矩阵变换器换流策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩阵变换器是一种高功率密度,高输入输出波形质量的新型电力变换器,具有良好的应用前景。目前有诸多因素困扰着矩阵变换器的实用化,其中一个最主要的原因就是矩阵变换器的换流问题。换流策略的可靠与否直接关系到矩阵变换器的安全运行,是矩阵变换器的技术难点之一。
     在详细分析各种换流技术的基础上,本文对具有应用前景的电压型换流技术进行了深入研究。针对电压型换流法在过渡区间内,即两相电压接近的情况下可能存在的换流问题,本文提出了一种在过渡区间内采用的新型四步换流策略。新型换流策略采用一种特殊的换流时序实现过渡区间内的可靠换流而不需要考虑电压相近的两相之间的相对电压。
     本文设计了基于IGBT的矩阵变换器主电路和基于EXB841的门极驱动保护电路,通过合理选择EXB841驱动保护电路的保护门限,可以实现对IGBT的过流保护;设计了基于DSP和CPLD的矩阵变换器控制电路,将矩阵变换器调制策略和换流策略的独立实现,实现了控制系统的模块化;通过软硬件相结合的方式,实现了对输入电压区间的可靠检测和区分。
     基于本文提出的新型换流策略编写了基于VHDL语言的换流控制程序,并针对该换流程序进行了仿真分析,仿真结果证明了换流时序的正确性。分别采用基本电压型半自然两步换流策略和本文所提出的新型换流策略进行了实验研究,实验结果证明新型换流策略的正确性。
Matrix Converter (MC), which has good prospect, is a novel power converter with high power density and high-quality input and output waveforms. There are many factors plagued the application of the MC, one of the main reasons is the commutation problems. The reliability of the commutation strategy, which is directly related to the security of the MC, is one of the key technical difficulties.
     Based on the foundation of detailed analysis on various commutation strategy, the voltage based commutation technology, which have better prospect, was investigated in this thesis. An improvement measures which called Novel Commutation Strategy was proposed for the commutation problem in the interval zone.
     The MC main circuit based on IGBT and the gate driver circuit based on EXB841 was constructed, the over-current protection was realized by adjust the threshold of the EXB841. The control circuit of MC based on DSP and CPLD was designed. The modulation strategy and commutation strategy were realized individually for modular design. The input voltage zone was reliably detected by the collaboration of hardware and software.
     The VHDL program for MC commutation based on the Novel Commutation Strategy was coded; the simulation results verified the commutation schedule. The basic semi-natural two-step commutation technology and the Novel Commutation Technology were compared based on experimental results. The experimental results verified the validity of the Novel Commutation Strategy.
引文
[1]钱照明,程肇.电力电子系统电磁兼容设计基础及干扰抑制技术.杭州:浙江大学出版社, 2000.
    [2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社, 2002.
    [3] P. W. Wheeler, J. Rodriguez, J. Clare, Matrix Converters: A Technology Review. IEEE Trans. on Industrial Electronics, Apr 2002, 49(2): 276 -288.
    [4] Dongsheng Zhou, Kenneth P Phillips, Evaluation of AC-AC Matrix Converter: A Manufacturer's Perspective. IEEE, 2002.
    [5] P. W. Wheeler, J. Clare, L. Empringham, et al. M. Bland, Matrix Converters. Power Engineering Journal. 2002.
    [6] L. Gyugyi, B. P. Pelly. Static power frequency changers: theory, performance and application. Willey-interscience, New-York, 1976.
    [7] M. Venturini, A. Alesina. The generalized transformer: A new bidirectional sinusoidal waveform frequency converter with continuously adjustable input power factor. IEEE PESC’80, 1980: 242~252.
    [8] M. Venturini. A new sine wave in sine wave out, conversion technique which eliminates reactive elements. In Proc. Powercon 7, San Diego, CA, 1980: E3_1 ~ E3_15.
    [9] Alberto Alesina,Marco G. B. Venturini. Solid-state power conversion: a fourier analysis approach to generalized transformer synthesis. IEEE Transactions on Circuits and Systems, 1981: 319~330.
    [10] A. Alesina, M. Venturini. Analysis and design of optimum amplitude nine switch direct ac-ac converters. IEEE Transaction on Power Electronics, 1989: 101~112.
    [11] Rodriguez J. A new control technique for AC-AC converters. Proceeding IFAC Control in Power Electronics and Electrical Drives Conference. 1983: 203-208.
    [12] M. Braun, K. Hasse. A direct frequency changer with control of input reactive power. Proceeding IFAC Control in Power Electronics and Electrical Drives Conference. 1983: 187-194.
    [13] G. Kastner, J. Rodriguez. A forced commutated cycloconverter with control of the source and load currents. Preceeding EPE’85. 1985: 1141-1146.
    [14] L. Huber, D. Borojevic. Space vector modulator for forced commutated cycloconverters. Proceedings IEEE IAS’89. 1989: 871-876.
    [15] L. Huber, D. Borojevic, X. F. Zhuang, F. C. Lee. Design and implementation of a three-phase to three-phase matrix converter with input power factor correction. Proceeding IEEE APEC’93, 1993: 960-865.
    [16] Nandor Burany. Safe Control of Four-Quadrant Switches. IEEE IAS'89, 1989: 1190~1194.
    [17] B.-H. Kwon, B.-D. Min, J.-H. Kim. Novel Commutation Technique of AC-AC Converters. IEE Proceedings Electric Power Applications, July 1998: 295– 300.
    [18] M. Ziegler, W. Hofmann. Semi natural two steps commutation strategy for matrix Converters. IEEE PESC'98, 1998: 727~731.
    [19] M. Ziegler, W. Hofmann. Implementation of a two steps commutated matrix converter. IEEE PESC’99, 1999: 175~180.
    [20] L. Empringham, P. Wheeler, J. Clare, A Matrix Converter Induction Motor Drive Using Intelligent Gate Drive Level Current Commutation Techniques. IEEE Industry Applications Conference, Oct. 2000: 1936 ~1941.
    [21] P.W. Wheeler, J.C Clare, L. Empringham. A Vector Controlled MCT Matrix Converter Induction Motor Drive with Minimized Commutation Times and Enhanced Waveform Quality. 37th IAS Annual Meeting, Oct. 2002: 466~472.
    [22] M. Ziegler, W. Hofmann. New one-step commutation strategies in matrix converters. IEEE International Conference on Power Electronics and Drive Systems, 2001: 560~564.
    [23] P.W. Wheeler, J.C. Clare, M. Apap. Power Supply Loss Ride-Through and Device Voltage Drop Compensation in A Matrix Converter Permanent Magnet Motor Drive for An Aircraft Actuator. 35th Annual IEEE PESC, June 2004: 149~154.
    [24] Lt S Large, A Green, S C Mason, et al. Matrix converter solution for aircraft starting. 37th IAS Annual Meeting, 2002: 455~462.
    [25] P. Wheeler, J. Clare, L. Empringham. A matrix converter based permanent magnetmotor drive for an aircraft actuation system. 38th IAS Annual Meeting IEEE, 2003: 1295~1300.
    [26] P. Wheeler, J. Clare, L. Empringham. A matrix converter based permanent magnet motor drive for an electro-hydrostatic aircraft actuator. 38th IAS Annual Meeting IEEE, 2003: 2072~2077.
    [27] T. F. Podlesak, D. Katsis. A 150 kVA vector controlled matrix converter induction motor drive. 39th IAS Annual Meeting IEEE, Oct. 2004: 1811~1816.
    [28] P. Zanchetta, J.C. Clare, P.W. Wheeler et al. Control Design of a Three-phase Matrix Converter Mobile AC Power Supply using Genetic Algorithms. 40th IAS Annual Meeting IEEE, Oct. 2004: 1811~1816.
    [29] P W Wheeler, J C Clare, L Empringham et al. A Fully Integrated 30kW Motor Drive Using Matrix Converter Technology. 41st IAS Annual Meeting IEEE, 2005: 2390~2395.
    [30] P. Snary, B. Bhangu, C.M. Bingham, et al. Matrix converters for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs. IEE Proc. Electro. Power Appl, Vol. 152, No. 2, March 2005: 382~392.
    [31] C. Klumpner, P. Nielsen, F. Blaabjerg. A New Matrix Converter Motor (MCM) for Industry Applications. IEEE Trans. on Industrial Electronics, April 2002, 49(2): 325~335.
    [32] Kyo-Beum Lee, Frede Blaabjerg. Reduced-Order Extended Luenberger Observer Based Sensorless Vector Control Driven by Matrix Converter With Nonlinearity Compensation. IEEE Trans. on Industrial Electronics, February 2006, 53(1): 66~74.
    [33] Kyo-Beum Lee, Frede Blaabjerg. Performance Improvement of Sensorless Vector Control for Matrix Converter Drives Using PQR Transformation. IEE Proc.-Electr. Power Appl, March 2006: 382~392.
    [34] D. Casadei, G. Serra, A. Tani. The Use of Matrix Converters in Direct Torque Control of Induction Machines. IEEE Trans. on Industrial Electronics, Dec. 2001, 48(6):1057~1064
    [35] D. Casadei, G. Serra, A. Trentin et al. Experimental Analysis of a Matrix Converter Prototype Based on New IGBT Modules. IEEE ISIE 2005, June 20-23, 2005,Dubrovnik, Croatia, pp: 559~564.
    [36] Olaf Simon, Jochen Mahlein, Mark Nils Muenzer, et al. Modern Solutions for Industrial Matrix-Converter Applications. IEEE Trans. on Industrial Electronics, April 2002, 49(2): 401~406.
    [37] Stefan Müller, Ulrich Ammann, Stephan Rees. New Time-Discrete Modulation Scheme for Matrix Converters. IEEE Trans. on Industrial Electronics, December 2005, 52(6): 1607~1615.
    [38] L. Zhang, C. Watthanasarn. A Matrix Converter Excited Doubly-fed Induction Machine as a Wind Power Generator. Seventh International Conference on Power Electronics and Variable Speed Drives, 1998: 532~537.
    [39] Said Bouchiker, Gerard-Andre Capolino, Michel Poloujadoff. Vector Control of a Permanent-Magnet Synchronous Motor Using AC–AC Matrix Converter. IEEE Trans. on Power Electronics, November 1998, 13(6): 1089~1099.
    [40] M. Hornkamp, M. Loddenk?tter, M. Münzer. EconoMAC the first all-in-one IGBT module for matrix converters. Eupec Corporation, 2002.
    [41] Kenji Yamada, Tsuyoshi Higuchi, Eiji Yamamoto et al. Integrated Filters and their Combined Effects inMatrix Converter. 41st IAS Annual Meeting IEEE, 2005: 1406~1413.
    [42] Hidenori Hara, Eiji Yamamoto, Jun-Koo Kang, et al. Improvement of Output Voltage Control Performance for Low-Speed Operation of Matrix Converter. IEEE Trans. on Power Electronics, November 2005, 20(6): 1372~1378.
    [43] T. Naito, M. Takei, M. Nemoto, et al. 1200V reverse blocking IGBT with low loss for matrix converter. Proceedings of 2004 International Symposium on Power Semiconductor Devices & ICs, Kitakyushu, 2004: 125~128.
    [44] Hideki. Takahashi, Mitsuru. Kaneda, et al. 1200V class reverse blocking IGBT (RB-IGBT) for AC matrix converter. Proceedings of 2004 International Symposium on Power Semiconductor Devices & ICs, Kitakyushu, 2004: 121~124.
    [45] Jun-ichi Itoh, Ikuya Sato, Akihiro Odaka, et al. A Novel Approach to Practical Matrix Converter Motor Drive System With Reverse Blocking IGBT. IEEE Trans. on Power Electronics, November 2005, 20(6): 1356~1363.
    [46] E. R. Motto, J. F. Donlon, M. Tabata, et al. Application Characteristics of an Experimental RB-IGBT (Reverse Blocking IGBT) Module. 40th IAS Annual Meeting IEEE, Oct. 2004: 1050~1544.
    [47]庄心复.交-交型矩阵变换器的控制原理与试验研究.电力电子技术, 1994(2): 1~6.
    [48]葛红娟,穆新华,张绍,等.基于矩阵变换器的永磁同步电机矢量控制模型及仿真分析.中国矿业大学学报. 2005, 34(3): 333~337.
    [49]陈伯时,陆海慧.矩阵式交交变换器及其控制.电力电子技术, 1999, 33(1):8~11.
    [50]陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析.中国电机工程学报. 2000, 20(5): 80~84.
    [51]汤宁平,方旭阳.恒频采样电流跟踪控制型矩阵变换器的设计及其应用.福州大学学报(自然科学版), 2000, 28(1):38~43.
    [52]孙凯,黄立培,松濑贡规.基于矩阵式变换器的异步电动机矢量控制.清华大学学报, 2004, 44(7): 909-912.
    [53] Daning Zhou, Kai Sun, Lipei Huang, et al. A Novel Commutation Method of Matrix Converter Fed Induction Motor Drive Using RB-IGBT. Proceedings IEEE IAS2005, 2005: 2347~2354.
    [54] FIO50-12BD datasheet. IXYS Corporation, 2001.
    [55] Christian Klumpner, Peter Nielsen, Ion Boldea, et al. New Solutions for a Low-Cost Power Electronic Building Block for Matrix Converters. IEEE Trans. on Industrial Electronics, April 2002, 48(2): 336~344.
    [56] R.R.Beasant, W. C. Beattie, A. Refsum. An approach to realization of a high-power Venturini converter. Proceedings IEEE, 1990: 291~287.
    [57]吴胜,黄声华,周理兵,李朗如.矩阵变换器的正反组电流过零切换控制法.华中科技大学学报(自然科学版), 2002, 30(6): 95~98.
    [58] J. Mahlein, J. Igney, J. Weigold. Matrix Converter Commutation Strategies With and Without Explicit Input Voltage Sign Measurement., IEEE Trans. on Industrial Electronics, April 2002, 49(2): 407~414.
    [59] IGBT-Driving Hybrid ICs(EXB8..-Series) Application Manual, Fuji Semiconductor.
    [60] 1MBH60D-100 datasheet. Fuji Semiconductor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700