InAs/In_xGa_(1-x)Sb应变超晶格界面结构和光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
InAs/In_xGa_(1-x)Sb应变超晶格被认为是最有潜质应用于8~14μm长远波段红外探测的材料。外延生长异质薄膜材料不可避免的涉及到不同材料所形成的界面层。物理性质和器件性能的优劣很大程度上取决于界面结构和成分。分子束外延(MBE)能够实现原子量级浮动和化学成分突变的异质界面。其中有两个主要因素导致界面失序:一是由于台阶和岛的形成导致界面粗糙;二是界面原子交换,其中包括在界面处成分的改变。因此界面失序最终将通过载流子在界面处的传递效应和散射机制影响器件的光电特性,同时导致带阶偏离本征值。影响界面质量的主要因素包括生长参数、衬底取向、过渡层特性、生长温度和应变缓解等。本文通过双晶x射线衍射,红外光谱和光致发光谱表征、分析了超晶格的结构质量和光学性能。
     文中通过高分辨透射电镜(HRTEM)对InAs/In_xGa_(1-x)Sb超晶格的界面结构进行了深入研究。并使用实验获得的高分辨电镜像与InAs和In_xGa_(1-x)Sb相应的原子格点像相匹配,确定超晶格界面成分。研究发现,In_xGa1?xAs型界面主要是通过调节原子位置的方式来缓解晶格失配。而InSb型界面缓解晶格失配主要机制是产生失配位错。对具有GaAs/In_xGa_(1-x)As型界面的InAs/In_xGa_(1-x) Sb超晶格的界面结构进行了分析。通过对界面原子排列的分析,界面化学键构型的讨论,结果表明电荷平衡原理是界面形成首要遵从的原则。In_xGa_(1-x)As型界面的结构特征是通过面间距调制释放晶格失配。而GaAs型界面的形貌特征是界面附近存在失配位错,同时在界面附近伴随着化学成分的波动。
     通过原子尺度测量面间距的方法研究了InAs/In_xGa_(1-x)Sb超晶格合金层中In含量。在无应变状态下测量了[001],[110]和[111]方向上的晶格间距,并计算其平均晶格常数。结果表明InAs层的理论值和实验值相差无几。我们所计算的In_(0.25)Ga_(0.75)Sb合金层的平均晶格常数结合Vegard规则,获得的In含量为0.18,与x射线衍射结果一致。
     文中阐明了如何通过HRTEM像在原子尺度范围内对InAs/In_xGa_(1-x)Sb界面键合特征进行分析,从而推测异质结中界面结构、界面成分和生长条件之间的关系。并结合实验观测结果应用动力学多层法理论对InAs/In_xGa_(1-x)Sb超晶格中InSb型和In_xGa_(1-x)As型两种界面类型的高分辨像进行模拟计算,分析了近界面处像衬度对高分辨像中格点之间面间距的影响。
     本文对长远波段红外光电薄膜材料InAs/In_xGa_(1-x)Sb应变超晶格的显微结构进行了深入分析,并揭示界面结构与制备工艺之间的关系及其物理本质,在“带隙工程”基础上进一步分析显微结构与光学性能之间的内在关系,为长远波段红外探测光电薄膜材料达到优异的光学性能奠定基础。
InAs/In_xGa_(1-x)Sb strained layer superlattices have shown considerable promise as candidates for application in infrared detectors, particularly at wavelengths of 8~14μm. The epitaxial growth of thin film heterostructures inevitably involves the formation of interfaces between layers of different materials. Both physical properties and device performance are crucially dependent on the interface structure and composition. The growth by Molecular beam epitaxy (MBE) enables the realization and control of atomically flat and chemically abrupt heterointerfaces. These are two major contributions to interfacial disorder: interfacial roughness due to the formation of steps and islands, and interfacial intermixing that comprises the changes in composition across the interface. Such interfacial disorder can ultimately impact the electrical and optical device characteristics by affecting transport and scattering mechanisms of carriers local deviations in the band offsets.The quality of interfaces depends on numerous growth parameters, substrate misorientation, properties of buffer layer, growth temperature and strain relaxation. This study was characterized quantify the structural properties of SL, and displayed optical properties by HRXRD, FTIR and PL.
     The interfacial structure of InAs/In_xGa1?xSb superlattices is investigated by high-resolution transmission electron microscopy (HRTEM). We have shown that high-resolution electron microscopy with quantitative image matching can enable the relative orientation of the closely separated atomic species in InAs and In_xGa1?xSb to be resolved. We have then used this capability to determine interfacial composition. The shift in the atomic positions associated with this modulation may lead to distortions of the interfacial structure of In_xGa1?xAs-like. The misfit dislocations in InSb-like interface are the primary mechanism for accommodating the lattice mismatch. The lattice structure of the InAs/In_xGa_(1-x)Sb with GaAs/In_xGa_(1-x)As-like interfaces has been studied. The atomic arrangement at the plane of the interface is analyzed based on the image characteristics. Possible bonding configurations are discussed. The results suggest that interface formation is first driven by charge balance. The shift of the interplanar separations associated with this modulation may lead to distortions of the interfacial structure of In_xGa_(1-x) As-like. The morphological characterization at GaAs-like interface is accompanied by interface misfit dislocations and compositional fluctuations near the interface.
     Atomic scale positional resolved lattice spacing measurement is used to study the In concentration of alloy layer in InAs/In_xGa_(1-x)Sb superlattices. The unstrained lattice distance along three of [001], [110] and [111] directions were measured and calculated the average lattice constant. The experimental lattice constants of InAs layers are almost equal to the theoretical ones. We have calculated the average lattice constant of In_(0.25)Ga_(0.75)Sb alloy layers is in good agreement with previously reported Vegard’s values. The results indicate that the In concentration of 0.18 has a same compared with the XRD values.
     The paper have shown how cross-sectional HRTEM can be used to characterize the lattice-mismatched bonding across the InAs/In_xGa_(1-x)Sb interfaces with atomic scale precision, and described how such measurements advance our understanding of the connection between interfacial structure, interfacial composition, and the growth conditions used to form these complex hetero- structures. The interface type of InSb-like and In_xGa_(1-x)As-like interface at InAs/In_xGa_(1-x)Sb SLs was simulated based on kinetic theory of multi-method with the experimental micrographs. The atomic imaging across the interface on the impact of lattice spacing of high-resolution image was analyzed.
     This paper analyzes the microstructure characterization of InAs/In_xGa_(1-x)Sb strained layer superlattices adapted for long wavelength and very long wavelength infrared photovoltaic thin film, and report on the physical nature and the relationship between interfacial structure and preparation technique. The connection between microstructure and optoeletronic performance has been analyzed based on“the band gap engineering”theoretical. Thus, the material system of the photovoltaic thin film is more attractive in achieving high performance infrared detectors for long wavelength and very long wavelength applications.
引文
1 S.V.Bandara, S.D.Gunapala, J.K.Liu, E.M.Luong, J.M.Mumolo, W.Hong, D.K.Sengupta, M.J.McKelvey. 10–16μm Broadband Quantum Well Infrared Photodetector. Appl Phys Lett. 1998,72(19):2427~2429
    2 A.Rogalski. Material Considerations for Third Generation Infrared Photon Detectors. Infrared Physics and Technology. 2007,50:240~252
    3 I.Vurgaftman, J.R.Meyer, C.A.Hoffman, D.Redfern, J.Antoszewski, L.Faraone, J.R.Lindemuth. Improved Quantitative Mobility Spectrum Analysis for Hall Characterization. J Appl Phys. 1998,84(9):4966~4973
    4 H.Mohseni, A.Tahraoui, J.Wojkowski, M.Razeghi, G.J.Brown, W.C.Mitchel, and Y.S.Park. Very Long Wavelength Infrared Type-II Detectors Operating at 80 K. Appl Phys Lett. 2000,77(11):1572~1574
    5 J.L.Johnson, L.A.Samoska, A.C.Gossard, J.L.Merz, M.D.Jack, G.R.Chapman, B.A.Baumgratz, K.Kosai, S.M.Johnson. Electrical and Optical Properties of Infrared Photodiodes Using the InAs/Ga_(1-x)In_xSb Superlattice in Heterojunctions with GaSb. J Appl Phys. 1996,80 (2):1116~1127
    6 A.Y.Lew, S.L.Zuo, E.T.Yu, R.H.Miles. Correlation between Atomic-Scale Structure and Mobility Anisotropy in InAs/Ga_(1-x)In_xSb Superlattices. Phys.Rev.B. 1998,57(11):6534~6539
    7 Qianghua Xie, J.E.VanNostrand, J.L.Brown, C.E.Stutz. Arsenic for Antimony Exchange on GaSb, its Impacts on Surface Morphology, and Interface Structure. J Appl Phys. 1999,86(1):329~337
    8 B.R.Nag. Interface Roughness Scattering Limited Mobility in AlAs/GaAs, Al0.3Ga0.7As/GaAs and Ga0.5In0.5P/GaAs Quantum Wells. Semicond. Sci. Technol. 2004,19(2):162~166
    9 B.Montanari, M.Peressi, S.Baroni, E.Molinari. InAs/GaSb (001) Valence-Band Offset: Independence of Interface Composition and Strain. Appl Phys Lett. 1996,69(21):3218~3220
    10 F.Fuchs, U.Weimer, W.Pletschen, J.Schmitz, E.Ahlswede, M.Walther, J.Wagner, P.Koidl. High Performace InAs/Ga_(1-x)In_xSb Superlattice Infrared Photodiodes. Appl Phys Lett. 1997,71(22):3251~3253
    11 M.R.Kitchin, M.Jaros. Characterization of GaSb/InAs Type II InfraredDetectors at Very Long Wavelengths: Carrier Scattering at Defect Clusters. Physica E. 2003,18:498~508
    12 D.L.Smith, C.Mailhiot. Proposal for Strained TypeⅡSuperlattice Infrared Detectors. J Appl Phys. 1987,62(6):2545~2548
    13 A.Rogalski, J.Antoszewski, L.Faraone. Third-Generation Infrared Photodetector Arrays. J Appl Phys. 2009,105:091101 1~44.
    14 J.T.Olesberg, M.E.Flatte, T.C.Hasenberg, C.H.Grein. Mid-Infrared InAs/ GaInSb Separate Confinement Heterostructure Laser Diode Structures. J Appl Phys. 2001,89(6):3283~3288
    15 J.B.Rodriguez, E.Plis, G.Bishop, Y.D.Sharma, H.Kim, L.R.Dawson, S.Krishna. nBn Structure Based on InAs/GaSb Type-ⅡStrained Layer Superlattices. Appl Phys Lett. 2007,91:043514 1~2
    16 A.Rogalski, P.Martyniuk. InAs/GaInSb Superlattice as a Promising Material System for Third Generation Infrared Detectors. Infrared Physics and Technology. 2006,48:39~52
    17 A.Hood, D.Hoffman, B.M.Nguyen, P.Y.Delaunay, E.Michel, M.Razeghi. High Differential Resistance Type-ⅡInAs/GaSb Superlattice Photodiodes for the Long-Wavelength Infrared. Appl Phys Lett. 2006,89:093506 1~3
    18 I.Vurgaftman, E.H.Aifer, C.L.Canedy, J.G.Tischler, J.R.Meyer, J.H.Warner, E.M.Jackson, G.Hildebrandt, G.J.Sullivan. Graded Band Gap for Dark-Current Suppression in Long-Wave Infrared W-structured Type-ⅡSuperlattice Photodiodes. Appl Phys Lett. 2006,89:121114 1~3
    19 K.Mahalingam, K.G.Eyink, G.J.Brown, D.L.Dorsey, C.F.Kisielowski, A.Thust. Quantifying Stoichiometry of Mixed-Cation-AnionⅢ-ⅤSemiconductor Interfaces at Atomic Resolution. Appl Phys Lett. 2006,88:091904 1~3
    20 H.Sitter. MBE Growth Mechanisms; Studies by Monte-Carlo Simulation. Thin Solid Films. 1995,267:37~46
    21 V.I.Vdovin. Misfit Dislocations in Epitaxial Heterostructures: Mechanisms of Generation and Multiplication. Misfit Dislocations in Epitaxial Heterostructures. 1999,171:239~250
    22 W.Qian, M.Skowronski, R.Kaspi, M.De Graef, V.P.Dravid. Nucleation of Misfit and Threading Dislocations during Epitaxial Growth of GaSb on GaAs (001) Substrates. J Appl Phys. 1997,81(11):7268~7272
    23石林.外延生长动力学剪裁面心立方合金薄膜有序结构的研究.清华大学博士学位论文. 2007:7~13
    24 T.T.Tsong, C.L.Chen. Displacement Distributions in Diffusion by Atomic Replacement: Ir Atoms on Ir Surfaces. Phys.Rev.B. 1991,43:2007~2017
    25 H.J.Ernst, F.Fabre, J.Lapujoulade. Nucleation and Diffusion of Cu Adatoms on Cu(100): A Helium-Atom-Beam Scattering Study. Phys.Rev.B. 1992,46: 1929~1932
    26 P.J.Feibelman. Diffusion Path for an Al Adatom on Al (001). Phys.Rev.Lett. 1990,65:729~732
    27 G.L.Kellogg. Direct Observations of Adatom-Surface-Atom Replacement: Pt on Ni (110). Phys.Rev.Lett. 1991,67:216~219
    28 E.Luna, B.Satpati, J.B.Rodriguez, A.N.Baranov, E.Tournie, A.Trampert. Interfacial Intermixing in InAs/GaSb Short-Period-Superlattices Grown by Molecular Beam Epitaxy. Appl Phys Lett. 2010,96:021904 1~3
    29 S.G.Kim, S.C.Erwin, B.Z.Nosho L.J.Whitman. Electronic Versus Geometric Contrast in Cross-Sectional STM Images of III-V Semiconductor Hetero- structures. Phys.Rev.B. 2003,67:121306 1~4.
    30 G.Klimeck, R.Lake, D.K.Blanks. Role of Interface Roughness Scattering in Self-Consistent Resonant-Tunneling-Diode Simulations. Phys.Rev.B. 1998,58 (11):7279~7285
    31 J.Steinshnider, M.Weimer, R.Kaspi, G.W.Turner. Visualizing Interfacial Structure at Non-Common-Atom Heterojunctions with Cross-Sectional Scan- ning Tunneling Microscopy. Phys.Rev.Lett. 2000,85(14):2953~2956
    32 M.Pfister, M.B.Johnson, S.F.Alvarado, H.W.M.Salemink, U.Marti, D.Martin, F.M.Genoud, F.K.Reeinhart. Indium Distribution in InGaAs Quantum Wires Observed with the Scanning Tunneling Microscope. Appl Phys Lett. 1995,67 (10):1459~1461
    33 M.W.Wang, D.A.Collins, T.C.McGill, R.W.Grant, R.M.Feenstra. Effect of Interface Composition and Growth Order on the Mixed Anion InAs/GaSb Valence Band Offset. Appl Phys Lett. 1995,66(22):2981~2983
    34 B.R.Bennett, B.V.Shanabrook, R.J.Wagner, J.L.Davis, J.R.Waterman. Control of Interface Stoichiometry in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy. Appl Phys Lett. 1993,63(7):949~951
    35 J.T.Olesberg, M.E.Flatte, T.F.Boggess. Comparison of Linewidth Enhance-ment Factors in Midinfrared Active Region Materials. J Appl Phys.2000,87(10): 7164~7168
    36 G.J.Brown, F.Szmulowicz, H.Haugan, K.Mahalingam, S.Houston. Design of InAs/Ga(In)Sb Superlattices for Infrared Sensing. Microelectronics Journal. 2005,36:256~259
    37 G.J.Brown, S.Houston, F.Szmulowicz. Type-II InAs/GaSb Superlattices for Very Long Wavelength Infrared Detectors. Physica E. 2004, 20:471~474
    38 W.H.Lau, M.E.Flatte. Effect of Interface Structure on the Optical Properties of InAs/GaSb Laser Active Regions. Appl Phys Lett. 2002,80(10):1683~1685
    39 E.Plis, S.Annamalai, K.T.Posani, S.Krishna, R.A.Rupani, S.Ghosh. Midwave Infrared Type-ⅡInAs/GaSb Superlattice Detectors with Mixed Interfaces. J Appl Phys. 2006,100:014510 1~4
    40 E.Plis, S.J.Lee, Z.Zhu, A.Amtout, S.Krishna. InAs/GaSb Superlattice Detectors Operating at Room Temperature. IEEE Journal of Selected Topics in Quantum Electronics. 2006,12(6):1269~1274
    41 E.Plis, J.B.Rodriguez, H.S.Kim, G.Bishop, Y.D.Sharma, L.R.Dawson, S.Krishna, S.J.Lee, C.E.Jones, V.Gopal. Type-ⅡInAs/GaSb Strain Layer Superlattice Detectors with p-on-n Polarity. Appl Phys Lett. 2007,91:133512 1~3
    42 M.R.Kitchin, J.P.Hagon, M.Jaros. Models of GaSb/InAs Type-ⅡInfrared Detectors at Very Long Wavelengths: Band Offsets and Interface Bonds. Semicond.Sci.Technol. 2003,18:225~233
    43 R.Magri, A.Zunger. Effects of Interfacial Atomic Segregation and Intermixing on the Electronic Properties of InAs/GaSb Superlattices. Phys.Rev.B. 2002,65: 165302 1~18
    44 J.Sigmund, M.Saglam, A.Vogt, H.L.Hartnagel, V.Buschmann, T.Wieder, H.Fuess. Microstructure Analysis of Ohmic Contacts on MBE Grown n-GaSb and Investigation of Sub-Micron Contacts. J. Crystal Growth. 2001,227~228: 625~629
    45 H.Asklund, L.Ilver, J.Kanski, S.Mankefors, U.Sodervall, J.Sadowski. Thick-ness-Dependent Valence-Band Photoemission from Thin InAs and GaAs Films. Phys.Rev.B. 2001,63:195314 1~7
    46 B.M.Nguyen, D.Hoffman, P.Y.Delaunay, M.Razeghi, V.Nathan. Polarity Inversion of Type-ⅡInAs/GaSb Superlattice Photodiodes. Appl Phys Lett. 2007,91:103503 1~3
    47 J.B.Rodriguez, P.Christol, F.Chevrier, A.Joullie. Optical Characterization of Symmetric InAs/GaSb Superlattices for Detection in the 3-5μm Spectral Region. Physica E. 2005,28:128~133
    48 R.T.Hao, Y.Q.Xu, Z.Q.Zhou, Z.W.Ren, H.Q.Ni, Z.H.He, Z.C.Niu. MBE Growth of Very Short Period InAs/GaSb Type-ⅡSuperlattices on (001) GaAs Substrates. J. Phys. D: Appl. Phys. 2007,40:6690~6693
    49 X.B.Zhang, J.H.Ryou, R.D.Dupuis, C.Xu, S.Mou, A.Petschke, K.C.Hsieh, S.L.Chuang. Improved Surface and Structural Properties of InAs/GaSb Superlattices on (001) GaSb Substrate by Introducing an InAsSb Layer at Interfaces. Appl Phys Lett. 2007,90131110:1~3
    50 T.W.Kim, D.U.Lee, D.C.Choo, H.S.Lee, J.Y.Lee, H.L.Park. Atomic Arrangements and Formation Mechanisms of the CuPt-Type Ordered Structure in CdxZn1-xTe Epilayers Grown on GaAs Substrates. Appl Phys Lett. 2001,78(7):922~924
    51 F.A.Ponce, C.G.Van de Walle, J.E.Northrup. Atomic Arrangement at the AlN/SiC Interface. Phys.Rev.B. 1996,53(11):7473~7478
    52 E.I.Suvorova, P.P.Petrenko, P.A.Buffat. Scanning and Transmission Electron Microscopy for Evaluation of Order/Disorder in Bone Structure. Scanning. 2007,29:162~170
    53 M.Szymonski, P.Korecki, J.Kolodziej, P.Czuba, P.Piatkowski. Structure and Electronic Properties of Ionic Nano-Layers MBE-Grown onⅢ-ⅤSemi-conductors. Thin Solid Films. 2000,367:134~141
    54 R.Tsu, J.C.Lofgren. Structure of MBE Grown Semiconductor-Atomic Super-lattices. J. Crystal Growth. 2001,227-228:21~26
    55 L.Burkle, F.Fuchs, E.Ahlswede, W.Pletchen, J.Schmitz. Wannier-Stark Localization in InAs/(GaIn)Sb Superlattice Diodes. Phys.Rev.B. 2001,64: 045315 1~9
    56 J.C.Kim, J.G.Tischler, C.L.Canedy, E.H.Aifer, I.Vurgaftman, J.R.Meyer, L.J.Whitman. Controlling Interfacial Disorder and Strain of W-Structured Type-ⅡSuperlattices Using As2 Flux. J. Crystal Growth. 2007,303:515~519
    57 M. Shiojiri, M.?eh, S.?turm, C.C.Chuo, J.T.Hsu, J.R.Yang, H.Saijo. Structural and Compositional Analyses of a Strained AlGaN/GaN Superlattice. J Appl Phys. 2006,100(1):013110 1~7
    58 J.Schmitz, J.Wagner, F.Fuchs, N.Herres, P.Koidl, J.D.Ralston. Optical andStructural Investigations of Intermixing Reactions at the Interfaces of InAs/AlSb and InAs/GaSb Quantum Wells Grown by Molecular-Beam Epitaxy. J. Crystal Growth. 1995,150:858~862
    59 A.Trampert. Heteroepitaxy of Dissimilar Materials: Effect of Interface Structure on Strain and Defect Formation. Physica E. 2002,13:1119~1125
    60 H.J.Haugan G.J.Brown, L.Grazulis, K.Mahalingam, D.H.Tomich. Optimization of InAs/GaSb Type-ⅡSuperlattices for High Performance of Photodetectors. Physica E. 2004,20:527~530
    61 Y.Wei, J.Bae, A.Gin, A.Hood, M.Razeghi, G.J.Brown, M. Tidrow. High Quality TypeⅡInAs/GaSb Superlattices with Cutoff Wavelength ~3.7μm Using Interface Engineering. J Appl Phys. 2003,94(7):4720~4722
    62 B.Bertoli, E.N.Suarez, J.E.Ayers, F.C.Jain. Misfit Dislocation Density and Strain Relaxation in Graded Semiconductor Heterostructures with Arbitrary Composition Profiles. J Appl Phys. 2009,106:073519 1~7
    63 P.Cantu, F.Wu, P.Waltereit, S.Keller, A.E.Romanov, S.P.DenBaars, J.S.Speck. Role of Inclined Threading Dislocations in Stress Relaxation in Mismatched Layers. J Appl Phys. 2005,97:103534 1~10
    64 W.Barvosa-Carter, M.E.Twigg, M.J.Yang, L.J.Whitman. Microscopic Charac- terization of InAs/In0.28GaSb0.72/InAs/AlSb Laser Structure Interfaces. Phys.Rev.B. 2001,63:245311 1~11
    65 L.T.Romano, R.D.Bringans, J.Knall, D.K.Biegelsen, A.Garcia, J.E.Northrup. Atomic Rearrangement at the Interface of Annealed ZnSe Films Grown on Vicinal Si (001) Substrates. Phys.Rev.B. 1994,50(7):4416~4423
    66 K.G.Eyink, L.Grazulis, J.J.Pitz, J.Shank, K.Mahalingam. Strain Relaxation in the Growth of Planar InAs. J. Vac. Sci. Technol. B. 2006, 24(3):1581~1586
    67 P.Boland, S.S.Sunkavalli, S.Chennuri, K.Foe, T.Abdel-Fattah, G.Namkoong. Investigation of Structural, Optical, and Electrical Properties of Regioregular Poly (3-Hexylthiophene)/Fullerene Blend Nanocomposites for Organic Solar Cells. Thin Solid Films. 2010,518:1728~1731
    68 J.H.Xu, L.H.Yu, S.R.Dong, I.Kojima. Structure Transition of BN Layers and its Influences on the Mechanical Properties of AlN/BN Nanomultilayers. Thin Solid Films. 2008,516:8640~8645
    69 A.P.Ongstad, R.Kaspi, C.E.Moeller, M.L.Tilton, J.R.Chavez, G.C.Dente. Gain and Loss in an Optically Pumped Mid-Infrared Laser. J Appl Phys. 2004,95(4):1619~1624
    70 Y.Z.Gao, H.Kan, J.I.Murata, M.Aoyama, T.Yamaguchi. High Purity In_xGa_(1-x) Sb Single Crystals with Cutoff Wavelength of 7-8μm Grown by Melt Epitaxy. Journal of Electronic Materials. 2000,29(10):L25~L27
    71 S.P.Edirisinghe, A.E.Staton-Bevan, R.Grey. Relaxation Mechanisms in Single In_xGa_(1-x)As Epilayers Grown on Misoriented GaAs (111)B Substrates. J Appl Phys. 1997,82(10):4870~4876
    72 B.Bertoli, E.N.Suarez, F.C.Jain, J.E.Ayers. Dislocations and Strain Relief in Reverse-Graded Semiconductor Layers. Semicond.Sci.Technol. 2009,24: 125006 1~6
    73 R.Kaspi, J.Steinshnider, M.Weimer, C.Moeller, A.Ongstad. As-Soak Control of the InAs-on-GaSb Interface. J. Crystal Growth. 2001,225:544~549
    74 T.L.Lee, M.R.Pillai, J.C.Woicik, G.Labanda, P.F.Lyman, S.A.Barnett, M.J.Bedzyk. Atomic-Resolution Study of Lattice Distortions of Buried In_xGa_(1-x)As Monolayers in GaAs (001). Phys.Rev.B. 1999,60(19):13612~ 13618
    75 A.Ohtake, S.Miwa, L.H.Kuo, T.Yasuda, K.Kimura, C.Jin, T.Yao. Characteri-zation and Control ofⅡ-Ⅵ/Ⅲ-ⅤHeterovalent Interfaces. J. Crystal Growth. 1998,184~185:163~172
    76许宁,李富铭.脉冲激光烧蚀沉积ZnSe薄膜的研究.中国激光.2001,28(7): 661~663
    77许振嘉.近代半导体材料的表面科学基础.北京大学出版社.1999:387~389.
    78黎大兵.(In,AI)GaN材料的MOCVD生长及其物性研究.中国科学院半导体研究所.2004:45~50
    79 A.Y.Cho. Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method: The Observation of Surface Structures. J Appl Phys. 1970,41(7): 2780~2786
    80 A.Y.Cho. GaAs Epitaxy by a Molecular Beam Method: Observations of Surface Structure on the (001) Face. J Appl Phys. 1971,42(5):2074~2081
    81 A.Y.Cho. Growth of III–V Semiconductors by Molecular Beam Epitaxy and Their Properties. Thin Solid Films. 1983,100(4):291~317
    82 D.A.Katnani, G.Margaritondo. Microscopic Study of Semiconductor Hetero- junctions: Photoemission Measurement of the Valance-Band Discontinuity and of the Potential Barriers. Phys.Rev.B. 1983, 28:1944~1956
    83 R.H.Williams. Metal-Semiconductor Interfaces. Surface Science. 1991,12: 251~252
    84 C.T.Foxon, B.A.Joyce. Interaction Kinetics of As2 and Ga on {100} GaAs Surfaces. Surface Science. 1977,64(1):293~304
    85朱静,叶恒强,王仁卉,温树林,康振川.高空间分辨分析电子显微学.科学出版社.1987:45~50
    86进藤大辅,平贺贤二.材料评价的高分辨电子显微方法.冶金工业出版社.2001:105~107
    87叶恒强,王元明.透射电子显微学进展.科学出版社.2003:89~93
    88进藤大辅,及川哲夫.材料评价的分析电子显微方法.冶金工业出版.2001: 35~38
    89刘文西,黄孝瑛,陈玉如.材料结构电子显微分析.天津大学出版社.1989:34~36
    90吴杏芳,柳得橹.电子显微分析实用方法.冶金工业出版社.1998:78~79
    91 J.Matsui, Y.Tsusaka, K.Yokoyama, S.Takeda, M.Urakawa, Y.Kagoshima, S.Kimura. Microscopic Strain Analysis of Semiconductor Crystals Using a Synchrotron X-ray Microbeam. J. Crystal Growth. 2002,317:237~239
    92 J.A.Dura, J.G.Pellegrino, C.A.Richter. X-ray Reflectivity Determination of Interface Roughness Correlated with Transport Properties of (AlGa)As/GaAs High Electron Mobility Transistor Devices. Appl Phys Lett. 1996,69(8):1134 ~1136
    93 E.Idiart-Alhor, J.Y.Marzin, M.Quillec, G.LeRoux, G.Patriarche. Kinematic Versus Dynamic Approaches of X-ray Diffraction Simulation. Application to the Characterization of InGaAs/InGaAlAs Multiple Quantum Wells. J Appl Phys. 1996,79(5):2332~2336
    94 D.A.Reich, A.M.Wowchak, P.P.Chow, J.M.VanHove. (111) InAs/GaInSb Strained-Layer Superlattice Growth Investigation. J. Crystal Growth. 1995, 150:849~852
    95 V.Holy, K.Mundboth, C.Mokuta, T.H.Metzger, J.Stangl, G.Bauer, T.Boeck, M.Schmidbauer. Structural Characterization of Self-Assembled Semi-conductor Islands by Three-Dimensional X-ray Diffraction Mapping in Reciprocal Space. Thin Solid Films. 2008,516:8022~8028
    96 C.Frigeri, G.Attolini, M.Bosi, C.Pelosi, F.Germini. Evaluation of the Composition of the Interlayer at the Inverted Interface in InGaP/GaAsHeterojunctions. Superlattices and Microstructures. 2009,45:451~457
    97 R.Fischer, J.Klem, T.J.Drummond, R.E.Thorne, W.Kopp, H.Morkoc, A.Y.Cho. Incorporation Rates of Gallium and Aluminum on GaAs during Molecular Beam Epitaxy at High Substrate Temperatures. J Appl Phys. 1983,54(5): 2508~2511
    98 H.J.Haugan, F.Szmulowicz, G.J.Brown, K.Mahalingam. Optimization of Mid-Infrared InAs/GaSb Type-ⅡSuperlattices. J Appl Phys. 2004,84(26):5410~ 5412
    99 J.A.Dura, J.T.Zborowski, T.D.Golding, D.Donnelly, W.Covington. Properties of InAs/(Ga,In)Sb Strained Layer Superlattices Grown on the {111} Orientations. Journal of Electronic Materials. 1993,22(8):1087~1091
    100 I.Sela, I.H.Campbell, B.K.Laurich, D.L.Smith, L.A.Samoska, C.R.Bolognesi, A.C.Gossard, H.Kroemer. Raman Scattering Study of InAs/GaInSb Strained Layer Superlattices. J Appl Phys. 1991,70 (10):5608~5614
    101 B.M.Nguyen, D.Hoffman, Y.Wei, P.Y.Delaunay, A.Hood, M.Razeghi. Very High Quantum Efficiency in Type-ⅡInAs/GaSb Superlattice Photodiode with Cutoff of 12μm. Appl Phys Lett. 2007,90:231108 1~3
    102 K.Muraki, S.Fukatsu, Y.Shiraki, R.Lto. Surface Segregation of In Atoms during Molecular Beam Epitaxy and its Influence on the Energy Levels in InGaAs/GaAs Quantum Wells. Appl Phys Lett. 1992,61(5):557~559
    103 G.R.Booker, P.C.Klipstein, M.Lakrimi, S.Lapin, N.J.Mason, I.J.Murgatroyd, R.J.Nicholas, T.-Y.Seong, D.M.Symons, P.J.Walker. Growth of InAs/GaSb Strained Layer Superlattices.Ⅱ. J. Crystal Growth. 1995,146:495~502
    104 I.Nemeth, T.Torunski, B.Kunert, W.Stolz, K.Volz. Microstructural Analysis of Ga(NAs)/GaP Heterostructures. J Appl Phys. 2007,101:123524 1~4
    105 G.D.Lian, E.C.Dickey, S.H.Chun, K.C.Ku, N.Samarth. Interface Structure and Chemistry in ZnSe/Ga_(1-x)MnxAs/ZnSe Heterostructures. Appl Phys Lett. 2003, 82(21):3656~3658
    106 E.Luna, F.Ishikawa, B.Satpati, J.B.Rodriguez, E.Tournie, A.Trampert. Interface Properties of (Ga,In)(N,As) and (Ga,In)(As,Sb) Materials Systems Grown by Molecular Beam Epitaxy. J. Crystal Growth. 2009,311: 1739~1744
    107 J.Steinshnider, J.Harper, M.Weimer, C.-H.Lin, S.S.Pei, D.H.Chow. Origin of Antimony Segregation in GaInSb/InAs Strained-Layer Superlattices. Phys.Rev. Lett. 2000,85(21):4562~4565
    108 T.Morita, M.Furukawa, M.Shimizu, Y.Nakajima, T.Sakurai. Dislocations in In0.1Ga0.9As/GaAs multilayers epitaxially grown on Si substrates. Appl Phys Lett. 1989,55(15):1567~1568
    109 M.Shiojiri, M.Ceh, S.Sturm, C.C.Chuo, J.T.Hsu, J.R.Yang, H.Saijo. Determi-nation of Thickness and Lattice Distortion for the Individual Layer of Strained Al0.14Ga0.86N/GaN Superlattice by High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy. Appl Phys Lett. 2005,87:031914 1~3
    110 J.N.Stirman, F.A.Ponce, A.Pavlovska, I.S.T.Tsong, D.J.Smith. Polarity Determination and Atomic Arrangements at a GaN/SiC Interface Using High-Resolution Image Matching. Appl Phys Lett. 2000,76(7):822~824
    111 J.-M.Chauveau, A.Trampert, K.H.Ploog, M.-A.Pinault, E.Tournie. Interplay between the Growth Temperature, Microstructure, and Optical Properties of GaInNAs Quantum Wells. Appl Phys Lett. 2003,82(20):3451~3453
    112许振嘉.半导体的检测与分析.科学出版社.2007,8:557~559.
    113 C. Besikci, Y. H. Choi, R. Sudharsanan, M. Razeghi. Anomalous Hall Effect in InSb Layers Grown by Metalorganic Chemical Vapor Deposition on GaAs Substrates. J Appl Phys. 1993,73(10):5009~5013
    114 J.E.Oh, P.K.Bhattacharya, Y.C.Chen, S.Tsukamoto. Molecular-Beam Epitaxial Growth of High-Quality InSb on InP and GaAs Substrates. J Appl Phys. 1989,66(8):3618~3621
    115 P.E.Thompson, J.L.Davis, J.Waterman, R.J.Wagner, D.Gammon, D.K. Gaskill, R.Stahlbush. Use of Atomic Layer Epitaxy Buffer for the Growth of InSb on GaAs by Molecular Beam Epitaxy. J Appl Phys. 1991,69(10):7166~7172
    116王绍青,孟祥敏,兰建章,叶恒强. InSb/GaAs半导体界面结构研究.电子显微学报.1998,17(6):727~733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700