利用人工microRNA技术构建CHSJ基因沉默载体及适于矮牵牛转化株系的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矮牵牛具有易于组培、植株再生容易、生长周期较长、易于管理、花期长、对环境要求不严格等优点。因此,矮牵牛不但是重要的观赏花卉,同时在基因研究中发挥重要的作用。在植物进行遗传转化过程中,基因型是影响遗传转化效果的重要因素。本实验构建矮牵牛CHSJ(X14599基因)基因沉默植物表达载体,并在对其农杆菌转化过程中,对矮牵牛株系进行筛选,选出适于进行遗传转化的株系。且对筛选出的株系,进行农杆菌转化条件优化。结果如下:
     1.利用人工miRNA技术,构建矮牵牛CHSJ(X14599基因)基因沉默植物表达载体pCMF604。
     2.种子在氯气中消毒4h,获得种子发芽率最高且污染率最低;在获得无菌苗的过程中,把氯气消毒种子与升汞消毒的外植体和种子相比较发现:氯气消毒种子发芽所需时间较短,且操作简单。对无菌苗进行再生率的优化之前对无菌苗进行农艺性状的观察筛选出26个株系。对26个株系再生率同对照A01相比较,得到再生率较高于对照A01的株系:C01、C02、C03、C04、C05和C06。
     3.对C01、C02、C03、C04、C05和C06六个株系,农杆菌侵染后进行染色率和染色点数统计,于对照A01比较得出了染色率较高的株系C01、C04和C06。
     4.对C01、C04和C06三个株系进行转化条件的优化,结果表明:共培养2-3d、菌液浓度OD600=0.3-0.4、侵染时间5-10min和在侵染液中加入AS时会达到最佳的侵染效果,并对pCMF604侵染获得抗性愈伤组织。
Petunia have many advantages, including easy to regeneration, easy to manage, the longer of growth cycle, the longer of flowering period, not strictly for the environ-mental requirements and so on. So, petunia is not only the important ornamental flow ers, but also the important model plant in the research of gene. Genotype is the impor-tant factors In the Agro bacterium-mediated transformation. In this study, we selected the suitable petunia lines for the Agro bacterium-mediated transformation. We carried out optimization for the selected petunia lines. The results are as following:
     1. We successfully constructed a petunia pMADS9 miRNA gene silencing vector for plant expression vector by overlaping PCR method, Using Tools carrier RS300, the intermediate vector pMF604 and plant expression vector pC2301,
     2. After the Chlorine disinfection in 4h, the seed has the highest seed germination rate and the lowest pollution; to compared with the seed or the explants by the mercuric disinfection, the seed by the Chlorine disinfection have many advantages, as short to germination time and easy to operate.In agronomic traits, we seleced 26 petunia lines. Compared with the petunia lines A01, we selected 6 petunia lines (C01, C02, C03, C04, C05 and C06).
     2. After the infection by agrobacterium, we gathered statistics of the selected 6 petunia lines (C01, C02, C03, C04, C05 and C06) in GUS transient expression. Compared with the petunia lines A01, we selected the petunia lines C01, C04 and C06.
     3. For the three petunia lines C01, C04 and C06, we optimized the transformation conditions, the results show that:In a certain ranges of the concentration of Agro bacterium (OD600=0.3-0.4), time of inoculation(5-10 min) and time of co-culture(2-3 d); we would have higher conversion and lower contamination rate.
引文
[1]张桢,王春涛,王春.矮牵牛工厂化穴盘育苗[J].中国花卉园艺,2007(16):14-15.
    [2]范小峰,赵国栋,徐均泉.矮牵牛愈伤组织的诱导及植株再生研究[J].北方园艺2009(6):94-96.
    [3]冯嘉玥,邹志荣,杨旭,等.矮牵牛嫩枝扦插试验[J].陕西农业科学,2004(1):18-19.
    [4]金研铭,徐惠风,许洋.不同污染水处理矮牵牛再生苗对水生驯化的影响[J].北方园艺2007(7):126-128.
    [5]景慧,李江.适合青海省栽培的花坛花卉——矮牵牛[J].青海农技推广,2009(1):31-32.
    [6]古丽努尔·艾合买提.矮牵牛在焉耆室内的栽培技术[J].新疆农业科技,2008(1):25.
    [7]施雪波.北京地区矮牵牛盆花的越夏[J].中国花卉盆景,2000(7):5.
    [8]别蓓蓓,丁明,黄丹枫,等.高温贮运条件对矮牵牛种苗品质的影响[J].上海农业学报2008,24(4):88-91.
    [9]司志国,王永.低温条件下矮牵牛等组培苗生根的试验研究[J].现代农业科技,2006(1):1.
    [10]Suguru Tsuchimoto, Alexander R. van der Krol and Nam-Hai Chua. Ectopic Expnession of pMADS3 in Transgenic Petunia Phenocopies the Petunia blind Mutant [J]. The Plant Cell, 1993(5):843-853.
    [11]Alexander R. van der Krol, Alan Brunelle et al. Chua Functional analysis of petunia floral homeotic MADS box gene pMADS1 [J]. genes and development,1993(7):1214-1228.
    [12]Erik Souer, Alexander van der Krol, Daisy Kloos et al. Genetic control of branching pattern and floral identity during Petunia inflorescence development [J]. Development,1998(125):733-742.
    [13]Lee RC. Ambros, an extensive class of small RNA s in Caenorhabd itis elegans [J]. Science, 2001,294:862-864.
    [14]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nu-cleotidelet-7 RNA regulates developmental timing in Caenorhab2ditis elegans [J]. Nature,2000,403:901-906.
    [15]马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展[J].遗传学报,2003,30(7):693-696.
    [16]李成梅,郑继刚,杜桂森.miRNA:一种新的基因表达调节子[J].遗传,2004,26(1):133-136.
    [17]Baulcome D. DNA events:an RNA microcosm [J]. Science,2002,297:2002-2003.
    [18]Lai EC. M icro RNA s are complementary to 3'UTR se-quencemotifs that mediate negative post-transcriptional regulation [J]. Nature Genetics,2005,230 (4):363-364.
    [19]Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature,2003,425:415-419.
    [20]Bernstein E, Caudy AA, Hammond S, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature,2001,409:363-366.
    [21]Hutvagner G,M cLachlan J, PasquinelliAE, et al. A cel-lular function for the RNA interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293:834-838.
    [22]Grishok A, Pasquinelli A, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing[J]. Cell,2001,106:23-24.
    [23]Ketting RF, Sylvia EJ,Bernstein FE, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans [J]. Genes Dev,2001, 15:2654-2659.
    [24]Schwarz DS, Hutvagner G,Du T, et al. A symmetry in the assembly of the RNAi enzyme complex [J]. Cell,2003,115:199-208.
    [25]Khvorova A,ReynoldsA,Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias[J]. Cell,2006,115:209-216.
    [26]Zeng Y,Cullen BR. Sequence requirements for microRNA processing and function in human cells[J]. RNA,2003,9:112-123.
    [27]Voinnet O. Origin, biogenesis, and activity of plant microRNAs [J].Cell,2009,136(4):669-687.
    [28]Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants [J].Trends Genet, 2006,22:268-280.
    [29]Eamens A, Wang MB, Smith NA, et al. RNA silencing in plants:Yesterday, today, and tomorrow [J]. Plant Physiol,2008,147:456-468.
    [30]Matzke MA, Priming M, TrnovskyJ, et al. Reversible methylation and inactivation of marker genesin sequentially transformed tobacco plants [J]. EMBO J,1989,8:643-649.
    [31]Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans [J]. Plant Cell,1990, 2:279-289.
    [32]叶志彪,李汉霞,刘勋甲,等.利用转基因技术育成耐储藏番茄——华侨1号[J].中国蔬菜,1999,1:6-10.
    [33]Watson JM, Fusaro AF, Wang MB, et al. RNA silencing platforms in plants [J]. FEBS Lett, 2005,579:5982-5987.
    [34]Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J].Proc Natl Acad Sci USA,2000,97:4985-4990.
    [35]Wesley SV, Helliwell CA, Smith NA, et al. Construct design for efficient, effective and high-throughput gene silencing in plants [J]. Plant J,2001,27:581-590.
    [36]Kerschen A, Napoli CA, Jorgensen RA, et al. Effectiveness of RNA interference in transgenic plants [J]. FEBS Lett,2004,566:223-228.
    [37]Aliyari R, Ding SW. RNA based viral immunity initiated by the Dicer family of host immune receptors [J]. Immunol Rev,2009,227(1):176-188.
    [38]Molnar A, Csorba T, LakatosL, et al. Plant virus2derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs [J]. J Virol,2005,79:7812-7818.
    [39]Liu E, PageJE. Optimized cDNA librariesfor virus-induced gene silencing (VIGS) using tobacco rattle virus [J]. Plant Methods,2008,4:5.
    [40]Voinnet O. Induction and suppression of RNA silencing:Insights from viral infections [J]. Nat Rev Genet,2005,6:206-220.
    [41]Alvarez J.P., Pekker I., Goldshmidt A. et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species [J].Plant Cell,2006, (18):1134-1151.
    [42]Schwab R., Ossowski S., Riester M., et al.Highly specific gene silencing by artificial microRNAs in Arabidopsis [J]. Plant Cell,2006(18):1121-1133.
    [43]Warthmann N, Chen H, Ossowski. S, et al. Highly specific gene silencing by artificial miRNAs in rice [J]. PLoS ONE,2008,3:e 1829.
    [44]Niu Q.W., Lin S.S., Reyes J.L. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance [J]. Nat.Biotechnol,2006(24):1420-1428.
    [45]Molnar A, Bassett A, Thuenemann E, et al. Highly specific gene silencing by artificial microRNAs in the unicellular alg Chlamydomonas reinhardtii [J]. Plant J,2009,58(1):165-174.
    [46]Choi K, Park C, Lee J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development [J]. Development,2007,134:1931-1941.
    [47]Park W, Zhai J, Lee J Y. Highly efficient gene silencing using perfect complementary artificial miRNA targeting API or heteromeric artificial miRNA targeting API and CAL genes [J]. Plant CellRep,2009,28(3):469-480.
    [48]Qu J, Ye J, Fang R.. Artificial microRNA-mediated virus resistance in plants [J]. Journal of virology,2007,81:6690-6699.
    [49]Duan CG, Wang CH, Fang RX, et al. Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants [J]. Journal of Virology,2008,82:11084-11095.
    [50]张永彦,徐子勤,高丽美,等.多年生黑麦草成熟胚再生体系的建立及基因枪转化[J].中国生物工程杂志,2005,25(3):53-59.
    [51]石太渊,杨立国,肖军.基因枪轰击高粱愈伤组织获得转基因植株[J].辽宁农业科学,2003(6):9-10.
    [52]任江萍,李磊,王新国,等.基因枪介导大麦基因转化体系的建立[J].山地农业生物学报,2005,24(3):189-193.
    [53]马生健,曾富华,徐碧玉,等.基因枪介导的高羊茅基因转化体系的建立[J].园艺学报,2004,31(5):691-693.
    [54]李进,侯海军,黄复深,等.基因枪介导获得转植酸酶基因水稻研究[J].应用与环境生物学报,2008,14(1):6-10.
    [55]丁莉萍,高莹,李圣纯,等.基因枪介导小麦成熟胚遗传转化的影响因素[J].武汉植物学研究.2007,25(3):217-221.
    [56]陈平华,陈如凯.基因枪转化甘蔗愈伤组织体系的优化[J].福建农林大学学报(自然科学版)2004,33(3):355-357.
    [57]信金娜,韩烈保,刘君,等.基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株[J].中国生物工程杂志,2006,26(8):10-14.
    [58]刘芳,袁鹰,高树仁,等.外源DNA花粉管通道途径导入机理研究进展[J].玉米科学,2007,15(4):59-62.
    [59]仇泽,苏乔,安利佳.FITC示踪在优化小麦花粉管通道转化方法中的应用[J].西北植物学报,2008,28(3):611-616.
    [60]杨书华,倪万潮,葛才林,等.花粉管通道法导入标记DNA在棉花胚珠内的分布[J].核农学报,2007,21(1):13-16.
    [61]刘化龙,刘双奇,王敬国,等.花粉管通道法转Bar-Bt-1Ab基因到北方优质粳稻的研究[J].东北农业大学学报,2008,39(7):5-8.
    [62]魏爱民,张文珠,杜胜利,等.黄瓜花粉管通道法抗虫基因导入及卡那霉素抗性筛选[J].华北农学报,2008,23(6):54-57.
    [63]赵万苓,姜世平,付新生,等.利用花粉管通道法将查尔酮合酶基因导入仙客来[J].分子植物育种,2005,3(4):531-536.
    [64]张庆祝,韩天富.植物非组培遗传转化方法研究的进展[J].分子植物育种,2004,2(1):85-91.
    [65]杜娟,王罡,王萍,等.玉米遗传转化系统的研究进展[J].遗传,2001,23(1):69-72.
    [66]马慧,徐正进,赵开军.植物遗传转化方法及其在水稻遗传改良上的应用[J].沈阳农业大
    学学报,2003,34(5):394-400.
    [67]王道杰,杨翠玲,陆鸣.真空渗透法转化油菜及转化种子的筛选[J].植物学报,2009,44(2):216-222.
    [68]耿立召,刘传亮,李付广.农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J].西北植物学报,2005,25(1):205-210.
    [69]赵宇玮,步怀宇,郝建国,等.AtNHX1基因对草木樨状黄芪的转化和耐盐性表达研究[J].分子细胞生物学报,2008,41(3):213-221.
    [70]赵巧阳,赖钟雄.脯氨酸和硝酸银对农杆菌转化香蕉的影响研究[J].生物技术通报,2008(6):97-100.
    [71]李科友,樊军锋,赵忠,等.84 K杨再生和遗传转化体系的优化[J].西北农林科技大学学报(自然科学版),2007,35(7):90-96.
    [72]谢秀祯,林俏慧,郭勇.根癌农杆菌介导的玫瑰茄愈伤组织的遗传转化[J].广西植物,2007,27(6):903-908.
    [73]王晓春,王罡,季静,等.农杆菌介导的大豆体细胞胚遗传转化影响因子的研究[J].大豆科学,2005,24(1):21-25.
    [74]龚学臣,季静,抗艳红,等.八氢番茄红素合成酶基因(PSY)对大豆的遗传转化[J].大豆科学,2005,24(1):30-33.
    [75]谭洁,巩振辉.农杆菌介导的NPKI基因转化辣椒的研究[J].西北农业学报,2008,17(3):267-270.
    [76]司爱君,祝建波,李吉莲,等.F3′5′H基因的克隆、表达载体构建与矮牵牛遗传转化[J].西北农业学报,2008,17(5):306-309.
    [77]周兴龙,杨青川,王凭青,等.苜蓿转基因研究进展[J].重庆大学学报(自然科学版),2005,28(4):126-130.
    [78]苏彦苹,刘兴菊,周怀军,等.rolC基因对转Ri质粒三倍体毛白杨的遗传转化[J].西北林学院学报,2007,22(5):57-61.
    [79]林义章,罗燕华.根癌农杆菌介导的苦瓜遗传转化[J].福建农林大学学报(自然科学版),2007,36(2):147-150.
    [80]张志中,吴菁华,吕柳新.根癌农杆菌介导的西瓜遗传转化研究[J].果树学报,2005,22(2):134-137.
    [81]梁业红,叶兴国,张世煌.适用于4种玉米基因型的农杆菌转化方法的探讨[J].作物学报,2007,33(5):771-775.
    [82]Hiei Y, Ohta S, Kumashiro T, et al. Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant J,1994,6(2):271-282.
    [83]Dong J, Teng W, Buchholz W G, et al. Agrobacterium-mediated transformation of japonica rice [J]. MolecularBreeding,1996,2:267-276.
    [84]Aldemita R R, Hodges T K. Agrobacterium tumefaciens-mediated ransformationof japonica rice and indica rice varieties [J]. Plant J,1996,199:612-617.
    [85]曹慧颖,夏润玺,吕淑霞,等.提高农杆菌介导番茄遗传转化效率的研究[J].北方园艺,2008(1):178-180.
    [86]李静雯.农杆菌介导的辣椒遗传转化体系优化及Chi和Glu基因转化植株的鉴定[B].甘肃农业大学学位论文,2006.
    [87]冯慧,王茂良,王建红,等.矮牵牛遗传转化非洲商陆蛋白基因的研究[J].园林科技,2008(1):8-10.
    [88]杨利荣,李名扬,祝钦泷,等.农杆菌介导的抗菌肽基因SPCEMA对马铃薯的遗传转化[J].中国农学通,2006,22(5):63-67.
    [89]胡繁荣.农杆菌介导的高羊茅遗传转化体系的优化[J].分子植物育种,2005,3(3):375-380.
    [90]陈玉玉,苏乔,祖勇,等.拟青山海关杨高效遗传转化系统的建立[J].中国农学通报2009,25(01):89-92.
    [91]张晓英,甘敬,尹伟伦,等.国槐遗传转化体系的优化[J].林业科学,2009,45(5):20-26.
    [92]王跃华.川黄柏高效遗传转化系统建立和植株再生研究[J].中药材,2006,29(7):641-644.
    [93]袁鹰,李启云,郝文媛,等.农杆菌介导玉米遗传转化影响因子的研究[J].分子植物育种,2006,4(2):228-232.
    [94]周春丽,郭卫东,路梅,等.农杆菌介导佛手遗传转化主要影响因素的研究[J].热带亚热带植物学报,2006,14(5):374-381.
    [95]宋书锋,曹凤,杨培志,等.普那菊苣高效再生体系建立和遗传转化研究[J].分子植物育种,2006,4(4):565-570.
    [96]陈平华,陈如凯,高三基.甘蔗愈伤组织G418最低抑制浓度的测定[J].江西农业大学学报,2005,27(1):63-67.
    [97]奚亚军,范学科,侯文胜,等.小麦遗传转化中潮霉素适宜筛选浓度的研究[J].西北农林科技大学学报(自然科学版),2003,31(1):39-42.
    [98]张传义,曹秋芬,周慧,等.抗生素对菊花叶片再生及农杆菌生长的影响[J].生物技术通报,2007,(3):126-128.
    [99]武术杰,李邱华.矮牵牛Tidal Wave品种遗传转化受体再生体系的建立[J].东北林业大学学报,2007,35(4):14-16.
    [100]孙艳香,李美茹,张晓月.根癌农杆菌介导的矮牵牛遗传转化体系研究[J].北方园艺,2007(8):177-179.
    [101]刘海坤,卫志明.一种大豆成熟种子的消毒方法[J].植物生理学通讯,2002,
    38(3):25-26.
    [102]Martin T, Schmi dt R and Altmann T. Non-destructive Assay Systems for Detection of β-glucuronidasc Activity in Higher Plants [J]. Plant Mol Rep,1992,10:37-46.
    [103]Julian C Verdonk, C.H Ric de Vos, Harrie A Verhoeven et al. Regulation of Floral Scent Prodution in Petunia Revealed by Targeted Metabolomics [J]. Phytochemistry,2003,62(6): 997-1008.
    [104]Nathalie Gass, Tatiana Glagotskaia, Stefan Mellema et al. Pyruvate Decarboxylase Provides Growing Pollen Tubes with a Competitive Advantage in Petunia [J]. Plant Cell,2005, (17):2355-2368.
    [105]Cornelis Spelt, Francesca Quattrocchio, Joseph N. M. Mol et al. anthocyaninl of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Gennes [J]. Plant Cell,2000,12(9):1619-1632.
    [106]J-C. Chen, F. Johnson, D.G. Clark et al. potential application of Virus-induced gene silencing(VIGS)in flower senescence studies [J]. Plant Cell,2005,(5):1612-1624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700