版社,2005.
    [120]梁亮,彭辉,陈柏.脉动流场中血管微型机器人的运行研究.中南大学学(自然科学版),2011,42(12):3784-3790.
    [121]杨朋飞,陈柏,王文权,等.脉动流场中介入机器人抗冲击性能研究与结构优化.机械科学与技术,2010,29(5):602-606.
    [122]邱霖.分岔动脉血管介入治疗的数值模拟和实验研究.[博士学位论文]成都:四川大学,2004.
    [123]梁亮,彭辉,甘敏.医用微型机器人动力学建模和螺旋槽参数优化研究.第26届中国控制会议,2007,2:160-164.
    [124]梁亮,唐勇,庞佑霞,等.螺旋机器人的结构参数对人体肠道壁损伤影响的优化研究.中国机械工程,2010,21(15):1855-1859.
    [125]张里千.正交法与应用数学.北京:科学出版社,2009.
    [126]任露泉.试验设计及其优化.北京:科学出版社,2009.
    [127]蔡自兴,江中央,王勇,等.一种新的基于正交实验设计的约束优化进化算法.计算机学报,2010,33(5):855-864.
    [128]吴浩扬,常炳国,朱长纯.遗传算法的一种特例—正交试验设计法.软件学报,2001,12(1):145-153.
    [129]王伟,负超.机器人机构精度综合的正交试验法.机械工程学报,2009,45(11):18-24.
    [130]周毅,徐柏龄.神经网络中的正交设计法研究.南京大学学报(自然科学版), 2001,37(1):72-78.
    [131]倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用.岩石力学与工程学报,2002,21(7):989-992.
    [132]方开泰,马长兴.正交与均与试验设计.北京:科学出版社,2001.
    [133]陈柏,顾大强,蒋素荣,等.不同介质中螺旋机器人轴向力实验研究.浙江大学学报(工学版),2006,40(12):2122-2125.
    [134]周银生,贺惠农,顾大强,等.医用微型机器人无损伤体内驱动方法.科学通报,1999,44(20):2210-2213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700