不同形貌纳米In_2O_3的可控制备及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料和结构是当今材料领域中十分重要的研究对象,特别是其新颖的物理、化学和生物学特性以及在纳米器件中的应用已成为当今纳米技术的研究热点。如何控制材料的定向生长并实现对其尺寸、维度等形貌的调控,对于深入研究材料形貌与物性间的关系,最终实现按照人们的意愿设计制备功能材料具有重要的意义。
     本论文采用液相法,在氧化铟(In_2O_3)材料的形貌可控制备与其特征研究方面作了有益探索。通过选择合适的形貌控制剂,可控制备了不同形貌的In_2O_3材料,包括一维的纳米棒、纳米线,以及介孔结构等,并详细考查了反应条件对产物形貌的影响。根据材料结构表征,初步探讨了不同结构氧化铟纳米材料的生长机理。并将不同形貌的纳米氧化铟制成旁热式气敏元件,测试了元件的气敏性能,通过与纳米颗粒氧化铟进行比较,探讨了气敏材料的结构、形态与气敏性能的关系。
     本论文主要成果如下:
     1.以氯化铟和氨水为原料,非离子表面活性剂壬基酚聚氧乙烯醚(OP-10)为形貌控制剂,通过控制反应条件,成功制备出一维In_2O_3纳米棒(直径约20 nm,长度在120 nm左右)。对其纳米棒生长的影响因素研究表明:反应温度是影响纳米棒长度的主要因素,而形貌控制剂浓度则会影响棒的分散性。对其形成机理探讨认为:OP-10的分子几何排列参数在1/3~1/2范围内,可以形成棒状胶团,依据这一原理,以OP-10棒状胶团为模板,控制制备了棒状结构的In_2O_3。
     2.对一维氧化铟纳米棒气敏性能测试结果表明,In_2O_3纳米棒在130℃时对三甲胺(Trimethylamine:TMA)有较高的灵敏度和选择性;对酒精、甲醇、丙酮、甲醛等气体在260℃处有较好的灵敏度;对氢气在较高温度(>350℃)时有较高的灵敏度和选择性;材料对氨气和丁烷基本不响应。气敏机理初步探讨认为,具有较强供电子能力的TMA是In_2O_3纳米棒气敏元件在较低温度下对TMA有高的灵敏度和选择性的主要原因。
     3.将一维棒状纳米In_2O_3与零维颗粒状纳米ZnO、SnO_2和In_2O_3按5wt.%的质量百分比复合,通过控制烧结工艺条件,首次制备出具有多孔架空结构的多维复合纳米棒In_2O_3材料。气敏性能测试结果表明:具有多孔架空结构的多维复合纳米棒材料能够有效改善材料的气敏性能,不仅明显提高了对测试气体的灵敏度和选择性,还可以降低元件的工作温度;特别是对TMA显示出良好的气敏性能,为开发高灵敏度高选择性TMA传感器提供了可能。对多维复合材料的气敏机理分析认为,在纳米尺度下的多孔架空结构能够增大材料的有效比表面积,形成吸附反应的载体,为气体吸附提供了较大的立体空间,因此能够有效地提高材料的气敏性能。
     4.采用三嵌段共聚物PE6800作为形貌控制剂,通过超分子自组装,在室温、水溶液中成功制备出平均孔径在6nm左右,BET比表面积54.8m~2·g~(-1),吸附孔容为0.345cm~3·g~(-1)的介孔结构In_2O_3粉体,并研究了形成介孔氧化铟的影响因素。对介孔In_2O_3的气敏性能测试结果表明,元件对甲醛、乙醇、甲醇、NO_2等气体具有较高的气体灵敏度,尤其是对乙醇气体表现出高的灵敏度和良好的响应-恢复特性,有望用于对乙醇气体的检测。论文探讨了制备温度、孔结构对介孔In_2O_3气敏性能的影响,认为低的制备温度有利于气体灵敏度的提高;与颗粒状纳米氧化铟的气敏性能比较,证明介孔结构的In_2O_3的灵敏度确实要比颗粒状的纳米In_2O_3高,如对乙醇和H_2的灵敏度可提高20%多。
     5.采用水热-前驱体热分解法,以草酸为一维结构导向剂,控制制备出高长径比的In(OH)_3纳米线(长径比>40),通过优化热处理条件制得In_2O_3纳米线,该纳米线直径为30~50nm,长度达到2μm以上。对In_2O_3纳米线的气敏性能研究结果表明:该In_2O_3纳米线对NO_2气体具有灵敏度高(5 ppm时,灵敏度可达9.6)、选择性好(不受众多还原性气体的干扰)、检测下限低(可检测1 ppm的NO_2)以及响应恢复快等优点,在环保、汽车尾气监控等方面具有良好的应用前景。
Nanomaterials and nanostructures are very important research target in present fields of materials,especially they have become research hot spot in fields of nanotechnology nowdays because of their novel physical,chemical,biological characteristics and novel potential applications in nanometer devices.For the synthesis of nanomaterials,liquid-phase method has been widely used in the preparation of nanoparticles because it is easy to control nucleation,uniform composition and component,and can be obtained high purity nano-oxides.
     In this paper,In_2O_3 nanostructures,including nanorods,nanowires,and mesoporous morphology and structure were prepared by liquid-phase method with different surfactants.The morphology and structure of the materials synthesized were characterized.Various reaction parameters,such as morphological controlling agents, reaction temperature and time,were studies in this work.The growth mechanism of In_2O_3 with different nanostructures was discussed.The gas-sensing properties of In_2O_3 with different morphology were studied by using the side-heated gas sensors.The relationship between structure of In_2O_3 materials and gas-sensing properties was discussed.
     Main achievements of this paper:
     1.In_2O_3 nanorods were prepared by controlling the kinetics parameters in reaction process and using polyethylene octyl phenyl(OP-10) as a controlling agent of morphology,InCl_3·4H_2O and ammonia as the raw materials.The results indicated that In_2O_3 nanorods had the length of about 120nm and the diameter of about 20nm.Studies on the factors influencing growth of In_2O_3 nanorods showed that reaction temperature played a key role in controlling the length of In_2O_3 nanorods,and the concentration of morphological controlling agents affected the dispersion of nanorods.Discussion of the formation mechanism showed that the geometric arrange parameter of OP-10 was in 1/3-1/2,it could form claviform micelle.So at the appropriate reaction temperature and concentration,In_2O_3 nanorods were prepared.
     2.The gas sensing properties of In_2O_3 nanorods were measured by mixing detected gas and air in static state.The testing results showed that In_2O_3 nanorods had higher sensitivity and selectivity to trimethylamine(TMA) at 130℃;good sensitivity to C_2H_5OH,CH_3OH,CH_3COCH_3,HCHO at 260℃but low selectivity;higher sensitivity and selectivity to H_2 at much higher temperature;then little response to NH_3 and C_4H_9. The analysis of gas-sensing mechanism was indicated that In_2O_3 nanorods had higher sensitivity and selectivity to trimethylamine at low temperature due to its strong ability to supply electrons.
     3.Multi-dimensional compound In_2O_3 materials with porous overhead structure were first prepared by dopping In_2O_3 nanorods with 5wt.%ZnO,SnO_2 and In_2O_3 nanoparticles and controlling the sintering conditions.The results of gas-sensing test showed that multi-dimensional compound In_2O_3 materials could improve the sensitivity and selectivity,and decrease the power consumption;especially had good response to trimethylamine which make it possible to develop trimethylamine sensor with high sensitivity and selectivity.Analysis of gas-sensing mechanism for the compound showed that porous overhead structure could enlarge effectively specific surface area,and form support of adsorption reaction,overcome resistance of eiectronic migration so it could improve gas sensing properties.
     4.Mesoporous indium oxide were prepared by simple sol-gel technique with three block copolymer PE6800 as a agent of controlling their morphology,H_2O as a solvent and indium chloride as a precursor.The decomposition process,crystal structure and micro-morphology of samples were characterized by TG-DSC,XRD,SEM,TEM and BET.The influence factors of forming mesoporous In_2O_3 were discussed.The results of gas-sensing test showed that In_2O_3 nanorods had good sensitivity to C_2H_5OH, CH_3OH,HCHO,NO_2;especially except for good sensitivity to C_2H_5OH and had better response-recovery properties,so they were promising to be used in C_2H_5OH detection. The effects of reaction temperature and porous structure on gas-sensing properties were discussed.Compared with In_2O_3 nanoparticles,we found that gas response of the sensor based on mesoporous In_2O_3 materials was higher than that of In_2O_3 nanoparticles.
     5.In_2O_3 nanowires with high aspect ratios(>40) were synthesized via hydrothermal-annealing route.The gas-sensing measurement showed that the sensor based on In_2O_3 nanowires had excellent gas-sensing properties to NO_2 which make it favorable to be used in environmental protection,exhausting gas monitor and so on.
引文
[1]Klein D L,Roth R,Lim A K L.A single-electron transistor made from a cadmium selenide nanocrystal[J].Nature,1997,389:699-701.
    [2]Alivisatos A P.Perspectives on the physical chemistry of semiconductor nanocrystals[J].J Phys Chem,1996,100:13226-13239.
    [3]Alivisatos A P.Semiconductor clusters,nanocrystals,and quantum dots[J].Science,1996,271:933-937.
    [4]Pool R.The Smallest Chemical Plants[J].Science,1994,263:1698-1699.
    [5]Matijevic E,Monodispersed metal(hydrous) oxides-a fascinating field of colloid science[J].Acc Chem Res,1981,14:22-29.
    [6]Hu J T,Li L S,Yang W D,Alivisatos A P.Linearly polarized emission from colloidal semiconductor quantum rods[J].Science,2001,292:2060-2063.
    [7]Hu J T,Odom T W,Lieber C M.Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes[J].Acc Chem Res,1999,32:435-445.
    [8]Xia Y N,Yang P D,Sun Y G;Wu Y Y.One-dimensional nanostructures:synthesis,characterization,and applications[J].Adv Mater,2003,15:353-389.
    [9]Xia Y N,Yang P D.Chemistry and physics of nanowires[J].Adv Mater,2003,15:351-352.
    [10]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,16-19.
    [11]朱静.纳米材料与器件[M].北京:清华大学出版社,2003.
    [12]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [13]Hu J T,Odom T W,Lieber C M.Chemistry and physics in one dmension:Synthesis and properties of nanowires and nanotubes[J].Acc Chem Res,1999,32:435-445.
    [14]Morales A M,Lieber C M.A laser ablation method for the synthesis of crystalline semiconductor nanowires[J].Science,1998,279:208-211
    [15]Duan X F,Wang J F,Lieber C M.Synthesis and optical properties of gallium arsenide nanowires[J].Appl Phys Lett,2000,76:1116-1118.
    [16]Duan X F,Lieber C M.General synthesis of compound semiconductor nanowires[J].Adv Mater,2000,12:298-302.
    [17]Duan X F,Lieber C M.Laser-assisted catalytic growth of single crystal GaN nanowires[J].J Am Chem Soc,2000,122:188-189
    [18]Duan X F,Huang Y,Cui Y,Wang J F,Lieber C M.Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J].Nature,2001,409:66-69
    [19]Yang P D,Lieber C M.Nanorod-superconductor composites:A pathway to high critical current density materials[J].Science,1996,273(5283):1836-1840
    [20]Huang M H,Wu Y,Feick H,Tran N,Weber E,Yang P.Catalytic growth of zinc oxide nanowires through vapor transport[J].Adv Mater,2001,13(2):113-116
    [21]Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting oxides[J].Science,2001,291(5510):1947-1949
    [22]Martin C R.Nanomaterials:a membrane-based synthetic approach[J].Science,1994,266:1961-1966.
    [23]Molares M E T,Buschmann V,Dobrev D,Neumann R,Scholz R.Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes[J].Adv Mater,2001,13(1):62-65.
    [24]Dai H J,Wong E W,Lu Y Z,Fan S S,Lieber C M.Synthesis and characterization of carbide nanorods[J].Nature,1995,375:769-772.
    [25]Han W Q,Fan S S,Li Q Q,et al.Synthesis of gallium nitride nanorods througha carbon nanotube-confined reaction[J].Science,1997,277:1287-1289.
    [26]Sun Y G,Xia Y N.Multiple-walled nanotubes made of metals[J].Adv Mater,2004,16:264-268.
    [27]Xiong Y J,Mayers B T,Xia Y N.Some recent developments in the chemical synthesis of inorganic nanotubes[J].Chem Commun,2005,5013-5022.
    [28]Li M,Schnablegger H,Mann S.Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J].Nature,1999,402(6760):393-395.
    [29]Jana N R,Gearheart L,Murphy C J.Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J].J Phys Chem B,2001,105(19):4065-4067.
    [30]Xu C K,Xu G D,Liu Y K,Zhao X L,Wang G H.Preparation and characterization of SnO_2nanorods by thermal decomposition of SNC_2O_4 precursor[J].Scripta Mater,2002,46(11):789-794.
    [31]Xu C K,Xu G D,Liu Y K,Hou G H.A simple and novel route for the preparation of ZnO nanorods[J].Solid State Commun,2002,122(3-4):175-179.
    [32]王成云,苏庆德,钱逸泰等。非水溶剂水热法制备CeO纳米粉[J].化学研究与应用,2001,13(4):402-405.
    [33]Liu Z P,Peng S,Xie Q,Hu Z K,Yang Y,Zhang S Y,Qian Y T.Large-scale synthesis of ultralong Bi_2S_3 nanoribbons via a solvothermal process[J].Adv Mater,2003,15:936-940.
    [34]Wang X,Li Y D.Rare-earth-compound nanowires,nanotubes,and fullerene-like nanoparticles:synthesis,characterization,and properties[J].Chem Eur J,2003,9:5627-56351
    [35]Li Z Q,Xiong Y J,Xie Y.Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route[J].Inorg Chem,2003,42:8105-8109.
    [36]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004.2:1-375
    [37]Archibald D D,Mann S.Template mineralization of self-assembled anisotropic lipid microstructures[J].Nature,1993,364:430-433
    [38]Jana N R,Gearheart L,Murphy C J.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J].Chem Commun,2001,617-618
    [39]Muster J,Kim G T,Krstic V,Park J G,Park Y W,Roth S,Burghard M.Electrical transport through individual vanadium pentoxide nanowires[J].Adv Mater,2000,12(6):420-424
    [40]Zhang D,Li C,Han S,Liu X,Tang T,Jin W,Zhou C.Electronic transport studies of single-crystalline In_2O_3 nanowires[J].Appl Phys Lett,2003,82:112-114
    [41]徐甲强,陈玉萍,李亚栋,沈嘉年.一维纳米材料在气体传感器中的应用[J].传感器技术,2005,24(1):4-6
    [42]Basab C,Alex C P.Viswanathan BI Physico-chemi-cal and MAS-NMR characterization of mesoporous SAPOs[J].Appl Catal,1998,167-173
    [43]Renzo F D,Cambon H,Dutartre R.A 28-year-old synthesis of micelle-templated mesoporous silica[J].Mesoporous Mater,1997,10(4-6):283-286
    [44]Yanagisawa T,Shimizu T,Kuroda K,Kato C.The preparation of alkyltrimethy lammonium-kanemite complexes and their conversion to mesoporous materials[J].Bull Chem Soc Jpn,1990,63:988-992
    [45]Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712
    [46] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structure [J]. J Am Chem Soc, 1998,120 (24): 6024-6036
    [47] Huo Q, Margolese D I, Ciesla U, Demuth D G, Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F, Schuth F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem Mater, 1994, 6: 1176-1191
    [48] Ivanova R, Alexandridis P, Lindmann B. Interaction of poloxamer block copolymers with cosolvents and surfactants[J].Colloids Surf A, 2001,183-185: 41-53
    [49] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular-sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114: 10834-10843.
    [50] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368: 321-323
    [51] Tanev P T, Pinnavaia T. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865.
    [52] Bagshaw S A, Prouzet E, Pinnavaia T. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
     [53] Zhao D Y, Feng J L, Huo Q S et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279: 548-552.
    [54] Flodstrom K, Alfredsson V. Influence of the block length of triblock copolymers on the formation of mesoporous silica [J]. Microporous Mesoporous Mater, 2003, 59: 167-176.
    [55] Miyazawa K, Inagaki S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15 [J]. Chem Commun, 2000, 2121—2122.
    [56] Bennadja Y, Beaunier P, Margolese D, Davidson A. Fine tuning of the interaction between Pluronic surfactants and silica walls in SBA-15 nanostructured materials [J]. Microporous Mesoporous Mater, 2001,44-45: 147-152
    [57] ZhaoXS, LuGQ, Whittaker AK, et al. Influence of synthesis parameters on the formation of mesoporous SAPOs [J]. Microporous Mesoporous Mater, 2002, 55(1): 51-52.
    [58] Yaroslav Z K, Jacek K. Incorporation of magnesium in mesostructured and mesoporous aluminophosphates [J]. J Phys Chem, 2001, 3: 1544-1551.
    [59] Li Z, Jaroniec M, Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons [J]. J Am Chem Soc, 2001,123(37): 9208-9.
    [60] Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, et al. Preparation and characterization of mesoporous activated carbon from waste tires [J]. Carbon, 2003, 41(1): 157-164.
    [61] Ohkubo T, Miyawaki J, Kaneko K, et al. Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation [J]. J Phys Chem B, 2002, 106: 6523-6528.
    [62] Jang J H, Han S, Hyeon T, et al. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes [J]. J Power Sources, 2003,123: 79-85.
    [63] Devi G S, Hyodo T, Shimizu Y, Egashira M. Synthesis of mesoporous TiO_2-based powders and their gas-sensing properties [J]. Sens Actuators B, 2002, 87: 122-129.
    [64] Kondoh S, Miyagawa N, Shinohara N, Okumiya M. Mesoporous TiO_2 films fabricated by metal templating method [J]. Ceram Trans, 2001, 112: 317-322.
     [65] Yu J C, Yu J, Ho W, Zhao J. Light-induced super hydrophilicity and photocatalytic activity of mesoporous TiO_2 thin film [J]. J Photochem Photobio, 2002, 148: 331-339.
    [66] Yu J C, Zhang L Z, Yu J G. Rapid synthesis of mesoporous TiO_2 with high photocatalytic activity by ultrasound-induced agglomeration [J]. New J Chem, 2002, 26(4): 416-420.
    [67] Srivastava D N, Chappel S, Palchik O, et al. Sonochemical synthesis of mesoporous tin oxide [J]. Langmuir, 2002, 18(10): 4160-4164.
    [68] Yu A, Frech R. Mesoporous tin oxides as lithium intercalation anode materials [J]. J Power Sources, 2002, 104: 97-100.
    [69] Chen F L, Liu M L. Preparation of mesoporous tin oxide for electrochemical applications [J]. Chem Commun, 1999, 1829-1830.
    [70] Srivastava D N, Chappel S, Palchik O, et al. Sonochemical synthesis of mesoporous tin oxide [J]. Langmuir, 2002, 18(10): 4160-4164.
    [71] Andrei L, Boris S, Michel T, et al. Mesoporous Ta oxide: electronic properties and mechanistic considerations of nitrogen cleavage [J]. J Chem Soc Dalton Trans, 2003, 21: 4115-4120.
    
    [72] Liu P, Lee S H, Tracy C E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide[J].Adv Mater,2002,14:27-30.
    [73]Cheng W,Baudrin N E,Dnnn B,et al.Synthesis and electrochromic properties of mesoporous tungsten oxide[J].J Mater Chem,2001,11:92-97.
    [74]Banerjee S,Santhanam A,Dhathathreyan A,et al.Synthesis of ordered hexagonal mesostructured nickel oxide[J].Langmuir,2003,19(13):5522-5525.
    [75]Nelson P A,Elliott J M,Attard G S,et al.Mesoporous nickel/nickel oxide electrodes for high power applications[J].J New Mater Electrochem Sys,2002,5(1):63-66.
    [76]Yada M,Takenaka H,Machida M,et al.Mesostructured gallium oxides templated by dodecyl sulfate assemblies[J].J Chem Soc Dalton Trans,1998:1547-1550
    [77]刘迎春,叶湘滨.传感器原理、设计与应用[M].长沙:国防科技大学出版社,1997。
    [78]刘文利,俞琳,高建华等.一种新型CO气敏双层薄膜材料[J].中国环境监测,2001,17(5):46.
    [79]李平,余萍,肖定全.气体传感器的近期进展[J].功能材料,1999,30:126
    [80]周仲柏,吴青海.硅微机械机构的微电流型电化学气体传感器[J].传感器技术,1996,5:20-22.
    [81]Yamazoe N,Sakai G,Shimanoe K.Oxide semiconductor gas sensors[J].Catal urveys Asia,2003,7(1):63-75.
    [82]田敬民,李守智。金属氧化物半导体气敏机理分析[J].西安理工大学学报,2002,18(2):144-147.
    [83]Yamazoe N.Toward innovations of gas sensor technology[J].Sens.Actuators B,2005,108:2-14.
    [84]彭军.传感器与检测技术[M].西安电子科技大学出版社,2003:268
    [85]#12
    [86]Nie W J.Optical nonlinearity:phenomena,applications and materials[J].Adv Mater,1999,5:520-545.
    [87]余保龙,卜宏建,等.In_2O_3纳米微粒非线性光学特性[J].物理化学,1999,48(2):320-325.
    [88]Sberveglieri G,Groppelli S,Coccoli G.Radio frequency magnetron sputtering growth and characterization of indium-tin oxide(ITO) thin films for NO_2 gas sensors[J].Sens Actuators,1988,15:235-242.
    [89]Gagaoudakis E,Bender M,Douloufakis E,et al.The influence of deposition parameters on room temperature ozone sensing properties of InOx films[J].Sens Actuators B,2001,80:155-161.
    [90]Yamaura H,Jinkawa T,Tamaki J,Moriya K,Miura N,Yamazoe N.Indium oxide-based gas sensor gas sensor for selective detection of CO[J].Sens Actuators B,1996,36:325-332.
    [91]Tamaki J,Naruo C,Yamamoto Y,Matsuoka M.Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation[J].Sens Actuators B,2002,83(1-3):190-194.
    [92]程知萱,潘庆谊,董晓雯等。In_2O_3气敏元件的研制及影响因素的研究[J].稀有金属,2005,29(2):173-176.
    [93]Cali C,Mosca M,Targia G.Deposition of indium-tin oxided film by laser ablation:processing and characterization[J].Solid State Electronics,1998,42(5):877-879.
    [94]S Suh,D M Hoffman,General Synthesis of Homoleptic Indium Alkoxide Complexes and the Chemical Vapor Deposition of Indium Oxide Films[J].J Am Chem Soc,2000,122(39):9396-9404.
    [95]Zhan Z L,Song W H,Jiang D G.Preparation of nanometer-sized In_2O_3 particles by a reverse microemulsion method[J].J colloid Interf Sci,2004,271(2):366-371.
    [96]王廷富,潘庆谊,程知萱.In_2O_3薄膜及纳米颗粒制备进展[J].材料导报,2001,15(8):45-47.
    [97]Gurlo A,Ivanovskaya M,Barsan N,Schweizer-Berberich M,Weimar U,Gopel W,Dieguez A.Grain size control in nanocrystalline In_2O_3 semiconductor gas sensors[J].Sens Actuators B,1997,44:327-333
    [98]Zhao Y,Zhang Z,Wu Z,Dang H.Synthesis and characterization of single-crystalline In_2O_3nanocrystals via solution dispersion[J].Langmuir,2004,20(1):27-29.
    [99]Seo W S,Jo H H,Lee K,Park J T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles[J].Adv.Mater.,2003,15:795-797.
    [100]程知萱,潘庆谊,张剑平等.溶胶-凝胶法制备纳米In_2O_3粉末[J].硅酸盐通报,2003,5:3-6…
    [101]Liu Q S,Lu W G,Ma A H,Tang J K,Lin J,Fang J Y.Study of Quasi-monodisperse In_2O_3Nanocrystals:Synthesis and Optical Determination[J].J Am Chem Soc,2005,127: 5276-5277
    [102]Lee C H,Kim M,Kim T,Kim A,Paek J,Lee J W,Choi S Y,Kim K,Park J B,Lee K.Ambient Pressure Synthesis of Size-controlled Corundum-type In_2O_3 Nanocubes[J].J Am Chem Soc,2006,128:9236-9327
    [103]Narayanaswamy A,Xu H F,Pradhan N,Kim M,Peng X G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:hydrolysis and alcoholysis vs pyrolysis[J].J Am Chem Soc,2006,128(31):10310-910319.
    [104]潘庆谊,董晓雯,张剑平,何丽芬。溶胶-凝胶法制备纳米级SnO_2[J].无机材料学报,1997,12(4):494-498.
    [105]Liang C H,Meng G W,Lei Y,Phillipp F,Zhang L D.Catalytic growth of semiconducting In_2O_3 nanofibers[J].Adv Mater,2001,13(17):1330-1333.
    [106]Hao Y F,Meng G W,Ye C H,Zhang L D.Controlled synthesis of In_2O_3 octahedrons and nanowires[J].Cryst Growth Des,2005,5:1617-1621.
    [107]Peng X S,Wang Y W,Zhang J,Wang X F,Zhao L X,Meng G W,Zhang L D.Large-scale synthesis of In_2O_3 nanowires[J].Appl Phys A-Mater,2002,74:437-439.
    [108]Li Y,Ye C H,Yang L,Wang C,Zheng C R,Zhang L D.Synthesis and growth of the facet-tipped In_2O_3 nanowires[J].Chem Lett,2007,36:442-443.
    [109]Johnson M C,Aloni S,McCready D E,Bourret-Courchesne E D.Controlled vapor-liquid-solid growth of Indium,Gallium,and Tin oxide nanowires via chemical vapor transport[J].Cryst Growth Des,2006,6:1936-1941.
    [110]Li C,Zhang D H,Han S,Liu X L,Tang T,Zhou C W.Diameter-controlled growth of single-crystalline In_2O_3 naowires and their electronic properties[J].Adv Mater,2003,15:143-146.
    [111]Wang G X,Park J,Wexler D,Park M S,Ahn J H.Synthesis,Characterization,and Optical Properties of In_2O_3 Semiconductor Nanowires[J].Inorg Chem,2007,46:4778-4780.
    [112]Yu D B,Yu S-H,Zhang S Y,Zuo J,Wang D B,Qian Y T.Metastable hexagonal In_2O_3nanofibers templated from InOOH nanofibers under ambient pressure[J].Adv Ftmct Mater,2003,13(6):497-501.
    [113]Cheng Z X,Dong X B,Pan Q Y,Zhang J C,Dong X W.Preparation and characterization of In_2O_3 nanorods[J].Mater Lett,2006,60:3137-3140.
    [114]Yang J,Lin C K,Wang Z L,Lin J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:microemulsion-mediated hydrothermal synthesis and luminescence properties[J].Inorg Chem,2006,45:8973-8979.
    [115]Xu J Q,Chen Y P,Pan Q Y,Xiang Q,Cheng Z X,Dong X W.A new route for preparing corundum-type In_2O_3 nanorods used as gas-sensing materials[J].Nanotechnology,2007,18:115615(7 pp)
    [116]Chen C L,Chen D R,Jiao X L,Wang C Q.Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH:synthesis and formation mechanism[J].Chem Commun,2006,4632-4634.
    [117]Yang P D,Zhao D Y,Margolese D I,Chmelka B F,Stucky G D.Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework[J].Chem Mater,1999,11:2813-2826.
    [118]Huang J H,Gao L.Synthesis and characterization of porous single-crystal-like In_2O_3nanostructures via a solvothermal-annealing route[J].J Am Ceram Soc,2006,89(2):724-727.
    [119]Sreethawong T,Chavadej S,Ngamsinlapasathian S,Yoshikawa S.On the formation of nanocrystalline bimodal mesoporous In_2O_3 prepared by surfactant-assisted templating sol-gel process[J].Micropor Mesopor Mater,2008,109(1-3):84-90.
    [120]孙良彦,刘正绣,常温振荡式CO气敏元件的研制[J].传感器技术,1994,1:10-13.
    [121]Tamaki J,Naruo C,Yamamoto Y,Matsuoka M,Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation[J].Sens Actuators B,2002,83(1-3):190-194.
    [122]Li C,Zhang D H,Liu X L,Han S,Tang T,Han J,Zhou C W,In_2O_3 nanowires as chemical sensors[J].Appl Phys Lett,2003,82(10):1613-1615.
    [123]Zhang D H,Li C,Liu X L,Han S,Tang T,Han J,Zhou C W,Doping dependent NH_3 sensing of Indium oxide nanowires[J].Appl Phys Lett,2003,82(10):1845-1847.
    [124]Li C,Zhang D H,Lei B,Han S,Liu X L,Zhou C W,Surface treatment and doping dependence of In_2O_3 nanowires as ammonia sensors[J].J Phys Chem B,2003,107:12451-12455.
    [125]Zhang D H,Liu Z Q,Li C,Tang T,Liu X L,Han S,Lei B,Zhou C W,Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices[J].Nano Lett,2004,4:1919-1924.
    [126]Xu J Q,Wang X H,Shen J N.Hydrothermal synthesis of In_2O_3 for detecting H_2S in air[J].Sens Actuators B,2006,115:642-646.
    [127]Xu J Q,Wang X H,Wang G Q,Han J J,Sun Y A,Solvothermal synthesis of In_2O_3nanocrystal and its ethanol sensing mechanism[J].Electrochem Solid State Lett,2006,9:H103-H107.
    [128]董向兵,程知萱,潘庆谊,郭冬梅,周蕴倩,氧化铟纳米棒的气敏特性[J].硅酸盐学报,2006,34:1191-1194
    [129]赵国玺,朱步瑶。表面活性剂作用原理[M],中国轻工业出版社,2003:233,272。
    [130]李玲。表面活性剂与纳米技术[M],化学工业出版社,2003,P10。
    [131]Wang J X,cheng X.Y,et al.Synthesis of uniform PbS nanorod bundle via a surfactant-assisted interface reaction route[J].Material Chemistry and Physics,2004,88:217-220
    [132]Lv R T,Cao C B,Zhai H Z,Wang D Z,Liu S Y,Zhu H S.Growth and characterization of single-crystal ZnSe nanorods via surfactant soft-template method[J].Solid State Communications,2004,130:241-245.
    [133]Ji G B,Tang S L,Ren S K,Zhang F M,Gu B X,Du Y W.Simplified synthesis of single-crystalline magnetic CoFe_2O_4 nanorods by a surfactant-assisted hydrothermal process [J].Journal of Crystal Growth,2004,270:156-161.
    [134]徐甲强,沈瑜生。超微粒α-Fe2O3气敏机理初探[J].无机材料学报,1992,7(1):32-36.
    [135]彭军。传感器与检测技术[M].西安电子科技大学出版社,2003:268.
    [136]辛勤。固体催化剂研究方法[M]。科学出版社,2004:15.
    [137]顾惕人,朱步瑶等。表面化学[M]。科学出版社,1994。
    [138]徐甲强,氧化物纳米材料的合成、结构与气敏特性研究[D].上海大学博士学位论文,2005.106-110。
    [139]Hyodo T,Abe S,Shimizu Y,Egashira M.Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof[J].Sens Actuators B,2003,93:590-600.
    [140]Zhou X A,Zhang J C,Shen Y.Synthesis and applications of ordered mesoporous tin dioxides thin films[J].Proceedings of SPIE-The International Society for Optical Engineering(Fifth International Conference on Thin Film Physics and Applications) 2005,5774:263-266.
    [141]曾垂省,陈晓明,闫玉华,高玉香。介孔材料及其应用进展[J].化工科技,2004,12(5):48-52.
    [142]Hyodo T,Shimizu Y,Egashira M.Design of mesoporous oxides as semiconductor gas sensor materials[J].Electrochemistry,2003,71(6):387-393.
    [143]Xu J Q,Wang X H,Shen J N.Hydrothermal synthesis of In_2O_3 for detecting H_2S in air[J].Sens Actuators B,2006,115:642-646.
    [144]Cheng Z X,Dong X B,Pan Q Y,Dong X W,Zhang J C.Preparation and characterization of In_2O_3 nanorods[J].Materials letters,2006,60:3137-3140.
    [145]Cheng-Yu Kuo,Shih-Yuan Lu,Te-Yu Wei.In_2O_3 nanorod formation induced by substrate structure[J].Journal of Crystal Growth,2005,285:400-407.
    [146]徐如人,庞文琴,于吉红等。分子筛与多孔材料化学[M].北京科学出版社,2004.
    [147]Firouzi A,Kumar D,Bull M,Stucky G D,et al.Cooperative organization of inorganic-surfactant and biomimetic assemblies[J].Science,1995,267:1138-1143.
    [148]Hyodo T,Mitsuyasu Y,Shimizu Y,Egashira M.H_2 and NOx sensing properties of ZnO and In_2O_3 powders modified with mesoporous SnO_2[J].J Ceram Soc Jap,2004,112:S540-S545.
    [149]Yasuhiro Shimizua,Ayami Jono,Takeo Hyodo,Makoto Egashira,[J]Sens Actuators B,2005,108:56-61.
    [150]Jiang X C,Wang Y L,Herricks T,Xia Y N.Ethyledne Glycol-Mediated Synthesis of Metal Oxide Nanowires[J].J Mater Chem,2004,14:695-703.
    [151]Wang Y L,Jiang X C,Xia Y N.A Solution-Phase,Precursor Route to Polycrystalline SnO_2Nanowires That Can Be Used for Gas Sensing under Ambient Conditions[J].J Am Chem Soc,2003,125:16176-16177.
    [152]Ahmad T,Vaidya S,Sarkar N,Ghosh S,Ganguli A K.Zinc Oxalate Nanorods:a Convenient Precursor to Uniform Nanoparticles of ZnO[J].Nanotechnology,2006,17:1236-1240.
    [153]Yang S H,Li G B,Tian S J,Liao F H,Lin J H.An Open-framework Three-dimensional Indium Oxalate:[In(OH)(C_2O_4)(H_2O)]3·H_2O[J].J Solid State Chem,2005,178:3703-3707.
    [154]Del Arco M,Gutirrez S,Martin C,Rives V.Intercalation of[Cr(C_2O_4)_3]~(3-) Complex in Mg,Al Layered Double Hydroxides[J].Inorg Chem,2003,42:4232-4240.
    [155]Ho W H,Yen S K.Preparation and Characterization of Indium Oxide Film by Electrochemical Deposition[J].Thin Solid Films,2006,498:80-84.
    [156]Chu D W,Zeng Y P,Jiang D L,Xu J Q.Tuning the Phase and Morphology of In_2O_3Nanocrystals via Simple Solution Routes[J].Nanotechnology,2007,18:435605(6pp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700