铌酸盐微纳米材料的水热合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,通过对低成本Nb源的改性处理,我们在温和的水热条件下,合成了一系列化学式为MNb_2O_6的铌酸盐,同时制备出具有特殊分级微纳米结构的光催化材料。论文的具体内容:
     水热合成了CaNb_2O_6分级微纳米结构,因其独特的结构特征可以有效地促进光生电子和空穴的分离,使其光催化降解染料的性质有很大的增强。探讨了分级结构的形成机理,证实其经历了一个两步的成核-生长过程,前提是这种分步成核-生长所需的过饱和度和温度条件得到满足。这种由过饱和度来诱导多步成核-生长的策略,为构筑其它分级结构提供了一个新思路。(第2章)
     通过对各种反应条件的调控,在水热条件下完成了一系列过渡金属铌酸盐(MnNb_2O_6、CdNb_2O_6、ZnNb_2O_6和Pb_2Nb_2O_7)的合成,得到了合成纯相所需的合适的反应温度、反应时间和pH值范围。接着对MnNb_2O_6的磁学性质和Pb_2Nb_2O_7的光催化性质进行了表征。在钒酸盐的水热合成中,在无模板剂的条件下得到了InVO_4的单分散自组装的微米球。(第3章)
     采用热注射和溶剂热的方法合成了二元和三元硫化物的纳米晶。通过对反应条件的调控(配体和原料的比例、反应温度、反应时间等),得到了不同形貌及尺寸可调的单分散的PbS纳米晶,以及CuInS_2的纳米粒子和纳米棒。(第4章)
In recent years, a series of niobates semiconductor materials have attracted widespread attention for their high photocatalytic activities and good luminescence properties, as well as the tremendous application prospect in the field of microwave dielectric ceramics. However, most of niobates are synthesized by traditional solid-state reaction (SSR) method. Their practical applications are limited due to the cumbersome synthesis conditions and the lower active surface areas. In this thesis, after improving the activity of Nb_2O_5, we investigated the synthesis of columbite niobates in the mild hydrothermal conditions, systematically. The major research work is as follows:
     1. Hydrothermal synthesis and photocatalytic properties of CaNb_2O_6 hierarchical micro/nanostructure.
     Hierarchical micro/nanostructures, which are assembled from zero-dimensional (0D), 1D, and 2D micro/nanoscale building blocks, have attracted significant attention due to their unique physical and chemical properties. Research on hierarchical structures provides potential applications in the bottom-up fabrication of advanced functional devices, including sensors, fuel cells, and photocatalysts. The photocatalytic superiority of the hierarchical micro/nanostructures can be attributed to their special structural features. The special structural features can prevent aggregation to maintain a large active surface area and enhance the charge-transfer rates in materials. In this article, CaNb_2O_6 hierarchical micro/nanostructure was successfully fabricated under mild hydrothermal conditions in the absence of templates or organic additives. In this hierarchical micro/nanostructure, the nanosheets grow vertically on the surface of the one-dimensional microneedles. At the same time, selective synthesis of CaNb_2O_6 and Ca_2Nb_2O_7 could also be facilely achieved only by adjusting pH value. We investigated the effect of the reaction temperature, time and concentration on the growth of hierarchical structure, in order to explore the mechanism of its formation. We believe that the hierarchical structure is formed in a two step nucleation–growth process, at appropriate supersaturation and temperature conditions. Our result may provide a new route for the construction of a new hierarchical structure from a multistep nucleation–growth process dependent on the degree of supersaturation. The hierarchical structured CaNb_2O_6 exhibits a stronger enhancement of photocatalytic activity in the degradation of rhodamine B (RhB) than other CaNb_2O_6 samples with different morphologies, for the unique structural features of the CaNb_2O_6 hierarchical micro/nanostructure could efficiently promote the separation of photo-generated electron-hole pairs.
     2. Hydrothermal synthesis of transition-metal niobates.
     Based on the work of previous chapter, we synthesized the transition metal ions columbite niobates using low-cost hydrothermal method. After changing a variety of reaction conditions, such as reaction time, temperature and pH value, we got the suitable reaction conditions required for the synthesis of niobates. Ultimately, MnNb_2O_6, CdNb_2O_6, ZnNb_2O_6 and Pb_2Nb_2O_7 were synthesized under the low-temperature hydrothermal system. Compared with the traditional high temperature solid state reaction method, hydrothermal synthesis reactions are performed at lower temperature and samples with good purity and crystallinity could be obtained. The samples synthesized in the hydrothermal reaction usually showed regular morphologies with smaller size and good dispersion property. We also studied the properties of these niobates products, and found that the MnNb_2O_6 product presents paramagnetism and the Pb_2Nb_2O_7 product has good photocatalytic activity. Additionally, we have synthesized the InVO4 self-assembled microspheres in the hydrothermal conditions without templates.
     3. The controllable synthesis of binary and ternary sulfide nanocrystals.
     We synthesized the binary and ternary sulfide nanocrystals by hot injection and solvothermal method. Monodispersed PbS and CuInS2 nanocrystals with different morphologies and controllable sizes could be obtained by changing the reaction conditions, such as the concentration of ligand, reaction time and temperature.
引文
[1] Fujishima A. Photocatalytic materials and applications [J]. Function and Materials, 2000, 20: 9-15.
    [2] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. [J]. Chem Rev, 1995, 95: 69-96
    [3] Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems [J]. J. Photochem. Photobio. C: Photochem. Rev., 2008, 9: 1-12.
    [4]温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿.太阳能光催化制氢研究进展[J].化学进展,2009,11: 2286-2302.
    [5] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238: 37-38.
    [6] A. L. Stroyuk, A. I. Kryukov1, S. Ya. Kuchmii, et al. Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light [J]. Theor. Exp. Chem., 2009, 45: 209-233.
    [7] Izabela Nowak, Maria Ziolek. Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis [J]. Chem. Rev., 1999, 99: 3603-3624.
    [8] Masaaki Kitano, Michikazu Hara. Heterogeneous photocatalytic cleavage of water [J]. J. Mater. Chem., 2010, 20: 627–641.
    [9] Wei, QM, Nakato, T. Preparation of a layered hexaniobate-titania nanocomposite and its photocatalytic activity on removal of phenol in water [J]. J. Porous Mater., 2009, 16: 151-156.
    [10] Parvulescu V, Ruwet M, Grange P, et al. Preparation ,Characterization and Catalytic Behaviour of Cobalt-niobia Catalysts [J]. Journal of Molecular Catalysis A :Chemical, 1998, 135: 75288.
    [11] Tanabe K. Application of Niobium Oxides as Catalysts [J]. Catal Today, 1990, 8: 1211.
    [12] Okazaki S, Kuroha H, Okuyama T. Effect of Nb2O5 Addition on the Catalytic Activity of FeOx for Reduction of NOx with NH3 and O2 [J]. Chemical Letters, 1985, 1: 45.
    [13] Robert C. Pullar. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review [J]. J. Am. Ceram. Soc., 2009, 2: 563–577.
    [14] Guoqiang Li, Zhigang Zou, Jinhua Ye, et al. Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 2487–2491.
    [15] Akihide Iwase, Kenji Saito, Akihiko Kudo. Sensitization of NaMO3 (M: Nb and Ta) Photocatalysts with Wide Band Gaps to Visible Light by Ir Doping [J]. Bulletin of the Chemical Society of Japan, 2009, 82: 514-518.
    [16] Kenji Saito, Akihiko Kudo. Niobium-Complex-Based Syntheses of Sodium Niobate Nanowires Possessing Superior Photocatalytic Properties [J]. Inorg. Chem. 2010, 49: 2017-2019.
    [17] Miaohua Zhang, Huiqing Fan, Lei Chen, Chen Yang. Synthesis and formation mechanisms of high aspect ratio platelike NaNbO3 particles by topochemical microcrystal conversion [J]. Journal of Alloys and Compounds, 2009, 476: 847–853.
    [18] Lihong Li, Jinxia Deng, Xianran Xing, et al. Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis [J]. Chem. Mater., 2009, 21: 1207–1213.
    [19] C. Xu, L. Zhen, R. Yang, Wang, Z. L. Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction [J]. J. Am. Chem. Soc., 2007, 129: 15444-15445.
    [20] Ken-ichi Katsumata, Christopher E. J. Cordonier, Akira Fujishima, et al. Photocatalytic Activity of NaNbO3 Thin Films [J]. J. Am. Chem. Soc., 2009, 131: 3856-3857.
    [21] J. W. Liu, G. Chen, Z. G. Zhang, et al. Hydrothermal synthesis and photocatalytic properties ofATaO3 and ANbO3 (A=Na and K) [J] International Journal of Hydrogen Energy, 2007, 32: 2269-2272.
    [22] Y. Saito, H. Takao, Nakamura, M, et al. Lead-free piezoceramics [J] Nature, 2004, 432: 84-87.
    [23] Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo. Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure [J]. J. Phys. Chem. B, 2002, 106: 12441-12447.
    [24] Guoqiang Li, Zhigang Zou, Jinhua Ye, et al. Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions [J]. Journal of Solid State Chemistry, 2007, 180: 2845–2850.
    [25] Xu Zhang, Dongfeng Xue, Dongli Xu, et al. Microscopically structural studies of lithium niobate powders [J]. Journal of Molecular Structure, 2005, 754: 25–30.
    [26] Beata Zielinska, Ewa Borowiak-Palen, Ryszard J. Kalenzuk. Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 236–242.
    [27] K. Nassau, J. W. Shiever, Bernstein, J. L. Crystal growth and properties of Mica-Like Potassium niobates [J]. J. Electrochem. Soc., 1969, 116: 348-353.
    [28] Treacy, M. M. J, Rice, S. B, Lewandowski, J. T, et al. Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3NbnO3n-1]: evidence for single-layer formation [J]. Chem. Mater., 1990, 2: 279-286.
    [29] Gaohui Du, Qing Chen, Lian-Mao Peng, et al. Synthesis, modification and characterization of K4Nb6O17-type nanotubes [J]. J. Mater. Chem., 2004, 14: 1437-1442.
    [30] Yang-Su Han, Jin-Ho Choy, et al. Exfoliation of layered perovskite, KCa2Nb3O10, into colloidal nanosheets by a novel chemical process [J]. J. Mater. Chem., 2001, 11: 1277-1282.
    [31] Raymond E. Schaak, Thomas E. Mallouk. Exfoliation of layered rutile and perovskite tungstates [J]. Chem. Commun., 2002, 706-707.
    [32] Steven W. Keller, Hyuk-Nyun Kim, Thomas E. Mallouk. Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces: Toward Molecular "Beaker" Epitaxy [J]. J. Am. Chem. Soc., 1994, 116: 8817–8818.
    [33] R. Abe, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, Domen, K. Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity [J]. Chem. Mater., 1997, 9: 2179-2184.
    [34] Abe, R., Hara, M., Tanaka, A, et al. Preparation of Ion-Exchangeable Thin Films of Layered Niobate K4Nb6O17 [J]. Chem. Mater., 1998, 10: 1647-1451.
    [35] J. H. Choy, H. Jung, H. Kim, et al. Exfoliation and Restacking Route to Anatase-Layered Titanate Nanohybrid with Enhanced Photocatalytic Activity [J].Chem. Mater., 2002, 14: 2486-2491.
    [36] Y. Ebina, T. Sasaki, M. Harada, et al. Restacked Perovskite Nanosheets and Their Pt-Loaded Materials as Photocatalysts [J]. Chem. Mater., 2002, 14: 4390-4395.
    [37] O. C. Compton, E. C. Carroll, Osterloh, F. E, et al. Calcium Niobate Semiconductor Nanosheets as Catalysts for Photochemical Hydrogen Evolution from Water [J]. J. Phys. Chem. C, 2007, 111: 14589-14592.
    [38] S. M Paek, H. Jung, Choy, J. H, et al. Exfoliation and Reassembling Route to Mesoporous Titania Nanohybrids [J]. Chem. Mater., 2006, 18: 1134-1140.
    [39] K. Domen, A. Kudo, T. Onishi, et al. Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure [J]. J. Chem. Soc., Chem. Commun., 1986, 23: 1706-1707.
    [40] K. Sayama1, A. Tanaka, K. Domen, K. Maruya, T. Onishi. Improvement of nickel-loaded K4Nb6O17 photocatalyst for the decomposition of H2O. [J]. Catalysis Letters, 2004, 4:217-222.
    [41] K. Sayama, A. Tanaka, K. Domen, et al. Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17) [J]. J. Phys. Chem., 1991, 95: 1345-1348.
    [42] A. Furube, T. Shiozawa, Hirose, C. Femtosecond Transient Absorption Spectroscopy on Photocatalysts: K4Nb6O17 and Ru(bpy)32+-Intercalated K4Nb6O17 Thin Films [J]. J. Phys. Chem. B, 2002, 106: 3065 3072.
    [43] Yeong Kim, Stephen J. Atherton, Thomas E. Mallouk, et al. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors [J]. J. Phys. Chem., 1993, 97: 11802-11810.
    [44] Kazuhiko Maeda, Miharu Eguchi, Thomas E. Mallouk, et al. Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation. [J]. Chem. Mater., 2008, 20: 6770-6778.
    [45] Yugo Miseki, Hideki Kato, Akihiko Kudo. Water splitting into H2 and O2 over niobate and titanate hotocatalysts with (111) plane-type layered perovskite structure [J]. Energy Environ. Sci., 2009, 2: 306–314.
    [46] K. Domen, J. Yoshimura, T. Sekine, et al. A novel series of photocatalysts with an ion-exchangeable layered structure of niobate [J]. Catal. Lett., 1990, 4: 339-343.
    [47] T. Takata, A. Tanaka, M. Hara, et al. Recent progress of photocatalysts foroverall water splitting [J]. Catal. Today, 1998, 44: 17-26.
    [48] Y. Ebina, N. Sakai, Sasaki, T. Photocatalyst of Lamellar Aggregates of RuOx-Loaded Perovskite Nanosheets for Overall Water Splitting [J]. J. Phys. Chem. B, 2005, 109: 17212-17216.
    [49] Y. Ebina, A. Tanaka, J. N. Kondo, Domen, K. Preparation of Silica Pillared Ca2Nb3O10 and Its Photocatalytic Activity [J]. Chem. Mater., 1996, 8: 2534-2538.
    [50] H. Hata, W. J. Youngblood, T. E. Mallouk, et al. Direct Deposition of Trivalent Rhodium Hydroxide Nanoparticles onto a Semiconducting Layered Calcium Niobate for Photocatalytic Hydrogen Evolution. [J]. Nano Lett., 2008, 8: 794-799.
    [51] Kazuhiko Maeda, Thomas E. Mallouk. Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution [J]. J. Mater. Chem., 2009, 19: 4813–4818.
    [52] Kazuhiko Maeda, Hideo Hata, Thomas E. Mallouk, et al. Photocatalytic Hydrogen Evolution from Hexaniobate Nanoscrolls and Calcium Niobate Nanosheets Sensitized by Ruthenium(II) Bipyridyl Complexes [J]. J. Phys. Chem. C, 2009, 113: 7962–7969.
    [53] Hyun G. Kim, Dong W. Hwang, Jindo Kim, et al. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting [J]. Chem. Commun., 1999, 1077-1078.
    [54] Akihiko Kudo, Hideki Kato, Seira Nakagawa. Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity [J]. J. Phys. Chem. B, 2000, 104: 571-575.
    [55] Robert C. Pullar, The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review [J]. J. Am. Ceram. Soc., 2009, 92: 563-577.
    [56] H. J. Lee, I. T. Kim, K. S. Hong, et al. Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn and B=Nb, Ta) [J] Jpn. J. Appl. Phys. Pt., 1997, 36: 318-320.
    [57] H. J. Lee, K. S. Hong, S. J. Kim, I. T. Kim, et al. Dielectric Properties of MNb2O6 Compounds (Where M=Ca, Mn, Co, Ni or Zn) [J]. Mater. Res. Bull., 1997, 32: 847-855.
    [58] R. C. Pullar, J. D. Breeze, N. McN. Alford. Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics [J]. J. Am. Ceram. Soc., 2005, 88: 2466-2471.
    [59] A. Belous, O. Ovchar, B. Jancar, J. Bezjak. The Effect of Non-stoichiometry on the Microstructure and Microwave Dielectric Properties of the Columbites A2+Nb2O6 [J]. J. Eur. Ceram. Soc., 2007, 27: 2933-2936.
    [60] Y. S. Hong, H. B. Park, S. J. Kim. Preparation of Pb(Mg1/3Nb2/3)O3 Powder Using a Citrate-Gel Derived Columbite MgNb2O6 Precursor and Its Dielectric Properties, [J]. J. Eur. Ceram. Soc., 1998, 18: 613-619.
    [61] A. Wachtel, Self-Activated Luminescence of M2+ Niobates and Tantalates, [J]. J. Electrochem. Soc., 1964, 111: 534-538.
    [62] W. A. McAllister, Rare Earth-Activated Niobates, [J]. J. Electrochem. Soc., 1984, 131: 1207-1211.
    [63] D. Van der Voort, J.M.E. de Ruk, G. Blasse, Possibilities to Design a Cheap Red Lamp Phosphor. A Study of CaNb2O6 : Eu3+ [J]. Phys. Stat. Sol. A, 1993,135: 621-626.
    [64] A. Kudo, S. Nakagawa, H. Kato, Overall water splitting into H2 and O2 under UV irradiation on NiO-loaded ZnNb2O6 photocatalysts consisting of d(10) and d(0) ions [J]. Chem. Lett. 1999, 11: 1197–1198.
    [65] J. Ye, Z. Zou, A. Matsushita, A Novel Series of Water Splitting Photocatalysts NiM2O6 (M=Nb; Ta) Active Under Visible Light, [J]. Int. J. Hydrogen Energy, 2003, 28: 651-655.
    [66] I. S. Cho, S. T. Bae, D. K. Yim, et al. Preparation, Characterization, and Photocatalytic Properties of CaNb2O6 Nanoparticles [J]. J. Am. Ceram. Soc., 2009, 92: 506-510.
    [67] H. Z. An, C. Wang, T. M. Wang, et al. Photocatalytic activity of M (M=Mg, Ca, Sr, Ba, Ni) Nb2O6 [J]. Journal of inorganic materials, 2007, 22: 922-926.
    [68] Y. Takita, K. Kikutani, C. Xia, et al. Oxidation of Isobutane Over Complex Oxides Containing V, Nb, Ta, and Mo Under Aerobic and Anaerobic Reaction Conditions, [J]. Appl. Catal. A: General, 2005, 283: 209-216.
    [69] Z. G. Zou, J. H. Ye, Arakawa, H. Substitution Effects of In3+ by Al3+ and Ga3+ on the Photocatalytic and Structural Properties of the Bi2InNbO7 Photocatalyst [J]. Chem. Mater., 2001, 13: 1765-1769.
    [70] Z. G Zou, Arakawa, H. Direct water splitting into H2 and O2 under visible lightirradiation with a new series of mixed oxide semiconductor photocatalysts [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158:145-162.
    [71] J. F. Luan, S. R. Zheng, Zou, Z. G. Photophysical and photocatalytic properties of novel M2BiNbO7 (M = In and Ga) [J]. J. Braz. Chem. Soc., 2006, 17: 1368-1376.
    [72] Z. G Zou, Arakawa, H. Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties [J]. Chemical Physics Letters, 2000, 332: 271-277.
    [73] Yugo Miseki, Hideki Kato, Akihiko Kudo. Water Splitting into H2 and O2 over Cs2Nb4O11 Photocatalyst [J]. Chemistry Letters, 2005, 34:54-55.
    [74] Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, Kudo, A. Energy Structure and Photocatalytic Activity of Niobates and Tantalates Containing Sn(II) with a 5s2 Electron Configuration [J]. Chem. Lett. 2004 33 1 28 29
    [75] Miseki, Y.;Saito, K.; Kudo, A. Nanocrystalline CaZrTi2O7 Photocatalyst Prepared by a Polymerizable Complex Method in the Presence of Cs2CO3 Flux for Water Splitting [J]. Chem. Lett. 2009, 38, 180.
    [76] D. F. Zhang, L. D. Sun, C. H. Yan, et al. Hierarchical Assembly of SnO2 Nanorod Arrays onα-Fe2O3 Nanotubes: A Case of Interfacial Lattice Compatibility [J]. J. Am. Chem. Soc., 2005, 127: 13492-13493.
    [77] R. Ostermann, D. Li, Y. N. Xia, et al. V2O5 Nanorods on TiO2 Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination [J]. Nano Lett., 2006, 6: 1297-1302.
    [78] J. Y. Lao, J. G. Wen, Z. F. Ren, Hierarchical ZnO Nanostructures [J]. Nano Lett., 2002, 2: 1287-1291.
    [79] X. F. Gao, L. Jiang, Water-repellent legs of water striders [J]. Nature, 2004, 432: 36.
    [80] Y. Zhang, J. Q. Xu, et al. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties [J]. J. Phys. Chem. C, 2009, 113: 3430-3435.
    [81] L. P. Qin, J. Q. Xu, et al. The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors [J]. Nanotechnology, 2008, 19:185705.
    [82] S. S. Madhu, R. Y. Li, et al. Nanowire-based three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchangemembrane fuel cells [J]. J. Power Sources, 2008, 185: 1079-1085.
    [83] F. Lu, W. P. Cai, Y. G. Zhang, ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance [J]. Adv. Funct. Mater., 2008, 18: 1047-1056.
    [84] J. G. Yu, Y. R. Su, B. Cheng. Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania [J]. Adv. Funct. Mater., 2007, 17: 1984-1990.
    [85] L. Liu, H. J. Liu, Y. P. Zhao. Directed Synthesis of Hierarchical Nanostructured TiO2 Catalysts and their Morphology-Dependent Photocatalysis for Phenol Degradation [J]. Environ. Sci. Technol., 2008, 42: 2342-2348.
    [86] H. Xue, Z. H. Li, H. Dong, et al. 3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal Syntheses, Formation Mechanisms, and Application in Aqueous-Phase Photocatalysis [J]. Cryst. Growth Des., 2008, 8: 4469-4475.
    [87] T. L. Sounart, J. Liu, J. A. Voigt, et al. Secondary Nucleation and Growth of ZnO [J]. J. Am. Chem. Soc., 2007, 129: 15786-15793.
    [88]施尔畏,陈之战,元如林,等.水热结晶学[M].北京:科学出版社, 2004.
    [89] C. Burda, X.B. Chen, R. Narayanan, et al. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev., 2005, 105: 1025–1102.
    [90] T. Sugimoto, Preparation of Monodispersed Colloidal Particles [J]. Adv. Colloid. Interfac. Sci., 1987, 28: 65-108.
    [91]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社, 1999.
    [92] N. Tian, Z. Y. Zhou, S. G. Sun, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. [J]. Science, 2007, 316: 732-735.
    [93] Chernov, A. A.; Garcia-Ruiz, J. M.; Thomas, B. R., Visualization of the impurity depletion zone surrounding apoferritin crystals growing in gel with holoferritin dimer impurity. Journal of Crystal Growth 2001, 232: 184-187.
    [94] Z. A. Peng, X. G. Peng. Mechanism of the shape evolution of CdSe nanocrystals [J]. J. Am. Chem. Soc., 2001, 123: 1389-1395.
    [1] D. F. Zhang, L. D. Sun, C. H. Yan, et al. Hierarchical Assembly of SnO2 Nanorod Arrays onα-Fe2O3 Nanotubes: A Case of Interfacial Lattice Compatibility [J]. J. Am. Chem. Soc., 2005, 127: 13492-13493.
    [2] R. Ostermann, D. Li, Y. N. Xia, et al. V2O5 Nanorods on TiO2 Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination [J]. Nano Lett., 2006, 6: 1297-1302.
    [3] J. Y. Lao, J. G. Wen, Z. F. Ren, et al. Hierarchical ZnO Nanostructures [J]. Nano Lett., 2002, 2: 1287-1291.
    [4] X. F. Gao, L. Jiang, et al. Water-repellent legs of water striders [J]. Nature, 2004, 432: 36.
    [5] Y. Zhang, J. Q. Xu, et al. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties [J]. J. Phys. Chem. C, 2009, 113: 3430-3435.
    [6] L. P. Qin, J. Q. Xu, et al. The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors [J]. Nanotechnology, 2008, 19:185705.
    [7] S. S. Madhu, R. Y. Li, et al. Nanowire-based three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchange membrane fuel cells [J]. J. Power Sources, 2008, 185: 1079-1085.
    [8] F. Lu, W. P. Cai, Y. G. Zhang, et al. ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance [J]. Adv. Funct. Mater., 2008, 18: 1047-1056.
    [9] J. G. Yu, Y. R. Su, B. Cheng, et al. Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania [J]. Adv. Funct. Mater., 2007, 17: 1984-1990.
    [10] L. Liu, H. J. Liu, Y. P. Zhao, et al. Directed Synthesis of Hierarchical Nanostructured TiO2 Catalysts and their Morphology-Dependent Photocatalysis for Phenol Degradation [J]. Environ. Sci. Technol., 2008, 42: 2342-2348.
    [11] L. Zheng, Y. Xu, Y. Song, et al. Nearly Monodisperse CuInS2 Hierarchical Microarchitectures for Photocatalytic H2 Evolution under Visible Light [J]. Inorg. Chem., 2009, 48: 4003-4009.
    [12] C. Z. Wu, L. Y. Lei, et al. Large-Scale Synthesis of Titanate and Anatase Tubular Hierarchitectures [J]. small, 2007, 3: 1518-1522.
    [13] L. P. Zhu, H. M. Xiao, et al. Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route [J]. Cryst. Growth Des., 2008, 8: 1113-1118.
    [14] D. F. Zhang, L. D. Sun, et al. Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation [J]. Cryst. Growth Des., 2008, 8: 3609-3615.
    [15] B. Liu, H. C. Zeng. Mesoscale Organization of CuO Nanoribbons: Formation of“Dandelions”[J]. J. Am. Chem. Soc., 2004, 126: 8124-8125.
    [16] H. Xue, Z. H. Li, H. Dong, et al. 3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal Syntheses, Formation Mechanisms, and Application in Aqueous-Phase Photocatalysis [J]. Cryst. Growth Des., 2008, 8: 4469-4475.
    [17] T. L. Sounart, J. Liu, J. A. Voigt, et al. Secondary Nucleation and Growth of ZnO [J] J. Am. Chem. Soc., 2007, 129: 15786-15793.
    [18] J. H. Ye, Z. G. Zou, A. Matsushita. A novel series of water splitting photocatalysts NiM2O6 (M = Nb; Ta) active under visible light [J]. Int. J. Hydrogen Energy, 2003, 28: 651-655.
    [19] A. Kudo, S. Nakagawa, H. Kato. Overall water splitting in to H2 and O2 under UV irradiation on NiO-loaded ZnNb2O6 photocatalysts consisting of d10 and d0 ions [J]. Chem. Lett., 1999, 11: 1197-1198.
    [20] Y. Hosogi, H. Kato, A. Kudo. Synthesis of SnNb2O6 Nanoplates and Their Photocatalytic Properties [J]. Chem. Lett., 2006, 35: 578-579.
    [21] Y. Miseki, H. Kato, A. Kudo. Water Splitting into H2 and O2 over Cs2Nb4O11 Photocatalyst [J]. Chem. Lett., 2005, 34: 54-55.
    [22] H. G. Kim, D. W. Hwang, J. Kim, et al. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting [J]. Chem. Commun., 1999, 1077-1078.
    [23] L. W. Zhang, H. B. Fu, C. Zhang, Y. F. Zhu. Effects of Ta5+ Substitution on the Structure and Photocatalytic Behavior of the Ca2Nb2O7 Photocatalyst [J]. J. Phys. Chem. C, 2008, 112: 3126-3133.
    [24] H. Hata, Y. Kobayashi, T. E. Mallouk, et al. Direct Deposition of Trivalent Rhodium Hydroxide Nanoparticles onto a Semiconducting Layered Calcium Niobate for Photocatalytic Hydrogen Evolution [J]. Nano Lett., 2008, 8:794-799.
    [25] Y. Miseki, H. Kato, A. Kudo. Water Splitting into H2 and O2 over Ba5Nb4O15 Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method [J]. Chem Lett., 2006, 35: 1052-1053.
    [26] K. Maeda, M. Eguchi, T. E. Mallouk. Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation [J]. Chem. Mater., 2008, 20: 6770-6778.
    [27] Z. G. Zou, H. Arakawa. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts [J]. J. Photochem. Photobiol. A., 2003, 158: 145-162.
    [28] M. Yoshino, M. Kakihana. Polymerizable Complex Synthesis of Pure Sr2NbxTa2-xO7 Solid Solutions with High Photocatalytic Activities for Water Decomposition into H2 and O2 [J]. Chem. Mater., 2002, 14: 3369-3376.
    [29] Y. J. Hsiaoa, Y. H. Chang, et al. Sol–gel synthesis and the luminescent properties of CaNb2O6 phosphor powders [J]. J. Alloys Compd., 2009, 475: 698-701.
    [30] Y. Y. Zhou, Z. F. Qiu, et al. Photoluminescence Characteristics of Pure and Dy-Doped ZnNb2O6 Nanoparticles Prepared by a Combustion Method [J]. J. Phys. Chem. C, 2007, 111: 10190-10193.
    [31] B. Brahmaroutu, G. L. Messing, S. Trolier-McKinstry, Molten Salt Synthesis of Anisotropic Sr2Nb2O7 Particles [J]. J. Am. Ceram. Soc., 1999, 82: 1565-1568.
    [32] B. T. Lin, J. F. Ma, Y. Yao, et al. Morphology-Controlled Synthesis and Characterization of Sr2Nb2O7 Nanocrystalline Powders by a Hydrothermal Process [J]. J. Am. Ceram. Soc., 2008, 91: 1329-1331.
    [33] C. Sun, X. R. Xing, J. Chen, et al. Hydrothermal Synthesis of Single Crystalline (K,Na)NbO3 Powders [J]. Eur. J. Inorg. Chem., 2007, 1884-1888.
    [34] A. Magrez, E. Vasco, J. W. Seo, C. Dieker, N. Setter, L. Forro, et al. Growth of Single-Crystalline KNbO3 Nanostructures [J]. J. Phys. Chem. B, 2006, 110: 58-61.
    [35] H. Y. Zhu, Z. F. Zheng, X. P. Gao, et al. Structural Evolution in a Hydrothermal Reaction between Nb2O5 and NaOH Solution: From Nb2O5 Grains to Microporous Na2Nb2O6·2/3H2O Fibers and NaNbO3 Cubes [J]. J. Am. Chem. Soc., 2006, 128: 2373-2384.
    [36] H. W. Xu, M. Nyman, T. M. Nenoff, et al. Octahedral Molecular Sieve (SOMS) Na2Nb2O6·H2O: Synthesis, Structure and Thermodynamic Stability [J]. Chem.Mater., 2004, 16: 2034-2040.
    [37] G. Blasse, M. G. J. Leur, et al. Luminescence and Energy Transfer in the Columbite Structure, [J]. Mat. Res. Bull., 1985, 20: 1037–1045.
    [38] I. S. Cho, S. T. Bae, D. K. Yim, et al. Preparation, Characterization, and Photocatalytic Properties of CaNb2O6 Nanoparticles [J]. J. Am. Ceram. Soc., 2009, 92: 506-510.
    [39] I. Nowak, M. Ziolek. Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis [J]. Chem. Rev., 1999, 99: 3603-3624.
    [40] I. C. M. S. Santos, L. H. Loureiro, M. F. P. Silva, et al. Studies on the hydrothermal synthesis of niobium oxides [J]. Polyhedron, 2002, 21: 2009-2015.
    [41] L. Zhang, W. Wang, L. Zhou, et al. Bi2WO6 Nano- and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities [J]. Small, 2007, 3: 1618-1625.
    [42] I. S. Cho, D. W. Kim, S. Lee, et al. Synthesis of Cu2PO4OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light [J]. Adv. Funct. Mater., 2008, 18: 2154-2162.
    [43] A. M. Srivastava, J. F. Ackerman, W. W. Beers. On the luminescence of Ba5Nb4O15 (M=Ta5+, Nb5+) [J]. J. Solid State Chem., 1997, 134: 187.
    [44] G. D. Saraiva, W. Paraguassu, A. G. S. Filho, et al. Temperature-Dependent Raman Scattering Studies of Na2MoO4 [J]. J. Raman Spectrosc. 2008, 39: 937–46.
    [45] F. D. Hardcastle, I. E. Wachs. Determination of Niobium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy [J]. Solid State Ionics, 1991, 45: 201–213.
    [46] G. Blasse, M. G. J. Leur. Luminescence and Energy Transfer in the Columbite Structure [J]. Mat. Res. Bull., 1985, 20: 1037–1045.
    [47] C. Zhang, Y. F. Zhu. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts [J]. Chem. Mater., 2005, 17: 3537-3545.
    [48] C. H. Ye, Y. Bando, G. Z. Shen, et al. Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets [J]. J. Phys. Chem. B, 2006, 110: 15146-15151.
    [1] J. H. Sturdivant. The Crystal Structure of Columbite [J]. Zeitschrift Kristallogr. 1930, 75: 88-105.
    [2] R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides [J]. Acta Crystallogr. A, 1976, 32: 751-67.
    [3] Robert C. Pullar. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review [J]. J. Am. Ceram. Soc., 2009, 92: 563-577.
    [4] H. J. Lee, I. T. Kim, K. S. Hong, et al. Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn and B=Nb, Ta) [J]. Jpn. J. Appl. Phys. Pt., 1997, 36: 318-320.
    [5] H. J. Lee, K. S. Hong, S. J. Kim, I. T. Kim, et al. Dielectric Properties of MNb2O6 Compounds (Where M=Ca, Mn, Co, Ni or Zn) [J]. Mater. Res. Bull., 1997, 32: 847-855.
    [6] R. C. Pullar, J. D. Breeze, N. McN. Alford, et al. Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics [J]. J. Am. Ceram. Soc., 2005, 88: 2466-2471.
    [7] A. Belous, O. Ovchar, B. Jancar, et al. The Effect of Non-stoichiometry on the Microstructure and Microwave Dielectric Properties of the Columbites A2+Nb2O6 [J]. J. Eur. Ceram. Soc., 2007, 27: 2933-2936.
    [8] K. Sreedhar, A. Mitra. Formation of Lead Magnesium Niobare Perovskite from MgNb2O6 and Pb3Nb2O8 Precursors [J]. Mater. Res. Bull., 1997, 32: 1643-1649.
    [9] Y. S. Hong, H. B. Park, S. J. Kim, et al. Preparation of Pb(Mg1/3Nb2/3)O3 Powder Using a Citrate-Gel Derived Columbite MgNb2O6 Precursor and Its Dielectric Properties [J]. J. Eur. Ceram. Soc., 1998, 18: 613-619.
    [10] Y. C. Zhang, Z. X. Yue, Z. L. Gui, et al. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics [J]. Ceram. Int., 2003, 29: 555-559.
    [11] P. S. Anjana, I. N. Jawahar, M. T. Sebastian, et al. Low loss, temperature stable dielectric ceramics in ZnNb2O6–Zn3Nb2O8 system for LTCC applications [J]. J Mater Sci: Mater Electron. 2009, 20: 587–596.
    [12] A. Wachtel. Self-Activated Luminescence of M2+ Niobates and Tantalates [J]. J. Electrochem. Soc., 1964, 111: 534-538.
    [13] W. A. McAllister. Rare Earth-Activated Niobates [J]. J. Electrochem. Soc., 1984, 131: 1207-1211.
    [14] A. S. S. de Camargo, C. R. Ferrari, A. C. Hernandes, et al. Spectroscopic Features of Erbium-Doped CaM2O6 (M=Nb, Ta) Single Crystal Fibers Grown by the Laser-Heated Pedestal Growth Technique [J]. J. Lumin., 2008, 128: 223-226.
    [15] A. S. S. De Camargo, R. Almeida Silva, J. P. Andreeta, et al. Stimulated Emission and Excited State Absorption in Neodymium-Doped CaNb2O6 Single Crystal Fibers Grown by the LHPG Technique [J]. Appl. Phys.B, 2005, 80: 497-502.
    [16] J. Ye, Z. Zou, A. Matsushita, et al. A Novel Series of Water Splitting Photocatalysts NiM2O6 (M=Nb; Ta) Active Under Visible Light [J]. Int. J. Hydrogen Energy, 2003, 28: 651-655.
    [17] I. S. Cho, S. T. Bae, D. K. Yim, et al. Preparation, Characterization, and Photocatalytic Properties of CaNb2O6 Nanoparticles [J]. J. Am. Ceram. Soc., 2009, 92: 506-510.
    [18] H. Z. An, C. Wang, T. M. Wang, et al. Photocatalytic activity of M (M=Mg, Ca, Sr, Ba, Ni) Nb2O6 [J]. Journal of inorganic materials, 2007, 22: 922-926.
    [19] Y. Takita, K. Kikutani, K. Nagaoka, et al. Oxidation of Isobutane Over Complex Oxides Containing V, Nb, Ta, and Mo Under Aerobic and Anaerobic Reaction Conditions [J]. Appl. Catal. A: General, 2005, 283: 209-216.
    [20] L. W. Zhang, H. B. Fu, Y. F. Zhu, et al. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles [J]. Journal of Solid State Chemistry, 2006, 179: 804-811.
    [21] J. Ye, Z. Zou, M. Oshikiri, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chem. Phys. Lett., 2002, 356: 221-226.
    [22] J. Ye, Z. Zou, A. Matsushita, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+) [J]. J. Photochem. Photobiol. A: Chem., 2002, 148: 79-83.
    [23] G. C. Xiao, X. C. Wang, D. Z. Li, et al. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light [J]. J. Photochem. Photobiol. A: Chem., 2008, 193: 213-221.
    [24] L. Chen, D. Zeng, et al. Shape-controlled synthesis and characterization of InVO4 particles [J]. J. Colloid Interface Sci., 2006, 295: 440-444.
    [25] Y. Wang, G. Cao, et al. Synthesis and electrochemical properties of InVO4 nanotube arrays [J]. J. Mater. Chem., 2007, 17: 894-899.
    [26] S. C. Zhang, C. Zhang, H. P. Yang, et al. Formation and performances of porous InVO4 films [J]. J. Solid State Chem., 2006, 179: 873-882.
    [27] G. Xiao, D. Li, X. Fu, et al.单分散纳米InVO4(正交相)的低温合成[J]. Chin. J. Inorg. Chem., 2004, 20: 195-198.
    [28] Q. M. Huang, J. C. Yu. Hydrothermal synthesis and structure analysis of InVO4 [J]. J. Struct. Chem., 2005, 24: 1242-1248.
    [1] W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, et al. Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging [J]. J. Am. Chem. Soc., 2008, 130: 1274-1284.
    [2] H. Song, S. Lee, et al. Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices [J]. Nanotechnology, 2007, 18: 255202.
    [3] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, et al. Hybrid Nanorod-Polymer Solar Cells [J]. Science, 2002, 295: 2425-2427.
    [4] A. L. Rogach, A. Eychm’uller, S. G. Hickey, et al. Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications [J]. Small, 2007, 3: 536-557.
    [5] Warner J H, Thomsen E, Watt A R, et al. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals [J]. Nanotechnology, 2005, 16: 175.
    [6] Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution [J]. Adv. Mater., 2003, 15: 1844-1849.
    [7] Wise F. Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement [J]. Acc. Chem. Res., 2000, 33: 773-780.
    [8] J. H. Warner, E. Thomsen, A. R. Watt, et al. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals [J]. Nanotechnology, 2005, 16:175.
    [9] K. A. Abel, J. Shan, J. C. Boyer, F. Harris, et al. Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine [J]. Chem. Mater., 2008, 20: 3794-3796.
    [10] L. Cademartiri, J. Bertolotti, R. Sapienza, et al. Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals [J]. J. Phys. Chem. B., 2006, 110: 671-673.
    [11] Lewerenz, H. J. Sol. Development of copperindiumdisulfide into a solar material [J]. Energy Mater. Sol. Cells, 2004, 83: 395– 407.
    [12] M. G. Panthani, V. Akhavan, B. Goodfellow, et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal“Inks”for Printable Photovoltaics [J]. J. Am. Chem. Soc., 2008, 130: 16770– 16777.
    [13] Q. J. Guo, S. J. Kim, M. Kar, W. N. Shafarman, et al. Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells [J]. Nano Lett., 2008, 8: 2982– 2987.
    [14] J. Tang, S. Hinds, S. O. Kelley, et al. Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles [J]. Chem. Mater., 2008, 20: 6906– 6910.
    [15] R. Klenk, U. Blieske, V. Dieterle, et al. Properties of CuInS2 thin films grown by a two-step process without H2S [J]. Energy Mater. Sol. Cells, 1997, 49: 349-356.
    [16] X. Michalet, F. F. Pinaud, L. A. Bentolila, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307: 538-544.
    [17] S. L. Castro, S. G. Bailey, R. P. Raffaelle, et al. Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor [J]. J. Phys. Chem. B., 2004, 108: 12429-124435.
    [18] H. Z. Zhong, Y. C. Li, M. F. Ye, et al. A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent [J]. Nanotechnology, 2007, 18025602.
    [19] J. J. Qiu, Z. G. Jin, W. B. Wu, Xiao, L. Characterization of CuInS2 thin films prepared by ion layer gas reaction method [J]. Thin Solid Films, 2006, 510: 1-5.
    [20] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Lu, Y. Synthesis of Cu?In?S Ternary Nanocrystals with Tunable Structure and Composition [J]. J. Am. Chem. Soc., 2008, 130: 5620– 5621.
    [21] Bonil Koo, Reken N. Patel, Brian A. Korgel. Wurtzite?Chalcopyrite Polytypism in CuInS2 Nanodisks [J]. Chem. Mater., 2009, 21: 1962–1966.
    [22] Stephen T. Connor, Ching-Mei Hsu, Yi Cui, et al. Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods [J]. J. Am. Chem. Soc., 2009, 131: 4962–4966.
    [23] J. J. M. Binsma, L. J. Giling, Bloem, J. Phase relations in the system Cu2S-In2S3 [J]. J. Cryst. Growth, 1980, 50: 429-436.
    [24] W. W. Yu, X. G. Peng. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers [J]. Angewandte Chemie International Edition, 2002, 41: 2368-2371.
    [25] J. H. Warner, H. Q. Cao. Shape control of PbS nanocrystals using multiple surfactants [J]. Nanotechnology, 2008, 19: 305605.
    [26] Daeha Seo, Ji Chan Park, Hyunjoon Song. Polyhedral Gold Nanocrystals with Oh Symmetry: From Octahedra to Cubes [J]. J. Am. Chem. Soc., 2006, 128: 14863-14870
    [27] Yongming Sui, Wuyou Fu, Haibin Yang. Low Temperature Synthesis of Cu2O Crystals: Shape Evolution and Growth Mechanism. [J]. Crystal Growth & Design, 2010, 10: 99-108.
    [28] Wenxin Niu, Ling Zhang, Guobao Xu. Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals [J]. ACS Nano

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700