用户名: 密码: 验证码:
多环芳烃、多氯联苯优良降解菌的分离鉴定及降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为持久性有机污染物(Persistent organic pollutants,POPs)的典型代表,多环芳烃(polycyclic aromatic hydrocarbons,PAHs)和多氯联苯(polychlorinatedbiphenyls,PCBs)的分析方法、环境影响及其污染修复技术是目前国内外热点研究领域,生物降解特别是微生物降解被认为是去除环境中PAils、PCBs的主要途径。本文在全面综述国内外相关研究的基础上,通过调查和监测选择并确定了PAHs、PCBs污染的土壤样品,筛选得到的一株可以高效降解PAHs、PCBs的菌株,基于形态学特征、生理生化试验、细胞化学成分鉴定及16S rDNA序列比对分析等手段,鉴定该菌株属于两面神菌属(Janibacter sp.),命名为JY11。以此为基础,系统研究了JY11对PAHs、PCBs的降解效果和影响因素以及与Phanerochaete.chrysosporium JY16联合降解效率,并借助气相色谱—质谱联用技术对降解中间产物的定性分析,初步探讨了该菌株对菲、芘、苯并(α)芘和PCB18、PCB77的代谢途径。论文主要研究内容和结果如下:
     1.污染土壤中PAHs和变压器油中PCBs的提取及分析
     (1)采用索氏提取、超声提取及超临界CO_2提取三种样品前处理技术,结合GC-FID分析技术,研究获得了济南炼油厂及胜利油田土壤中PAHs的污染特征。济南炼油厂土壤中检出全部16种PAHs,浓度范围为5.0~593.2μg/kg;胜利油田采油厂土壤中检出12种PAHs,浓度范围为227.7~1107.3μg/kg,两处土壤均在一定程度上受到了PAHs的污染。三种提取技术均有很好的提取效率和重现性,相对标准偏差(RSD%)小于5%(n=3),PAHs加标回收率为88.7%~102.6%,符合美国EPA标准中环境样品回收率(70%-140%)及RSD%(<20%)的要求。
     (2)采用液液萃取、超声萃取及固相萃取等三种样品前处理技术,结合本实验室前期建立的PCBs分析方法,研究建立了简便快速的PCBs提取及GC-ECD分析技术。研究测定了废弃国产变压器油中类二噁英类及阻转类PCBs的成分与含量,检出10种类二噁英类PCBs(PCB77,8l,105,114,118,123,126,156,167,189)和4种阻转类PCBs(PCB45,95,132,149)。实验还结合Areolor 1242标准品对变压器油中PCBs组分进行了分析,得到PCBs的分布特征:二氯联苯含量为14.2%;三氯联苯含量为51.2%;四氯联苯含量为29.8%;五氯和六氯联苯含量为4.8%。由此可见,国产变压器油以三氯联苯为主,高氯代PCBs所占比例很少。三种提取方法的RSD%均小于5%(n=3),内标PCB209的回收率为82.3%~91.6%,符合美国EPA标准中回收率及相对标准偏差的要求。
     2.PAHs、PCBs降解菌的分离与鉴定
     (1) PAHs、PCBs优势降解菌的分离。采集济南市炼油厂、胜利油田采油厂及原济南市变压器厂的土样,以菲、蒽、芘的混合样品为唯一碳源,采用定时定量转接、逐步提高碳源浓度的方法,共获得125个单菌落,经降解效率初步测定,选取降解能力较强的两株细菌JY11和JY3A进行鉴定研究。
     (2) JY11和JY3A的鉴定。通过形态特征描述,综合运用生理生化检测、脂肪酸分析、甲基萘醌分型及GC摩尔百分含量测定等方法,结合16S rDNA序列分析、构建系统进化树,JY3A被认为属于Bacillus菌属的B.subtilis类群,由于Bacillus菌属目前定名的复杂性和不确定性,尚需进一步PFGE和DNA-DNA杂交实验数据支持鉴定到种。
     (3) JY11被鉴定为Janibacter菌属。该属1997年方予以命名,确定模式种为Janibacter limosus,至今仅有5个种的报道。但JY11与该属模式种有较大差异,与其遗传距离最近的为Janibacter anophelis。细胞脂肪酸组成及含量分析结果表明,JY11在脂肪酸化学分类特征上表现出独特的菌株特异性,不同于Janibacter limosus和Janibacter anophelis的已有报道。初步实验表明JY11在表现出良好的PAHs降解能力的同时,对PCBs亦有较好的降解能力,因此选择JY11菌作为后续研究的出发菌株。
     3.Janibacter sp.JY11对PAHs、PCBs的降解效果及影响因素研究
     (1) Janibacter sp.JY11对PAHs的降解效果
     研究了液体培养条件下,Janibacter sp.JY11对初始浓度为100 mgl PAHs的降解效果。结果表明,Janibacter sp.JY11不仅对低分子量PAHs如菲、芴、苊等有很好的降解效果,对四环的芘、荧蒽、苯并(α)蒽等也有较好的降解效果,五环和六环的高分子量PAHs也有不同程度的降解。由此可见,JY11表现出非常宽的降解底物谱及很强的降解能力。
     (2)影响Janibacter sp.JY11对PAHs的降解效率的因素
     实验中分别以三环的菲、四环的芘和五环的苯并(α)芘为代表,研究了不同PAHs初始浓度、不同浓度的表面活性剂Tween 80和Triton X-100及水杨酸诱导作用对PAHs降解效率的影响。结果表明:随着初始浓度的增加,芘和苯并(α)芘的降解效率逐渐降低,而菲则可以在很宽的浓度范围内全部降解;表面活性剂Tween 80对PAHs降解有一定的促进作用;通过用水杨酸做共代谢底物,相比用菲作共代谢底物,苯并(α)芘的降解效率提高了28%。
     (3) Janibacter sp.JY11对PCBs的降解效果
     实验研究了在液相纯培养条件下,JY11对初始浓度分别10 mg/l及100 mg/lPCBs的降解效果。结果表明,随着初始浓度增加,降解效率略有下降,但总体上JY11对PCBs具有较好的降解效果。对于初始浓度为10 mg/l的PCBs,二氯及三氯PCBs的降解效率为83%~100%,多数高于90%;四氯PCBs的降解效率为78%~94%;五氯及六氯PCBs的降解效率也达到50~455%。JY11对邻位、对位取代PCBs均可降解,只是随着氯原子数增加,降解效率降低。由此可见,氯原子取代位置并不是影响JY11对PCBs降解的主要因素。
     (4)天然植物组分诱导Janibacter sp.JY11降解PCBs
     通过在液体培养基中添加九州虫草子座挥发油、唐古特青兰挥发油、草果挥发油、香芹酮、柠檬烯等天然植物组分,考察了其对Jannibactor sp.JY11降解PCBs效率的影响。结果表明九州虫草子座挥发油、香芹酮能显著提高绝大多数PCBs的降解效率,柠檬稀也有一定的促进作用。
     4.Janibacter sp.JY11-P.chrysosporium JY16联合降解PAHs、PCBs
     利用白腐真菌胞外氧化还原酶系丰富,底物专一性低,对外源物质的降解不受其浓度大小的影响等优点,在Janibacter sp.JY11中加入一株白腐真菌—黄孢原毛平革菌(P.chrysosporium JY16),研究其联合降解作用。实验结果表明:液体培养条件下,混合菌对PAHs的降解效果明显好于单一菌降解效果,尤其是四环的芘和五环的苯并(α)蒽、苯并(κ)荧蒽的降解效率相比JY11单独降解提高了20%以上。对于模拟污染土壤环境,混合菌对芘和苯并(α)芘的降解效率分别为73%和60%,相比用单一菌降解也得到很大程度的提高。同样液体培养条件下,混合菌对PCBs的降解效果明显优于单一菌降解效果。尤其是对于类二噁英类的六氯联苯PCB156,167和七氯联苯PCB189,单一菌并不利用;而当两株菌联合降解时,三种高氯PCBs降解了10%左右。在此实验基础上,用混合菌直接降解变压器油及模拟污染土壤中的PCBs。结果表明:变压器油中PCBs的降解效率为8.7%~83.3%;对于模拟污染土壤样品,除PCB74,类二噁英类PCB105,118和阻转类PCB132,149没有降解外,其余PCBs的降解效率为18.4%~72.6%。
     5.Janibacter sp.JY11降解PAHs、PCBs中间产物及代谢途径初步分析
     以三环的菲、四环的芘和五环的苯并(α)芘作为JY11降解PAHs代谢途径分析的研究对象;以三氯PCB18及类二噁英类PCB77作为JY11降解PCBs代谢途径分析的研究对象,利用GC-MS技术,通过对中间产物的检测,初步推导了JY11降解PAHs、PCBs的代谢途径。
     (1)菲:菲在双加氧酶的作用下生成顺式-2,3-二氢-二羟基菲,然后转化成1-羟基-二萘酸,脱羧后生成1-萘酚,最后开环生成水杨酸。
     (2)芘:芘在双加氧酶的作用下生成顺式-4,5-二氢-二羟基芘,然后在脱氢酶作用下重新芳香化生成顺式-4,5-二羟基芘,该产物进一步通过双加氧酶开环生成4,5-二羧酸菲,最终在脱羧酶的作用下生成4-羟基菲,最后开环生成邻苯二甲酸。
     (3)苯并(α)芘:苯并(α)芘在双加氧酶的作用下生成顺式-7,8-二氢-二羟基苯并(α)芘,然后在脱氢酶作用下重新芳香化生成顺式7,8-二羟基苯并(α)芘,该产物进一步通过双加氧酶开环生成7-羟基-8-羧酸芘。
     (4)三氯联苯PCB18和四氯联苯PCB77代谢途径基本相同,即JY11进攻PCBs的2,3位,生成2,3.二氢二羟基-PCBs,该产物在脱氢酶的作用下生成2,3-二羟基-PCBs;然后在第二个双加氧酶作用下开环生成2,5-二氯-2-羟基-6-氧-6-2,5-二氯苯基-2,4-己二烯酸,该产物在水解酶的作用下生成氯代苯甲酸。
As the representative substances of persistent organic pollutants(POPs),study on the analysis method,environmental impact and pollution repairing of polycyclic aromatic hydrocarbons(PAHs) and polychlorinated biphenyls(PCBs) is a research emphasis in all over the world.Especially microbiodegradation is considered to be a major way to wipe off PAHs and PCBs in the environment.Based on the review of related study in the worldwide,a highly effective PAHs and PCBs-degrading bacterium was isolated.The isolate was identified as Janibacter sp.with respect to its 16S rDNA sequence and fatty acid profiles,as well as various physiological characteristics,and named JY11.Further study has been done systematically on degradation ability and relevant factors that affect the degradation performance. Co-degradation of PAHs and PCBs with JY11 and P chrysosporium JY16 was also researched.The probable pathway of PAHs and PCBs degraded by JY11 were proposed with detecting the metabolites by GC-MS.The main content and experimental results are as follow:
     1.Extraction and analysis of PAHs from polluted soil and PCBs from transformer oil
     (1) Soxhlet extraction,supereritical CO_2 extraction and ultrasonic extraction were selected to extract PAHs from polluted soil gathered from Jinan Oil Refinery Factory and Shengli Oil Field.And the extracts were analyzed by GC-FID.The results showed that:16 kinds of PAHs in Jinan Oil Refinery Factory were detected with a concentration of 5.0~593.2μg/kg;12 kinds of PAHs in Shengli Oil Field were detected with a concentration of 227.7~1107.3μg/kg.The spiked recovery of each method was in the range of 88.7~102.6%and the relative standard deviation(RSD%) was in the range of 1.5~4.4%,meeting the US EPA standard of recoveries(70~140%) and RSD of repeated samples(<20%).
     (2) Liquid-liquid extraction,ultrasonic extraction and solid phase extraction were selected to extract PCBs from Chinese transformer oil and the extracts were analyzed by GC-ECD.Based on the former study results on PCBs analysis in our laboratory,10 kinds of dioxin-like PCBs(PCB77,81,105,114,118,123,126,156, 167 and 189) and four common exist atropisomeric-PCBs were detected in the Chinese transformer oil.Other PCBs components were also analyzed with Arcolor 1242 standard.The recovery of internal standard of PCB209 with different extraction method was in the range of 82.3%~91.6%and the RSD%less than 5%,meeting the US EPA standard of recoveries and RSD of repeated samples.
     2.Isolation and identification of PAHs and PCBs-degrading bacteria
     16 PAHs-degrading strains were newly isolated from the polluted soil in Jinan Oil Refinery Factory,Shengli Oil Field and former Jinan Power Transformer Factory, Shandong Province of China.Two bacteria,JY11 and JY3A,were investigated. Strain JY11 was identified as Janibacter sp.with respect to its morphology,16S rDNA sequence,phylogenetic analysis,and fatty acid profiles,as well as various physiological and biochemical characteristics.The strain was Gram-positive, non-motile,non-spore-forming,short rods in young culture,0.8-1.0μm in diameter and 1.3-1.6μm long,and coccoid cells in the stationary phase of growth that are 1.0-1.2μm in diameter and 1.3-1.5μm long,occurred in pairs and sometimes in chains or in group,aerobic,oxidase-week positive,catalase-positive.On the basis of 16S rDNA sequence similarity studies,strain JY11 was shown to be most closely related to Janibacter anophelis(99.93%),J.terrae(98.48%),J.marinus(98.38%),J. limosus(98.34%),J.melonis(98.20%) and J.corallicola(97.79%). Chemotaxonomic data(menaquinone,GC content and major fatty acids) supported the allocation of the strain to the genus Janibacter.
     Strain JY3A was characterized as motile,rod-shaped,Gram-positive,endospore forming,single or in pairs and sometimes in chains,aerobic,oxidase-positive, catalase-positive.On the basis of 16S rDNA sequence similarity studies,strain JY3A was shown to be most closely related to B.vallismortis(99.69%),B.subtile (99.65%),B.amyloliquefaciens(99.60%),B.mojavensis(99.57%) and B.atrophaeus (99.42%).Chemotaxonomic data supported the proposal to assign the strain to the B. subtilis group of the genus Bacillus.
     3.Study of degradation ability and related factors that affect the degradation performance of PAHs and PCBs by Janibacter sp.JY11
     (1) Degradation of PAHs by Janibacter sp.JY11
     PAHs with initial concentration of 100 mg/l were degraded with JY11 in liquid culture.The result showed that not only the low molecular PAHs,such as phenanthrene,fluorene and acenaphthene,but also pyrene,fluoranthene and benzo(a)anthracene have a good degradation result.Also the high molecular PAHs degraded in different degree.JY11 presented a wide degradation spectrum and high effective degradation ability.
     (2) Effects of different initial concentrations,surfactant and salicylic acid on the degradation efficiency of PAHs were studied taking phenanthrene,pyrene and benzo(a)pyrene as representative.The results showed that the degradation efficiency of pyrene and benzo(a)pyrene decreased with the increase of initial concentration, while phenanthrene can be degraded completely with different initial concentrations. Tween 80 is helpful for the degradation of PAHs.Through adding salicylic acid in the medium,the degradation efficiency of benzo(a)pyrene increased 28%compared with phenanthrene as co-metabolized substance.
     (3) Degradation of PCBs by Janibacter sp.JY11
     The degradation efficiency of PCBs with a concentration of 10 mg/l and 100 mg/l was studied separately.The result showed that the degradation efficiency decreased in some degree with the increase of initial concentration of PCBs.But JY11 presented a good performance as a whole.For PCBs with an initial concentration of 10 mg/l,the degradation efficiencies of the di and triclorine-CBs were 83%~100%;the degradation efficiencies of the tetraclorine-CB were 78%~94%; and the degradation efficiencies of penta and hexaclorine-CB were 50~65%.The degradation efficiencies of PCBs decreased along with the increase of the number of chlorine atoms.
     (4) In the inducing experiment by natural plant constituent,essential oil of Cordyceps kyushuensis and carvone can enhance the degradation efficiency notably; also,cymene is helpful in some degree.While,essential oil from Dracocephalum tanguticum and biphenyl nearly have no effect on the degradation efficiency.But essential oil from Amomum tsao-ko crevost et lemaire is harmful for degradation of PCBs by JY11.
     4.Co-degradation of PAHs and PCBs by Janibacter sp.JY11 and P. chrysosporium JY16
     Through adding white rot fungi,P.chrysosporium JY16,to the medium of JY11, the degradation threshold of PAHs and PCBs decreased and the degradation efficiency increased according to their co-degradation effect.
     In liquid culture,the degradation efficiency of the mixed bacterium and fungi is much better than JY11 and JY16.Especially the degradation efficiency of four ring-pyrene and five ring-benzo(a)anthracene.Benzo(k)fluoranthene increased at least 20%compared with JY11.For the modified polluted soil sample,73%of pyrene and 60%of benzo(a)pyrene was degraded with mixed bacterium and fungi after thirty days cultivation.The degradation efficiency increase a lot compared with the sole bacterium or fungi.Similar result was got with PCBs.The degradation result with mixed culture is better than any sole bacterium or fungi.Especially for dioxin like PCB156,167 and 189,which could not be utilized by sole JY11 or JY16, decreased by 10 percent with co-culture.PCBs in the transformer oil and modified polluted soil were degraded by the mixed bacterium and fungi.The result showed that the degradation efficiencies of PCBs in transformer oil were 8.7%~83.3%.And the degradation efficiencies of PCBs in the modified polluted soil were 18.4%~72.6%.While PCB74,dl-PCB105,118 and atropisomeric-PCB132,149 showed no degradation.
     5.Analysis of metabolites and proposed pathway of PAHs and PCBs degraded by Janibacter sp.JY11
     Phenanthrene,pyrene and benzo(a)pyrene were selected as the research targets of PAHs degradation pathway.PCB 18 and PCB77 were selected as the targets of PCBs degradation pathway study.The proposed pathway of PAHs and PCBs was concluded by detecting the metabolites by GC-MS.
     (1) Phenanthrene was transformed to 2,3-dihydroxy-2,3-dihydrophenanthrene firstly with dioxygenase of JY11.2,3-dihydroxy-2,3-dihydrophenanthrene was metabolized to 1-hydroxy-2-naphthoic acid,which transformed to 1-naphthol. 1-naphthol was cleaved to salicylic acid at last.
     (2) Pyrene was transformed to 4,5-dihydroxy-4,5-dihydropyrene firstly with dioxygenase of JY11.Then 4,5-dihydroxy-4,5-dihydropyrene was metabolized to phenanthrene 4,5-dicarboxylic acid,which transformed to 4-hydroxyphenanthrene. 4-hydroxyphenanthrene was cleaved to phthalic acid at last.
     (3) Benzo(a)pyrene was transformed to benzo(a)pyrene-7,8-dihydrodiol firstly with dioxygenase of JY11.And then benzo(a)pyrene-7,8-dihydrodiol was metabolized to benzo(a)pyrene-7,8-dihydroxy,which transformed to pyrene-7-hydroxy-8-carboxylic acid at last.
     (4) PCB18 and PCB77 have a similar probable pathway,that is JY11 attacked the 2,3 position of PCBs and which metabolized to 2,3-dihydroxy-2,3-dihydro-PCB, then transformed to 2,3-dihydroxy-PCB,and then yielded to a yellow color product, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid,which was transformed to ehlorbenzoic acid under a hydrolase.
引文
[1] Gibson DT. Microbial Degradation of Organic Compounds. New York: Marcel Dekker. 1984.
    
    [2] Varanasi U. Metabolism of Polyaromatic Hydrocarbons in the Aquatic Environment [J]. Boca Raton, Florida: CRC Press. 1989.
    [3] Grifoll M, Casellas M, Bayona JM, Solanas AM. Isolation and characterisation of a fluorene-degrading bacterium: Identification of ring oxidation and ring fission products [J]. Appl. Environ. Microbiol. 1992, 58: 2910-2917.
    [4] Keith LH, Telliard WA. Priority pollutants I-a perspective view [J]. Environ. Sci. Technol. 1979,13:416-423.
    [5] Renner R. EPA to strengthen persistent, bioaccumulative, and toxic pollutant controls-Mercury first to be targeted [J]. Environ. Sci. Technol. 1999, 33:62.
    [6] Hughes JB, Beckles DM, Chandra SD, Ward CH. Utilization of bioremediation processes for the treatment of PAHcontaminated sediments [J]. Journal of Industrial Microbiology and Biotechnology. 1997,18: 152-160.
    [7] Stegeman JJ, Schlezinger JJ, Craddock JE, Tillitt DE. Cytochrome P450 1A expression in midwater fishes: potential effects of chemical contaminants in remote oceanic zones [J]. Environ Sci Technol. 2001, 35:54-62.
    [8] 孙红文,李书霞.PAHs的光致毒效应.环境科学进展[J].1998,6(6):1-11.
    [9] Koeber R, Bayona JM, and Niessner R. Determination of benzo[α]pyrene diones in air particulate matter with liquid chromatography mass spectrometry [J]. Enviorn. Sci. Technol. 1999, 33:1552-1558.
    [10] Wagrowski DM, Hites RA. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation [J]. Environ. Sci. Technol. 1997, 31:279-282.
    
    [11] Cenci G, Caldini G, Boari L. Dioxygenase activity and relative behaviour of Pseudomonas strains from soil in the presence of different aromatic compounds [J]. World J. Microbiol. Biotechnol. 1999, 15: 41-46.
    
    [12] Cunliffe M, Kertesz MA. Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons [J]. Appl. Microbiol. Biotechnol. 2006, 72: 1083-1089.
    
    [13] Zaira L, Joaquim V, Cristina M, Magdalena G Metabolism of fluoranthene by Mycobacterium sp. strain AP1 [J]. Appl. Microbiol. Biotechnol. 2006, 70: 747-756.
    
    [14] Pagnout C, Frache G, Poupin P, Maunit B, Muller JF, Ferard JF. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc~2155 [J]. Res. Microbiol. 2007,158: 175-186.
    
    [15] Ahn IS, Ghiorse WC, Lion LW, Shuler ML. Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation [J]. Biotechnol. Bioeng. 1998, 59: 587-594.
    [16] Weissenfels WD, Beyer M, Klein J. Degradation of fluoranthene by pure bacterial cultures [J]. Appl. Microbiol. Biotechnol. 1990, 32: 479-484.
    [17] Boldrin B, Tiehm, Friasche C. Degradation of phenanthrene, fluorine, fluoranthene, and pyrene by a Mycobacterium sp. [J]. Appl. Environ. Microbiol. 1993, 59: 1927-1930.
    [18] Walter U, Beyer M, Klein J, Rehm HJ. Degradation of pyrene by Rhodococcus sp. UW1 [J]. Appl. Microbiol. Biotechnol. 1991, 34: 671-676.
    [19] Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. [J]. Appl. Environ. Microbiol. 1999,65:251-259.
    
    [20] Boonchan S, Briz ML, Stanley GA. Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia [J]. Biotechnol. Bioeng. 1998, 59: 482-494.
    [21] Ho Y, Jackson M, Yang Y, Mueller JG, Pritchard PH. Characterization of fluoranthene- and pyrene-degrading bacteria isolated form PAH-contaminated soils and sediments [J]. J. Ind. Microbiol. Biotechnol. 2000,24: 100-112.
    [22] Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from gulf of Mexico and comparison of their PAH degradation ability with that of Puget sound Cycloclasticus strains [J]. Appl. Environ. Microbiol. 1998, 64: 4703-4710.
    
    [23] Kastner M, Breuer-Jammali M, Mahro B. Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil site able to mineralized polycyclic aromatic hydrocarbons (PAH) [J]. Appl. Environ. Biotechnol. 1994, 41:267-273.
    
    [24] Dagher F, Deziel E, Lirette P. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soil [J]. Can. J. Microbial. 1996,43: 368-377.
    
    [25] Daane LL, Harjono I, Launen LA, Palleroni NJ, Haggblom MM. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants [J]. Int. J. Syst. Evol. Microbiol. 2002, 52: 131-139.
    
    [26] Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation [J]. Trends. Biotechnol. 2002, 20: 243-248.
    [27] Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology [J]. Microbiol. Mol. Biol. Res. 2003, 67: 503-549.
    
    [28] Kim JD, Shim SH, Lee CG Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea [J]. J. Microbiol. Biotechnol. 2005,15 (2): 337-345.
    
    [29] Gauthier E, Deziel E, Villemur R, Juteau P, Lepine F, Beaudet R. Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic ydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system [J]. Journal of Applied Microbiology. 2003, 94: 301-311.
    [30] Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013 [J]. World Journal of Microbiology and Biotechnology. 2008,24(4): 523-531.
    [31] Jeremy AR, Pedro JJA, Jerald LS. Benzo[α]pyrene degradation by Sphingomonas yanoikuyae JAR02 [J]. Environmental Pollution. 2008, 151: 669-677.
    
    [32] Chen S, Aitken M. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15 [J]. Environ. Sci. Technol. 1999,33: 435-439.
    
    [33] Ye D, Siddiqi A, Macubbin AE, Kumar S, Sikka HC. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis [J]. Environ. Sci. Technol. 1996, 30:136-142.
    [34] Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungus [J]. Science. 1985,228:1434-1436.
    [35] Eggen T, Majcherczyk A. Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white-rot fungus Pleurotus ostreatus [J]. Int Biodet. Biodegr. 1998,41:111-117.
    [36] Martens R, Wolter M, Bahadir M, Zadrazil F. Mineralization of ~(14)C-labelled highly-condensed polycyclic aromatic hydrocarbons in soils by Pleurotus sp. Florida [J]. Soil Biol. Biochem. 1999, 31:1893-1899.
    [37] Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadrazil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil [J]. Appl. Environ. Microbiol. 2000, 66:2471-2478.
    [38] Bhatt M, Cajthaml T, Sasek V. Mycoremediation of PAH-contaminated soil [J]. Folia Microbiol. 2002,47:255-258.
    [39] Cajthaml T, Moder M, Kacer P, Sasek V, Popp P. Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection[J].J.Chromatogr.2002,974:213-222.
    [40]Novotny C,Erbanova' P,Sasek V,Kuba'tova' A,Cajthaml T,Lang E,Krahl J,Zadrazil F.Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi[J].Biodegradation.1999,10:159-168.
    [41]Hammel KE,Kalyanaraman B,Kirk TK.Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase[J].J Biol.Chem.1986,261:16948-16952.
    [42]Sack U,Hofrichter M,Fritsche W.Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii[J].FEMS Microbiol.Lett.1997,152:227-234.
    [43]Collins PJ,Kotterman MJ,Field JA,Dobson ADW.Oxidation of anthracene and benzo(a)pyrene by laccases from Trametes versicolor[J].Appl.Environ.Microbiol.1996,62:4563-4567.
    [44]Sack U,Fritsche W.Enhancement of pyrene mineralization in soil by wood-decaying fungi[J].FEMS Microbiol.Ecol.1997,22:77-83.
    [45]Doddamani HP,Ninnekar HZ.Biodegradation of phenanthrene by a Bacillus species[J].Current Microbiology.2000,41:11-14.
    [46]Leonardia V,Sasek V,Petruccioli M,D'Annibale A,Erbanova P,Cajthaml T.Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils[J].International Biodeterioration & Biodegradation.2007,60:165-170.
    [47]Liang YN,Gardner DR,Miller CD,Chen D,Anderson AJ,Weimer BC,Sims RC.Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp.Strain KMS[J].Appl.Environ.Microbiol.2006,72(12):7821-7828.
    [48]陶雪琴.博士论文.菲高效降解菌的驯化、分离、鉴定及其降解菲的特性与机理研究.2006.
    [49]Cerniglia CE.Biodegradation of polycyclic aromatic hydrocarbons[J].Biodegradation.1992,3:351-368.
    [50] Harayama S, Kok M, Neidle EL. Functional and evolutionary relationship among diverse oxygenases [J]. Annu. Rev. Microbiol. 1992,46: 565-601.
    [51] Harayama S. Polycyclic aromatic hydrocarbon bioremediation design [J]. Current Opinion in Biotechnology. 1997, 8: 268-273.
    
    [52] Coates JD, Woodward J, Allen J. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments [J]. Appl. Environ. Microbiol. 1997, (63): 3589-3593.
    
    [53] Pinyakong O, Habe H, Supaka N. et al. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. Strain P2 [J]. FEMS Microbiol. Lett. 2000, (191): 115-121.
    
    [54] Karl J, Rockne, Stuart E Strand. Anaerobic biodegradation of naphthalene, phenathrene, and Biphenyl by a denitrifying enrichment culture [J]. Wat. Res. 2001, 35(1): 291-299.
    [55] Chang BV, Shiung LC, Yuan SY. An aerobic biodegradation of polycyclic aromatic hydrocarbon in soil [J]. Chemosphere. 2002,48(7):717-724.
    [56] Zhang XM, Yong LY. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia [J]. Appl Environ Microbiol. 1997, 63(12): 4759-4764.
    
    [57] Safe S, Bandiera S, Sawyer T, Robertson L, Safe L, Parkinson A, Thomas PE, Ryan DE, Reik LM, Levin W, Denomme MA, Fujita T. PCBs: structure-function relationships and mechanism of action [J]. Environ. Health Perspect. 1985, 60: 47-56.
    
    [58] McFarland VA, Clarke JU. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis [J]. Environ Health Perspect. 1989, 81: 225-239.
    [59] Safe S. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems [J]. Environ Health Perspect. 1992,100: 259-268.
    
    [60] Harju MT, Haglund P. Determination of the rotational energy barriers of atropisomeric polychlorinated biphenyls [J]. Fresenius J Anal. Chem. 1999, 364: 219-223.
    [61]National Research Council.Polychlorinated biphenyls.Washington,DC:National Academy of Sciences;1979.
    [62]http://www.epa.gov/superfund/sites/query/basic.htm.
    [63]邵春岩.中国PCBs管理现状及污染防治对策.持久性有机污染物控制研讨会论文集.北京:国家环保局.2001.70.
    [64]储少岗,杨春,徐晓白,刘晓星.典型污染地区底泥和土壤中残留多氯联苯(PCBs)的情况调查[J].中国环境科学.1995,15:199-203.
    [65]孔繁翔,尹大强,严国安.环境生物学.北京:高等教育出版社.2000,209-240.
    [66]Bi XH,Chu SG,Meng QY,Xu XB.Movement and retention of polychlorinated biphenyls in a paddy field of WenTai area in China[J].Agric.Ecosyst.Environ.2002,89:241-252.
    [67]Xing Y,Lu YL,Dawson RW,Shi YJ,Zhang H,Wang TY,Liu WB,Ren HC.A spatial temporal assessment of pollution from PCBs in China[J].Chemosphere.2005,60:731-739.
    [68]Zhang Z,Liu LY,Li YF,Wang DG,Jia HL,Harner T,Sverko E,Wan XN,Xu DD,Ren NQ,Ma JM,Pozo K.Analysis of polychlorinated biphenyls in concurrently sampled Chinese air and surface soil[J].Environ.Sci.Technol.2008,42:6514-6518.
    [69]Zheng GJ,Leung AOW,Jiao LP,Wong MH.Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China:Sources,environmental levels and potential human health impacts[J].Environment International.2008,34:1050-1061.
    [70]宋云横,姜获,丁超,李国刚.PCBs封存点土壤污染情况的调查监测[J].中国环境监测.2005,21(4):89.
    [71]陈来国,蔡信德,黄玉妹,许振成,彭晓春,张秀兰,麦碧娴.废弃电容器封存点PCBs的含量和分布特征[J].中国环境科学.2008,28(9):833-837.
    [72]Furukawa K and Fujihara H.Microbial Degradation of Polychlorinated Biphenyls: Biochemical and Molecular Features [J]. Journal of Bioscience and Bioengineering. 2008,105(5) :433-449.
    [73] Centeno C, Gallardo S, Abella L. Alternative technology options for the chemical treatment of polychlorinated biphenyls [J]. Inhenyeriya 2003, 3: 58-68.
    [74] Mhiri C, Tandeau de Marsac N. Bioremediation of sites polluted by commercial PCBs: Problematical questions and perspectives [J]. Bull. Inst. Pasteur. 1997, 95: 3-28.
    
    [75] Unterman R, Bedard DL, Brennan MJ, Bopp LH, Mondello FJ, Brooks RE, Mobley DP, McDermott JB, Schwartz CC, Dietrich DK. Biological approaches for polychlorinated biphenyl degradation [J]. Basic Life Sci. 1998,45: 253-269.
    [76] Vasilyeva GK and Strijakova ER. Bioremediation of Soils and Sediments Contaminated by Polychlorinated Biphenyls. Microbiology. 2007,76(6): 639-653.
    [77] Abramowicz DA. Aerobic and anaerobic biodegradation of PCBs: a review [J]. Crit. Rev. Biotechnol. 1990,10: 241-300.
    [78] Bedard DL, Haberl ML, May RJ, Brennan MJ. Evidence for Novel Mechanisms of Polychlorinated Biphenyl Metabolism in Alcaligenes eutrophus H850 [J]. Appl. Environ. Microbiol. 1987, 53(5): 1103-1112.
    [79] Seeger M, Timmis KN, Hofer B. Bacterial pathways for the degradation of polychlorinated biphenyls [J]. Marine Chemistry. 1997, 58: 327-333.
    [80] Haddock JD, Nadim LM, Gibson DT. Oxidation of biphenyl by a multicomponent enzyme system from Pseudomonas sp. Strain LB400 [J]. J Bacteriol. 1993,175: 395-400.
    [81] Higson FK, Focht DD. Bacterial degradation of ring-chlorinated acetophenones [J]. Appl. Environ. Microbiol. 1990, 56: 3678-3685.
    [82] Furukawa K. Oxygenases and dehalogenases: molecular approaches to efficient degradation of chlorinated environmental pollutants [J]. Boisci. Biotechnol. Biochem. 2006, 70: 2335-2348.
    [83] Mondello FJ, Turcich MP, Lobos JH, Erickson BD. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation [J]. Appl. Environ. Microbiol. 1997, 63: 3096-3103.
    
    [84] Williams WA, Lobos JH, Cheetham WE. A phylogenetic analysis of aerobic polychlorinated biphenyl-degrading bacteria [J]. Int. J. Syst. Bacteriol. 1997, 47: 207-210.
    
    [85] Martin K, Schumann P, Rainey FA, Schuetze B, Groth I. Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall [J]. Int. J. Syst. Bacteriol. 1997,47: 529-534.
    
    [86] Sierra I, Valera JL, Marina ML, Laborda F. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium {Janibacter sp.) [J]. Chemosphere. 2003, 53: 609-618.
    [87] Yamazoe A, Yagi O, Oyaizu H. Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp. [J]. Biotechnology Letters. 2004, 26: 479-486.
    
    [88] Yamazoe A, Yagi O, Oyaizu H. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1 [J]. Appl Microbiol Biotechnol. 2004, 65: 211-218.
    
    [89] Iwai S, Yamazoe A, Takahashi R, Kurisu F, Yagi O. Degradation of mono-chlorinated dibenzo-p-dioxins by Janibacter sp. strain YA isolated from river sediment [J]. Current Microbiology. 2005, 51: 353-358.
    [90] Jin SW, Zhu T, Xu XD, Xu Y. Biodegradation of dibenzofuran by Janibacter terrae strain XJ-1 [J]. Current Microbiology. 2006, 53: 30-36.
    [91] Bedard DL and Haberl ML. Influence of chlorine substitution on the degradation of polychlorinated biphenyls by eight bacterial strains [J]. Microb. Ecol. 1990, 20: 87-102.
    
    [92] Sondossi M, Sylvestre M, Ahmad D. Effects of chlorobenzoate transformation on the Pseudomonas testosterone biphenyl and chlorobiphenyl degradation pathway [J]. Appl. Environ. Microbiol. 1992, 58: 485-495.
    [93] Furukawa K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation. 1994, 5:289-300.
    [94] Donnelly PK, Hegde R, Fletcher JS. Growth of PCB degrading bacteria on compounds from photosynthetic plants [J]. Chemosphere. 1994,28, 981-988.
    [95] Kikuchi Y, Yasukochi Y, Nagata Y, Fukuda M, Takagi M. Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. Strain KKS102 [J]. J Bacteriol. 1994,176(14): 4269-4276.
    
    [96] Arensdorf JJ, Focht DD. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166 [J]. Appl. Environ. Microbiol. 1995, 61: 443-447.
    [97] Ahmed M, Focht DD. Degradation of polychlorinated biphenyls by two species of Achromobacter [J]. Can. J. Microbiol. 1973,19: 47-52.
    [98] Furukawa K. Genetic systems in soil bacteria for the degradation of PCB. In: Chaudkry GR, editor. Biological degradation and bioremediation of toxic chemicals. London: Chapman Hall. 1994.
    [99] Hrywna Y, Tosi TV, Maltseva OV, et al. Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls [J]. Appl Environ. Microbiol. 1999, 65: 2163-2169.
    [100] Kim S, Picardal FW. Microbial growth on dichloro-biphenyls chlorinated on both rings as sole carbon and energy sourse [J]. Appl. Environ. Microbiol. 2001, 67: 1953-1955.
    [101] Krcmar P. and Ulrich R. Degradation of Polychlorinated Biphenyl Mixtures by the Lignin-Degrading Fungus Phanerochcete chrysosporium [J]. Folia Microbiol. 1998,43(1): 79-84.
    
    [102] Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V. PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil [J]. Chemosphere. 2001,43: 207-215.
    [103] Graciela ML, Ruiz-Aguilar, Jose M, Fernandez-Sanchez, Refugio Rodriguez-Vazquez, Hector Poggi-Varaldo. Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil [J]. Advances in Environmental Research. 2002, 6: 559-568.
    [104] Yadav JS, Quensen JF, Tiedje JM, Reddy CA. Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis [J]. Appl. Environ. Microbiol. 1995, 61(7): 2560-2565.
    
    [105] De S, Perkins M, Dutta SK. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium [J]. J. Hazard. Mater. 2006,135: 350-354.
    
    [106] Maltseva OV, Tsoi TV, Quensen JF, Fukuda M, Tiedje JM. Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria [J]. Biodegradation. 1999, 10: 363-371.
    [107] Wiegel J, Wu Q. Microbial reductive dehalogenation of polychlorinated biphenyls [J]. FEMS Microbiol. Ecol. 2000, 32: 1-15.
    [108] Borja J, Taleon DM, Auresenia J, Gallardo S. Polychlorinated biphenyls and their biodegradation [J]. Process Biochem. 2005,40: 1999-2013.
    [109] Tharakan J, Tomlinson D, Addagada A, Shafagati A. Biotransformation of PCBs in contaminated sludge: potential for novel biological technologies [J]. Eng. Life Sci., 2006, 6: 43-50.
    
    [110] Brunner W, Sutherland H, Focht D. Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation [J]. J. Environ.Qual. 1985,14: 324-328.
    [111] Barriault D, Sylvestre M. Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms [J]. Can. J. Microbiol. 1993, 54: 594-595.
    [112] Guilbeault B, Sondossi M, Ahmad D, Sylvestre M. Factors affecting the enhancement of PCB degradative ability of soil microbial populations [J]. Int. Biodet. Biodeg. 1994, 33: 73-91.
    
    [113] Tandlich R, Brezna B, Dercova K. The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri [J]. Chemosphere. 2001, 44: 1547-1555.
    
    [114] Hernandez BS, Koh SC, Chial M, Focht DD. Terpeneutilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyl in soil [J]. Biodegradation. 1997, 8: 153-158.
    [115]Gilbert ES,Crowley DE.Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp.strain B1B[J].Appl.Environ.Microbiol.1997,63(5):1933-1938.
    [116]Harkness MR,Bergeron JA.Availability of PCBs in soils and sediments of surfactant extraction and aerobic biodegradation.Ninth Progress Report for the Research and Development Program for the Research and Development Program for the Destruction of PCBs.Schenectady,NY,General Electric Co.,Corporate Research and Development.1990,109-120.
    [117]Harkness MR,McDermott J,Abramowicz D,Salvo.J.In situ stimulation of aerobic PCB biodegradation in Hudson River sediments[J].Science.1993,259:503-507.
    [118]Bedard DL and May RJ.Characterization of the polychlorinated biphenyls(PCBs) in the sediments of woods pond:Evidence for microbial dechlorination of Aroclor 1260 in situ[J].Environ.Sci.Technol.1996,30:237-245.
    [119]Gan DR and Berthouex PM.Disappearance and crop uptake of PCBs from sludge-amended farmland[J].Water Environ.Federation.1994,66(1):54-69.
    [120]崔琳.硕士论文.环境空气有机污染物的分析及来源解析方法研究.2005
    [121]李强.硕士论文.济南市大气颗粒物中PAHs的分析和来源解析研究.2006
    [122]赵士燕.硕士论文.土壤环境中多氯联苯的分析方法研究.2007
    [123]Jones KC,Statford JA,Tidridge P.Polynuclear aromatic hydrocarbons in an agriculture soil:long term changes in profile distribution[J].Environ.Pollut.1989,56:337-351.
    [124]Maliszewska KB.Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination[J].Applied Geochemistry.1996,11:121-127.
    [125]降巧龙,周海燕,徐殿斗,柴之芳,李一凡.国产变压器油中PCBs及其异构体分布特征[J].中国环境科学.2007,27(5):608-612.
    [126]胡耀铭,朱坚,陈正夫.色谱/质谱技术测定环境中的PCBs.第十届全国 有机质谱学学术会议会议论文.1999,269-273.
    [127]刘静.博士论文.土壤中类二噁英和阻转类PCBs分析方法、来源解析和分布规律研究.2007.
    [128]Van den Berg M.,Birnbaum LS,Denison M,De Vito M,Farland W,Feeley M,Fiedler H,Hakansson H,Hanberg A,Haws L,Rose M,Safe S,Schrenk D,Tohyama C,Tritscher A,Tuomisto J,Tysklind M,Walker N,Peterson RE.The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds[J].Toxicol.Sci.2006,93:223-241.
    [129]Jiang K,Li LJ,Chen YD,Jin J.Determination of PCDD/Fs and dioxin-like PCBs in Chinese commercial PCBs and emissions from a testing PCB incinerator [J].Chemosphere.1997,34(5-7):941-950.
    [130]Rushneck DR,Beliveau A,Fowler B,Hamilton C,Hoover D,Kaye K,Berg M,Smith T,Telliard WA,Roman H,Ruder E,Ryan L.Concentrations of dioxin-like PCB congeners in unweathered Aroclors by HRGC/HRMS using EPA Method 1668A[J].Chemosphere.2004,54:79-87.
    [131]Frame GM,Cochran JW,Boewadt SS.Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive,quantitative,congener-specific analysis[J].J.High Res.Chromatogr.1996,19:657-668.
    [132]Quensen Ⅲ JF,Tiedje JM.Methods for evaluation of PCB dechlorination in sediments.In:Methods in Biotechnology,Vol.2:Bioremediation Protocols.Edited by:D.Sheehan.Humana Press Inc.,Totowa,NJ.1997,241-253.
    [133]赵斌,何绍江.微生物学实验.2002版,北京,科学出版社。
    [134]Lanyl B.Classical and rapid identification methods for medically important bacteria[J].Methods Microbiol.1987,19:1-67.
    [135]Komagata K & Suzuki K.Lipid and cell-wall analysis in bacterial systematic [J].Methods Microbiol.1987,19:161-207.
    [136]Tamaoka J,Komagata K.Determination of DNA base composition by reversed-phase high-performance liquid chromatography[J].FEMS Microbiology Letters.1984,25:125-128.
    [137]巩宗强,李培军,王新,张海荣,宋玉芳,李彬.芘在土壤中的共代谢降解研究[J].应用生态学报.2001,12(3):447-450.
    [138]马沛,钟建江.微生物降解多环芳烃(PAHs)的研究进展[J].生物加工过程.2003,1(1):42-46.
    [139]Cho JC and Kim SJ.Detection of a plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp.strain KS14[J].J.Mol.Micorbiol.Biotechnol.2001,3(4):503-506.
    [140]Tam NF,Guo CL,Yan WY,Wong YS.Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in HongKong[J].Mar Pollut Bull.2002,45:316-324.
    [141]Ash C,Farrow JAE,Wallbanks S,Collins MD.Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences[J].Lett.Appl.Microbiol.1991,13:202-206.
    [142]Bezalel L,Hadar Y,Fu PP,Freeman JP,Cerniglia CE.Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus[J].Applied and Environmental Microbiology.1996,62:2547-2553.
    [143]International Agency for Research on Cancer.IARC monographs on the evaluation of carcinogenic risk of chemicals to humans:an updating on IARC monographs.1986,vol.38.World Health Organization,Lyon,France.
    [144]Juhasz AL,Naidu R.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene[J].International Biodeterioration & Biodegradation.2000,45:57-88.
    [145]Smith JR,Nakles DV,Sherman DF,Neuhauser EF,Loehr RC,Erickson D.Envrionmental fate mechanisms influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems.In:Proceeding The Third International Conference on New Frontiers for Hazardous Waste Management,Pittsburgh,September 10-13.1989,397-405.
    [146]Sims RC,Overcash MR.Res.Rev.88:1-68(1983).(Cited in:USEPA.1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
    
    [147] Weast handbook of chemistry and physics, 60th edition, 1979, C-180. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
    [148] Sikkema J, de Bont JAM, Poolman B. Mechanisms of membrane toxicity of hydrocarbons [J]. Microbiol Rev. 1995, (59):201-222.
    [149] Liu Z, Jacobson A, Luthy R. Biodegradation of naphthalene in aqueous nonionic surfactant systems [J]. Appl. Environ. Microbiol. 1995, 61:145-151.
    [150] Volkering F, Breure A, Andel J, Rulkens W. Influence of non-ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons [J]. Appl. Environ. Microbiol. 1995, 61: 1699-1705.
    
    [151] Yeom I, Ghosh M, Cox C, Robinson K. Micellar solubilization of polynuclear aromatic hydrocarbons in coal tar contaminated soils [J]. Environ. Sci. Technol. 1995,29:3015-3021.
    [152] Guha S, Jaffe P, Peters C. Solubilization of PAH mixtures by a nonionic surfactant [J]. Environ. Sci. Technol. 1998, 32:930-935.
    [153] Willumsen PA, Karlson U. Effect of calcium on the surfactant tolerance of a fluoranthene degrading bacterium [J]. Biodegradation. 1998, 9: 369-379.
    [154] Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82 [J]. J. Bacteriol. 1994, 176: 2444-2449.
    
    [155] Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp.strain 9816-4[J].J.Bacteriol.1995,177:2615-2621.
    [156]Selifonov SA,Grifoll M,Eaton RW,Chapman PJ.Oxidation of aphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase[J].Appl.Environ.Microbiol.1996,62:507-514.
    [157]Rentz JA,Alvarez PJJ,Schnoor JL.Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J].Environmental Pollution.2008,151:669-677.
    [158]Fava F,Bertin L.Use of exogenous specialized bacteria in the biological detoxification of a dump site-polychlorinated biphenylcontaminated soil in slurry phase conditions[J].Biotechnology and Bioengineering.1999,64:240-249.
    [159]Singer AC,Jury W,Luepromchai E,Yahng CS,Crowley DE.Contribution of earthworms to PCB bioremediation[J].Soil Biology and Biochemistry.2001,33:765-776.
    [160]Focht DD,Reineke W.Biotransformations of polychlorinated biphenyls.In:Hurst,C.J.,et al.(Eds.),Manual of Environmental Microbiology,second ed.Blackwell Publishing,Malden,MA,2002,pp.1028-1037.
    [161]张国英,凌建亚,邱琴,国祯,赵国琰.九州虫草子座挥发油的超临界CO_2流体萃取及GC-MS分析[J].药物分析杂志.2006,26(2):191-195.
    [162]Zhang GY,Ling JY,Cui ZJ.Supercritical CO_2 Extraction of Essential Oil from Dracocephalum tanguticum Maxim and Analysis by GC-MS[J].Journal of Liquid Chromatography & Related Technologies.2007,30(2):287-292.
    [163]赵怡,张国英,肖中华,邱琴.超临界CO_2流体萃取法提取草果挥发油化学成分的研究[J].中国药学杂志.2004,39(9):705-706.
    [164]Ohtsubo Y,Kudo T,Tsuda M,Nagata Y.Strategies for bioremediation of polychlorinated biphenyls[J].Appl.Microbiol.Biotechnol.2004,65:250-258.
    [165]Pakdeesusuk U,Jones WJ,Lee CM,Garrison AW,O'Niell WL,Reedman DL,Coates JT,Wong CS.Changes in enantiomeric fractions during microbial reductive dechlorination of PCB132,PCB149,and Aroclor 1254 in Lake Hartwell sediment microcosms[J].Environ.Sci.Technol.,2003,37(6), 1100-1107.
    
    [166] Seidell A. Solubilities of organic compounds. Van Nostrand, New York. 1941.
    [167] Miller RM. Surfactant-enhanced bioavailability of slightly soluble organic compounds in bioremediation: science and applications. Soil Science Society of America, Madison, WI, 1995, 33-54.
    [168] Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium [J]. Method Enzymol. 1988, 161: 238-249.
    [169] Pignatello JJ, Xing B. Mechanism of slow sorption of organic chemicals to natural particals [J]. Environ. Sci. Technol. 1998, 32: 501-508.
    [170] Rojas AG, Rodriguez VR, Enriquez VF, Martinez CJ, Poggi VM. Transformer oil degradation by an indigenous microflora isolated from a contaminated soil [J]. 1999, 27(1-2): 15-26.
    [171] Catelani D, Colombi A, Sorlini C. Metabolism of quaternary carbon compounds: 2'2-dimethyihepatane and tertbutylbenzene [J]. Appl. Environ. Microbiol. 1977,34:351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700