Asia I型、O型口蹄疫复合多表位重组酵母菌的构建与实验免疫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot-and-Mouth Disease,FMD)是由口蹄疫病毒(Foot-and-Mouth Disease Virus,FMDV)引起的主要侵害偶蹄动物感染的一种急性、热性、高度接触性传染病。口蹄疫病毒属小核糖核酸病毒科(Picornaviridae),口蹄疫病毒属共有7个血清型,80多个亚型。由于口蹄疫病毒血清型多、血清型之间无交叉免疫现象,故给口蹄疫的防制带来了很大的困难。而目前所用的口蹄疫常规灭活疫苗和紧急疫苗均是由活病毒添加灭活剂而制成的,存在着由于活病毒逃逸和灭活不彻底引起新疫情爆发的危险。本研究选用口蹄疫病毒的主要抗原位点VP1蛋白和顺式裂解元件2A作为主体。选用含有FMDV不同毒株的VP1上多个抗原表位的T、B细胞表位基因组成的Epi基因盒,加上Th2表位和霍乱毒素B亚单位(CTB),形成多表位片段CTB-Th2-Epi(简称CTE)作为辅助抗原,从而增强免疫,为进一步研制FMD的基因工程疫苗提供一种新的思路。
     本研究首先应用PCR方法扩增出FMDV Asia I/JL/05株和FMDV O/NY/00株VP1-2A基因,然后对PCR扩增产物进行纯化回收,并将其分别克隆到pMD18-T载体上。经测序后,与已知序列进行比对分析。应用限制性内切酶消化pMD18-T-CTE(Asia I型)、pMD18-T-CTE(O型)获得多表位CTE片段。并将两段基因进一步克隆到pPIC9K表达载体上,并转化进酵母菌GS115内,经甲醇诱导后,通过SDS-PAGE鉴定目的蛋白的表达情况,Western-Blot检测重组蛋白的活性。并应用纯化后的蛋白免疫小鼠和豚鼠,通过间接ELISA、MTT和ELISPOT、细胞因子含量来评价重组蛋白的免疫效果。
     结果成功地扩增出FMDV Asia I型、O型VP1-2A基因。重组克隆pMD18-T-VP1-2A(Asia I型)、pMD18-T-VP1-2A(O型)经测序后,与Asia I/JL/05株和FMDV O/NY/00株的核苷酸一致性分别为100%和99.72%。成功构建了pPIC9K-VP1-2A-CTE ( Asia I型)和pPIC9K-VP1-2A-CTE(O型)重组表达质粒,并转化进GSl15酵母菌,经SDS-PAGE鉴定后蛋白已成功表达,表达量分别为75 mg/L和80 mg/L,经Western blot鉴定表达的蛋白具有抗原性。免疫小鼠后,经间接ELISA检测,各免疫组均可产生特异性抗体,并在二免后第三周达到最高峰;经MTT、ELISPOT和细胞因子检测表明,两个重组蛋白免疫组均表现出相应的细胞免疫应答,且均高于PBS对照组和GS115/pPIC9K对照组,但低于灭活苗免疫组。免疫豚鼠后,经间接ELISA检测,各免疫组均可产生特异性抗体,并在二免后达到最高峰;经MTT和细胞因子检测表明,豚鼠细胞免疫应答水平比小鼠的细胞免疫应答水平增强,但低于灭活苗免疫组。
     综上所述,以Asia I型、O型口蹄疫病毒VP1-2A为主体,以复合多表位片段CTE为辅助抗原在酵母菌GSl15所表达的重组蛋白具有较好的免疫原性,可以作为口蹄疫防制的候选疫苗应用于控制口蹄疫的传播。
Foot-and-mouth disease (FMD) caused by foot and mouth disease virus (FMDV) is a highly contagious and economically devastating disease, which always inflict cloven-hoofed animals. FMDV is the prototype member of the Aphthovirus genus of the family Picornaviridae. There are 7 serotypes and more than 80 subtypes of FMDV, so it brought great difficulties to control it. Because of following risky factors such as the incomplete inactivation of the virus and escape of live virus, new type of vaccine which should be safer and more effective are under intensive study worldwide. In this paper we selected VP1 gene of serotype Asia I and O of FMDV and non-strcture protein 2A gene as the major antigen , and other epitopes gene which composed of the cholera toxin B subunit gene, Th2 cell epitopes and the box constructed with T cell andB cell epitope gene.
     We amplified VP1-2A gene of Asia I/JL/05 and O/NY/00 of FMDV by PCR .Then, VP1-2A gene of Asia I/JL/05 and O/NY/00 of FMDV was ligated into pMD18-T vector. The recombinant clone, pMD18-T-VP1-2A, were sequenced. The nucleotide sequence of VP1-2A was compared and analyzed with the Asia I/JL/05 and O/NY/00 of FMDV. Then we obtained CTE multiple epitope fragment by restricted digestion of pMD18-T-CTE plasmid of type Asia I and O FMDV. Further the VP1-2A and CTE fragment was ligated into pPIC9K expression vector. Then, it was transformed into Pichia pastoris GS115 and was induced with methanol to express recombinant VP1-2A and CTE fusion protein. The expression of target protein was detected by SDS-PAGE and Western blot assay. Mice and guinea pigs were inoculated with these recombinant vaccines. And the FMDV specific antibody, T lymphoproliferation and T lymphocyte subpopulation were detected.
     The results showed that VP1-2A gene of serotype Asia I and O of FMDV was successfully amplified and cloned. Sequencing results showed that the VP1-2A gene of Asia I of FMDV shares 100% homology in nucleotide sequence, and the VP1-2A gene of O of FMDV shares 99.7% homology in nucleotide sequence. Recombinant expression plasmid pPIC9K-VP1-2A-CTE was constructed by inserting of serotype Asia I and O of FMDV VP1-2A and CTE gene into yeast expression vector pPIC9K. Secondly, plasmid pPIC9K-VP1-2A-CTE of serotype Asia I and O of FMDV was transformed into GS115 cells by electroporation.SDS-PAGE results showed that expression product could be secreted into media and existed in dimer form, production of target protein could reach 75 mg and 80 mg per litter.And the Western blot results showed that expression product could be detected by FMDV antiserum, which proved the good antigen specificity of expressed protein. Mice and guinea pigs were inoculated intramuscularly with recombinant vaccines and the inactivated vaccine. The FMDV specific antibody, T lymphoproliferation and cytokine concentration results showed that in all recombinant vaccines inoculated groups, could be induced specific humoral and cellular immune responses. In mice, the inactivated vaccine had the highest immunogenicity. Comparing with GS115/pPIC9K group and PBS group the GS115/pPIC9K-VP1-2A-CTE of serotype Asia I and O of FMDV group could induce not only approximately same FMDV antibody level, but also higher cellular immune responses. In guinea pigs, the GS115/pPIC9K-VP1-2A-CTE of serotype Asia I and O of FMDV group had higher cellular immune responses than in mice.but only had weaker humoral responses than inactivated vaccine.
     In conclusion, we selected VP1 gene of serotype Asia I and O of FMDV and non-strcture protein 2A gene as the major antigen , and CTE multi-epitopes fagment as the second antigen, and expressed them in the expression system of Pichia. The protein has good immunogenicity.It could be as the candidate vaccines to contol foot and mouth disease.
引文
[1]殷震,刘景华.动物病毒学[M].北京:科学出版社,1997,479-499.
    [2]谢庆阁.口蹄疫[M].北京:中国农业出版社,2004.1
    [3]周锦萍,葛杰,鞠龚讷.口蹄疫的流行概况及防控策略[J].畜牧兽医科技信息2009(4):5-7.
    [4]蔡宝祥.家畜传染病学[M]..北京:中国农业出版社,2001.151.
    [5] Valle’e H.,Carre’H..a pluralite du virus aphteux C.R.Hebd[J].Acad.Sci.Paris.1922,174: 1498~1500.
    [6] Waldmann O,Trautwein K..Experimentelle Untersuchungen uber die Pluralitetdes Maul-und Klauseuche Virus[J].Berlin. Tierarztl. Wshr. 1926,42:569~571.
    [7]张海峰,富相奎.口蹄疫的流行与防制[J].黑龙江农业科学,2006 ,(1):59-60.
    [8]陈富超.猪场口蹄疫的防控措施[J].今日畜牧兽医,2005 ,21(12):19-20.
    [9]卢曾军,刘在新.口蹄疫病毒研究概况[J].中国兽医科技,2003,2(33):69-74.
    [10]费恩阁,李德昌,丁壮.动物疫病学[M].北京:中国农业出版社,2004.176.
    [11] Randrup..On the stability of FMDV dependent on pH. Investigations on the complement fixing and the immunizing antigen as well as on the infective agent[J].Acta Path.Et Microbiol.Scand. 1954(35):388~395.
    [12]解慧梅,穆祥,刘易通.口蹄疫的研究现状[J].动物医学进展,2006,27(5):6-9
    [13] Belsham G J,Bostock C J.studies on the infectivity of foot-and-mouth disease virus RNA using microinjection[J].J.Gen..virol..1988,69:265-274.
    [14] Clarke B E,Brown A L,Currey K M. Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus[J].Nucleic Acids Res.1987,15: 7067- 7079.
    [15] Escarmis C, M Toja, M Medina,et al.Modifications of the 5’untranslated region of fmdv after prolonged persistence in cell culture.Virus Res.1992, 26: 113–125.
    [16] Radecke F, Spielhofer P, Schneider H, et al.Rescue of measles virus from cloned DNA[J]. EMBO J, 1995, 14: 5773~5784.
    [17] Kato A, Sakai Y, Shioda T, et al.Initiation of Sendai virus multiplication from transfected Cdna or RNA with negative or positive sense[J].Genes Cells, 1996, 1: 569~579
    [18] Spies,U.,H.Muller. Demonstration of enzyme activities required for cap structure formation in infectious bursal disease virus,a member of the birnavirus group[J].Gen.Virol.,1990,71(4):977~981
    [19] Rieder E, Bunch T, Brown F, et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotide are virulent in mice[J]..J Virol,1993, 67: 5139~5145
    [20] Costa Giomi, M P, I E Bergmann,et al.Heterogeneity of the polyribocytidylic acid tract in aphthovirus: biochemical and biological studies of viruses carrying polyribocytidylic acid tracts of different lengths[J].J Virol,1984,51:799–805.
    [21] Yehuda.H.,J. Pitcovski A, Michael B,et al. Viral protein 1 sequence analysis of three infectious bursal disease virus strains:a very virulent virus,its attenuated form,and an attenuated vaccine.Avian Dis.,1999,43:55~64.
    [22] Pilipenko E V, V M Blinov, B K Chernov,et al. Conservation of the secondary structure elements of the 5’-untranslated region of cardio- and aphthovirus RNAs[J]. Nucleic Acids Res. 1989, 17:5701–5711.
    [23] Kuhn R, N Luz, E Beck.Functional analysis of the internal translation initiation site of foot- and-mouth disease virus[J]. J Virol.1990,64:4625–4631.
    [0][24] Lopez de Quinto S., Saiz M., Morena D de la., et al.IRES-driven translation is stimulated separately by the FMDV 3’-NCR and poly(A) sequences[J].Nucleic Acids Res.2002, 30: 4398~4405
    [25] Grubman M J, B H Robertson, D O Morgan,et al.Biochemical map of polypep- tides specified by foot-and-mouth disease virus[J].J Virol,1984,50:579–586.
    [26] Fry EE, Stuart DI, Rowlands DJ.The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol. 2005, 288: 71-101.
    [27] Robertson B H, M J Grubman, G N Weddell, et al.Nucleotide and amino acid sequence coding for polypeptides of fmdv type A12[J].J Virol,1985, 54:651-660.
    [28] Piccone M, E E Rieder, P W Mason, et al.The foot-and-mouth disease virus leader proteinase gene is not required for viral replication[J].J Virol,1995, 69:5376–5382.
    [29] Yamaguchi T,Ogawa M,Inoshima Y,et al.Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus[J].Virology,1996,223:219~223.
    [30]朱彩珠,张强,卢永干.口蹄疫现状与未来[M].北京:中国农业科学技术出版社,2009,71~81.
    [31] Zhang H Y, Sun S H, Guo Y J , et al.Immuneresponse in mice inoculated with plasmid DNAs containing multiple-epitopes of Foot and mouth disease virus[J].Vaccine, 2003, 21: 4704~4707.
    [32] Balamurugan V, Renji R, Aha S N, et al.Protective immune response of the capsid precursor polypeptide (P1) of Foot and mouth disease virus type O produced in Pichia pastori[J]. Vaccine, 2003 ,92 :141~149.
    [33]赵启祖,谢庆阁.口蹄疫病毒抗原位点的研究及应用[J].北京:中国农业出版社,1996,14-223.
    [34] Vakharia V N, M A Devaney, D M Moore, et al.Proteolytic processing of foot- and-mouth disease virus polyproteins expressed in a cell-free system from clone -derived transcripts.J Virol, 1987,61:3199–3207.
    [35] Donnelly M L., Hughes L E., Luke G., et al.The‘cleavage’activities of foot- and- mouth disease virus 2A site-directed mutants and naturally occurring‘2A-like’sequences[J].J Gen Virol. 2001, 82:1027~1041.
    [36] Kokuho T, Watanabe S, Yokamizo Y,et al.Production of biologically active ,heterodimer-ic porcine interleukin-12 using a monocistronicbaculoviral expression system [J].Vet Immunol Immunopathol, 1999,72(3,4):289-302.
    [0][37] King A M Q, Sanger D V, Harris T J R,etal..Heterogeneity of the genome-linked protein of foot-and-mouth disease virus [J].J Vi-rol,1980,34:627-634.
    [38] Belsham GJ,McIneruey GM,Ross-Smith N.Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J].J.Virol .2000,74:272~280.
    [39] Pfaff E., Thiel H J., Beck E., et al.Analysis of neutralizing epitopes on foot-and- mouth disease virus[J].J Virol.1988, 62:2033~2040.
    [0][40]冯忠武,段文龙。动物生物疫苗[A].北京:化学工业出版社2007,1-2
    [0][41] Vallee H,Carree,Rinjard P.Sur I`immunisation anti aphteuse par le virus formolee. Rev[J].Gen.Med.Vet.1926,35:129.
    [42] Waldmann O, Pyl G, Hobohm K O, Mohlmann H. Die Entwicklung des Riemser Adsorbatimpfst offes gegen Maul-und Klauenseuche und seine Herstellung. Zbl Bakt I Orig. 1941, 148:1.
    [43] J Frenkel H.S.,1951.Research on foot-and-mouth disease.Ⅱ.The cultivation of the virus on a practical scale in explantations of the bovine tongue epithelium. Am.J.Vet.Res.12.187[0]
    [44] Frenkel H S. La culture de virus de la fievre aphteuse surl’e′pithelium de la langue des bovides. Off Int Epiz. 1947, 28: 155.
    [45] van Bekkum J G, Frenkel H S, Frederiks H H J, et al.Observations on the carrier state of cattle exposed to foot-and-mouth disease virus. Tijdschr. Diergeneesk. 1959, 84: 1159- 1164.
    [46] Ubertini B., Nardelli L., Barei S., et al.Large scale culti-vation of foot-and-mouth disease virus on calf kidney cell monolayers in rolling bottles.Zbl. Vet. Med. B.1963,10;93.
    [47] Ubertini B., Nardelli L., Barei S., et al.Controll idiefficacia su bovini di vaccini antiaftosi monovalenti etrivalenti preparati con virus da cellule BHK[J].Atti Della Societa Italiana Delle Scienze Veterinarie XXII. 1968, 895-900.
    [48] Moosbrugger GA. Rechserches experimentales surla fieve raphteuse .Schweiz Arch Tierheilk, 1948, 90: 179~198.
    [49] Bech E, Strohmaier K.Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination[J].J Virol, 1987, 61:1621-1629.
    [50] King AMQ, Yansura D, Small B, et al.Biochemical identification of viruses causing the 1981 outbreaks of foot-and-mouth disease in the U.K[J].Nature, 1981, 293:479-480.
    [51] Kleid DG, Yansura D, Small B, et al.Cloned viral protein vaccine for foot-and- mouth disease: Responses in cattle and swine[J].Science, 1981, 214:1125-1129.
    [52]杜进鑫,王永录.口蹄疫疫苗研究新进展[J].生物技术通报,2009,3:1~5.
    [53] Carrillo C,Wigdorovitz A,Oliveros J C,et al.Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plasts[J].J Virol,1998,72(2):1688~1690.
    [54] Wigdorovitz A,Perez Filgueira D M,Robertson N,et al.Protection of mice against challenge with foot and mouth disease virus(FMDV)by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural proteinVP1[J].Virology, 1999,264(1):85~91.
    [55] Li Y, Sun M, Liu J, et al.High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts [J].Plant Cell Rep,2006,25(4):329-333.
    [56]倪志华,张红心,王鸣刚等.口蹄疫抗原决定簇融合基因转化水稻的研究[J].厦门大学学报(自然科学版),2005,44:158-161.
    [57]李文建,沈明山,李春等.口蹄疫抗原决定簇融合基因转化胡萝卜的研究[J].厦门大学学报(自然科学版),2005,44:154-157.
    [58] DiMarchi R, Brooke G, Gale C, et al.Protection of cattle against foot-and- mouth disease by a synthetic peptide[J].Science,1986, 232(4750):639-641.
    [59] Wong HT, Cheng SCS, Chan EWC, et al.Plasmid encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection[J].Virology, 2000, 278(1):27-35.
    [60] Chan EW,WongH T,Cheng S C, et a.l.An Immunoglobulin G Based Chineric Protein Induced Foot-and-Mouth Disease Specific Immune Response in Swine[J] . Vaccine, 2000, 19(4~5):538~546.
    [61] Ma Mingxiao, Jin Ningyi, Shen Guoshun, et al.Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18[J].Vet Immunol Immunopathol, 2008, 121:1-7.
    [0][62] Zheng Min, Jin NingYi, Zhang Hongyong, et al.Construction and immunoge-nicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus[J].J Virol Methods. 2006,136(1-2):230~237.
    [63] Sanz-Parra A, Jimenez-Clavero MA, Garcia-Briones MM, et al.Recombinant Viruses Expressing the Foot-and-Mouth Disease Virus Capsid Precursor Polypeptide (P1) Induce Cellular but Not Humoral Antiviral Immunity and Partial Protection in Pigs[J].Virology, 1999, 259:129-134.
    [64] Mayr GA, O'Donnell, Chinsangaram J, et al.Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs[J].Vaccine, 2001, 19(15-16):2152-2162.
    [65] Kit M., Kit S., Little SP., et al.Bovine herpesvirus-1 (infectious bovine rhinotracheitis virus)-based viral vector which expresses foot-and-mouth disease epitopes[J].Vaccine 1991 Aug; 9(8): 564~572.
    [66] Wigdorovitz A., Pérez Filgueira DM., Robertson N., et al. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1[J].Virology 1999 Nov 10; 264(1): 85~91.
    [67]李云岗,田夫林,王会波等.以乳酸杆菌为载体的口蹄疫病毒VP1基因DNA疫苗猪体免疫试验[J].中国兽医科学, 2006, 36(8):601-605.
    [68]金华利,张富春,单文娟.口蹄疫病毒VP1蛋白在酵母中的表达及免疫原性分析[J].细胞与分子免疫学杂志,2004,20(5):513-516.
    [69]苏春霞,段相国,王秀青.FMDV VP1基因与HSP70基因在毕赤酵母中的融合表达及免疫特性[J].生物工程学报,2006,22 (5) :733-736.
    [70]马海利.O型FMDV复合表位/CTB重组枯草芽孢杆菌构建与实验免疫[D].长春:吉林大学,2008,35-44.
    [71] SEARS I B , CONNOR J , RO SSANESE O W , et al.A versatile set of vectors for constitutive and regulatedgene expression in Pichia pastoris [J ].Yeast ,1998 ,14(8) :7832790.
    [72] Cregg JM,Maden K R,Barringer K J, et a.l.Functional characterization of the two alcohol oxidase genes from theyeastPichia pastoris[J].MolCellBio,l 1989, 9(3): 1316-1323..
    [73] Shen S, Sulter G, Jeffries TW, et a.l.A strong nitrogen source regulated promoter for controlled expression of foreigngenes in the yeastPichia Paslorts[J].Gene 1998, 216: 93-102.
    [74] Vassileva A,Chughd A, Swaminathan S, et al.Effectof copymunber on the expression levels ofhepatitisB sur-face antigen in themethylotrophie yeastPichia pastoris[J].Protein ExprPuri,f 2001, 21: 71-76.
    [75]王炎林,许崇波.巴斯德比赤酵母表达系统研究进展[J].大连大学学报.2006,27(6):68~71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700