整体叶盘多通道电解加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体叶盘是航空发动机的核心部件之一,其质量决定了发动机的性能和寿命。整体叶盘将叶片和轮毂制作成一个整体,代替通常叶片榫齿与轮毂榫槽再加锁片的联接结构,使零件数量大大减少,整体重量也明显减轻。此外,由于整体叶盘可以消除传统叶片、轮盘结构中气流在榫头与榫槽中逸流所造成的损失,使发动机工作效率提高,从而使整台发动机推重比显著提高。目前整体叶盘正朝着轻量化、整体化方向发展,采用整体叶盘结构是提高发动机推重比和可靠性的关键措施,因此,整体叶盘在先进、高推重比航空发动机及新型大推力火箭发动机中将得到越来越多的应用。
     目前整体叶盘的加工方法主要有数控铣削、电火花加工、电解加工等。与传统的加工方法相比,电解加工具有加工效率高、工具无损耗、加工范围广、表面质量好等诸多优点,在整体叶盘的制造中发挥了重要的作用。整体叶盘电解加工分为两个步骤:叶栅通道预加工和叶片形面精密加工。叶栅通道预加工是指在叶盘毛坯圆周方向上加工出若干个通槽并保证不过切,该通槽用于叶片形面精密加工时叶片工具电极能够进入通槽以便完成叶片形面的精密加工。叶栅通道预加工是进行叶盘电解加工必不可少的阶段,也是实现叶盘精加工的基础。文中所做工作为叶栅通道预加工。与国外航空发动机制造大国相比,我国的整体叶盘叶栅通道电解加工水平较为落后,主要是因为缺乏相应的装备和成熟的工艺。我国航空工业的迅速发展对整体叶盘的需求日益迫切,该文正是在这样的背景之下开展整体叶盘通道电解加工的研究工作。
     整体叶盘因其结构和叶片形面复杂、加工精度要求高,一直以来都是机械制造领域的难题之一。目前整体叶盘叶栅通道的加工还不能满足航空发动机的需求,如采用传统工艺加工效率低下、刀具易与工件干涉、加工成本较高、留给后续工艺的叶片余量均匀性较差等。为了解决这些难题,作者开展了整体叶盘多通道电解加工的研究工作:
     1.提出多工具电极高效电解预加工方法,采用多工具电极同步运动的方式实现整体叶盘多通道电解加工。该方法可以提高整体叶盘通道电解加工的效率,缩短整体叶盘的生产周期。目前该方法已实现3个工具电极同时进行加工,单个通道的平均加工时间仅为采用单个工具电极时的1/3。
     2.设计并优化了工具电极和工件的运动轨迹。为了使叶栅通道形面余量分布均匀性良好,提出工具电极在加工过程中转动的方法,设计了工具电极相对于工件的空间运动轨迹,分析了整体叶盘试件通道的精加工余量。并基于电解加工成形规律优化了工具电极的运动轨迹,通过工艺试验验证了轨迹的可行性。
     3.设计了整体叶盘多通道电解加工流场。提出采用圆管工具电极进行叶盘通道电解加工的方法,设计了从圆管工具电极一端进液、从管壁上群孔或群缝出液的流动方式。对群孔和群缝的排布进行了优化设计,获得了较为均匀的流场。设计并优化了电解液流动方式,研制了密封均流装置,电解液在加工间隙内的流动得到了控制,电解液充分、连续并充满整个加工间隙,流场的均匀性有了进一步的提高。建立了三维不可压缩模型,对流动方式进行了流场数值仿真。从理论上分析了电解加工的流场特性,设计了与之对应的电解加工夹具。
     4.研制了整体叶盘多通道电解加工机床装备。机床系统包括机床本体、电源系统、电解液循环系统、控制系统四个部分。为了提高整体叶盘通道电解加工效率,设计了多工具电极夹持盘,用于控制多个工具电极同步运动,以便同时加工出多个叶栅通道。开发了一套基于工控机的开放式电解加工数控系统,可实现对刀控制、伺服进给、轨迹控制、加工过程监控及短路保护等功能。提高了机床系统的可靠性、稳定性和自动化程度。机床运行平稳,能够满足整体叶盘通道的电解加工需求。
     5.设计了整体叶盘叶栅通道电解加工工艺方案。针对进给模式、轨迹修正、流场设计、多工具电极同步加工等环节进行了电解加工试验,检验了上述方案的可行性。试验以高效为基本原则,以加工出通道形面余量小且均匀性良好的整体叶盘为目标。针对某发动机整体叶盘开展了多通道工艺试验研究,加工一个通道平均20min,加工效率显著提高。试验结果表明,加工出的叶盘通道余量小且均匀性良好,能够满足整体叶盘精加工的要求。
Blisk is one of the core components of aircraft engine, and its quality determines the engine’sperformance and life. Blisk combines the blades and the disk together, instead of making the usualblade tenon tooth and disk groove connected by locked chip, which can make the engine’s structuresimple, engine’s weight lighter.Besides, blisk can eliminate the transpiration loss in tenon tooth anddisk groove with traditional spit blade–disk structure, which can improve the engine’s work efficiencyand thrust-weight ratio.
     Currently, blisk is becoming more and more lightweightly and integrally. Adopting blisk is keymeasurement of making engine’s reliability better and thrust-weight ratio higher, so blisk is morepopularly used in advanced air engines and new rocket with high thrust-weight ratio. Blisk machiningprocess includes computer numerical control(CNC), electric discharge machining andElectrochemical machining(ECM). Contrast to traditional process, ECM has many advantages such asno electrode loss, high efficiency, low production cost, and no restriction from mechanical propertiesof metals, etc.These advantages can satisfy the need of machining of blisk channel, so ECM plays animportant role in blisk machining. ECM of blisk is divided into two steps: channel rough machiningand blade surface precise machining. Blisk channel rough machining is indispensable process of bliskECM and is the foundation of blisk precise machining. Compared with foreign aircraft enginemanufacturing country, ours blisk channel machining is lagging behind, mainly as lacking ofcorresponding equipment and matured process.With the rapid development of ours air industry, blisksare required urgently on which this paper expounds the research on ECM of blisk channel.
     Blisk machining is all the time a difficult problem of machinofacture as blisks have complexstructure and blade profile as well as high machining precision. Currently, aero engine’s demand can’tbe satisfied with traditional processes including low machining efficiency in blisk channel machining,tool’s interference with workpiece, high processing costs, and low uniformity distribution offollowing process margin. For solving these problems, this paper carried out interrelated research inseveral aspects:
     1.A method of multi-cathodes being used in machining is raised to achieve ECM of bliskchannels with multi-cathodes simultaneously feeding. The method can improve the efficiency of ECMof blisk channel and decrease the production cycle. Currently,three cathodes can be simultaneouslyused in machining,with which the channel processing time is redused by2/3.
     2.The movement path of electrode and workpiece is designed and optimized. For improve theuniformity of channel surface margin, the method of cathode revolving in the process is raised,thespace movement path of tool cathode relative to workpiece is designed and the finishing margin ofbilsk channel is analyzed. The movement path of cathodes is optimized based on ECM formingdiscipline.Relevant experiment reveals that the path is reasonable.
     3.The flow field of ECM of blisk multi-channels is designed. Tube cathodes are proposed to beused in ECM of blisk channels.The flow mode that electrolyte flows into one end of the cathode andout of the outflux on cathode pipe wall is designed.The distribution of groups of holes or seams isoptimized to achieve uniform flow field. Flow mode is designed and optimized,gland even flow bushin which the electrolyte flow path can be controlled is developed, for making the uniformity of flowfield further improved. Incompressible three-dimensional model is established and the flow fieldnumerical simulation is carried out with Fluent. The flow characteristics of ECM is analyzedtheoretically and corresponding clamp is designed.
     4.An ECM machine equipment for blisk channels is developed. The machine system includesfour parts, such as machine itself, power system, electrolyte circulation system and control system.For improve the efficiency of ECM of blisk channel, multi-cathode clamping plate is designed forcontrolling multiple cathodes simultaneously moving to achieve ECM of blisk channels withmulti-cathodes.A CNC system of ECM of blisk channels is developed. The system has many powerfulfunctions, such as tool setting control, servo feed, process monitoring and short circuit protection,which make the ECM machine more reliability, stability and automatic. The machine runs steadilyand can meet the need of ECM of blisk channels.
     5.The process program of blisk multi-channels ECM is designed. In connection with many linksuch as feed mode, path correction, flow field design, multi-cathodes being used in process, ECMexperiments are carried out for checking the feasibility of these plans. The experiment is based on theprinciple of high efficiency, for machining blisk with small margin and well uniformity. In connectionwith a blisk of some air engine, experiments are carried out. The result reveals that machining onechannel only takes20minutes, which increases the efficiency remarkably. The experiment result thatmachined blisk channel can meet the need of the finishing process.
引文
[1]徐家文,云乃彰,王建业等编著.电化学加工技术——原理.工艺及应用[M].北京:国防工业出版社,2008.6(第1版).
    [2] D.Zhu, H. Y. Xu. Improvement of electrochemical machining accuracy by using dual pole tool[J].Journal of Materials Processing Technology,2002,129(1):15-18.
    [3] K P Rajurkar, D Zhu, J A McGeough, et al. New Development in ECM[J]. Annals of CIRP,Keynote Paper,1999,48(2):569-579.
    [4]朱荻.国外电解加工的研究进展[J].电加工与模具,2000,(1),11-16.
    [5]刘晋春,赵家齐,赵万生编著.特种加工[M].北京:机械工业出版社,2004.1(第4版).
    [6]朱树敏,陈远龙编著.电化学加工技术[M],北京:化学工业出版社,2006.9(第一版).
    [7] Risko, Donald G, Davydov, et al. Manufacturing applications and productivity limitations ofelectrochemical machining[J]. Manufacturing Science and Engineering,1993,64:701-711.
    [8]朱荻.电解加工阴极型面计算机辅助设计基础研究[D].博士学位论文,南京:南京航空航天大学,1985,2.
    [9]余承业.电解加工新技术[M].北京:国防工业出版社,1995.
    [10] Walther B, Schilm J, Michaelis A, et al. Electrochemical dissolution of hard metal alloys[J].Electrochica Acta,2007,52:7732-7737.
    [11] Kozak J. Mathematical models for computer simulation of electrochemical machiningprocesses[J]. Journal of Materials Processing Technology,1998,76:170-175.
    [12] Toshiaki Fujisawa, Kazuaki Inaba, Makoto Yamamoto. Multiphysics Simulation ofElectrochemical Machining Process for Three-Dimensional Compressor Blade[J]. Journal ofFluids Engineering,130(8):081602-1~8.
    [13] J McClennan, G Alder, A Sherlock, et al. Two-dimensional tool design for two-dimensionalequilibrium electrochemical machining die-sinking using a numerical method[J]. Proceedings ofthe Institution of Mechanical Engineers, Part B (Journal of Engineering Manufacture),220(B5):637-45.
    [14] H. Hocheng, Y. H. Sun, S. C. Lin, P. S. Kao. A material removal analysis of electrochemicalmachining using flat-end cathode[J]. Journal of Materials Processing Technology.2003,140(1):264-268.
    [15]陈远龙.电解加工工艺参数数据库及电解加工基本工艺规律研究[D],合肥工业大学博士学位论文,合肥,2000,9.
    [16]孙春华.航空发动机叶片电解加工阴极设计,南京航空航天大学博士后出站报告,南京,2004,7.
    [17] A. N. Zaytsev, V. P. Zhitnikov, T. V. Kosarev. Formation mechanism and elimination of theworkpiece surface macro-defects, aligned along the electrolyte stream at electrochemicalmachining[J]. Journal of Materials Processing Technology,2004,149(10):439-444.
    [18] A. Zaytsev, I. Agafonov, N. Gimaev, et,al. Precise pulse electrochemical machining by bipolarcurrent: Aspects of effective technological application[J]. Journal of Materials ProcessingTechnology,2004,149(10):419-425.
    [19]徐正扬.发动机叶片精密电解加工关键技术研究[D].南京航空航天大学博士学位论文,南京,2008,2.
    [20] Bhattacharyya B., Malapati M., Munda J. Experimental study on electrochemicalmicromachining[J]. Journal of Materials Processing Technology,2005,169(3):485-492.
    [21] Egashira K., Katsumi, Mizutani. Micro-drilling of monocrys-talline silicon using a cuttingtool[J]. Precision Engineering,2002,26(3):263-268.
    [22] Datta M. Fabrication of an Array of Precision Nozzles by Through-Mask Electro-chemicalMicromachining[J]. Journal of Electrochemical Society,1995,142(11):655-669.
    [23] Zhu D., Qu N.S., Li H.S., et al. Electrochemical micromachining of microstructures of microhole and dimple array[J]. CIRP Annals-Manufacturing Technology,2009,58(1):177-180.
    [24] Vladimir M. Volgin, Victor V. Lyubimov. Mathematical modelling of three-dimensionalelectrochemical forming of complicated surfaces[J]. Journal of Materials ProcessingTechnology,2001,109:314-319.
    [25] Tsuneo K., Chiaki E., Yasuhiro M., et al. Mechanical/electrochemical complex maching methodfor efficient accurate and environmentally benign process[J]. Interational Journal of MachineTools&Manufacture,2008,48(15):1599-1604.
    [26] Wang L., Zhu D.. Shape evolution and prediction of three dimensional workpieces inelectrochemical machining[J]. Transactions of Nonferrous Metals Society of China,2005,15(3):241-246.
    [27] Andreas A., Manufacturing Technology for Turbine Blades[M]. Diesel&Gas TurbineWorldwide,1995:24-33.
    [28] Wang Lei, Zhu Di. Shape evolution and prediction of three dimensional workpieces inelectrochemical machining. Transactions of Nonferrous Metals Society of China,2005,15(3):241-246.
    [29] Kozak J, D browski L, ubkowski K, et al. CAE-ECM System for Electrochemical Technologyof Parts and Tools. Journal of Materials Processing Technology,2000,107(1-3):293-299.
    [30] Domanowski P, Kozak J. Direct and Inverse Problems of Shaping by ElectrochemicalGenerating Machining. Journal of MaterialsProcessing Teconolgy,2000,107(1-3):300-306.
    [31]朱永伟,万胜美,朱树敏.振动进给、脉冲电流电解加工设备及工艺的研究[J],电加工与模具,1996,(5):15-18.
    [32]朱荻.特种加工技术的应用与发展,航空精密制造技术[J],1995,31(4):18-21.
    [33] Jerzy Kozak, Lucjan Dabrowski, Konrad Lubkowski, Marek Rozenek, Robert Sawiski.CAE-ECM system for electrochemical technology of parts and tools[J], Journal of MaterialsProcessing Technology.2000,107(1):293-299.
    [34] Viola Kirchner, Laurent Cagnon, Rolf Schuster, ect. Electrochemical machining of stainlesssteel microelements with ultrashort voltage pulses[J]. Applied Physics Letters,2001,79(11):1721-1723.
    [35]徐惠宇,微细电解加工系统及其相关工艺的研究[D].南京航空航天大学博士学位论文,南京,2004,11.
    [36]赵万生,王振龙,郭东明等.国外特种加工技术的最近进展[J].电加工,1999(5):12~19.
    [37]杨大春,云乃彰,严德荣.硬脆金属的超声电解复合加工研究[J].电加工与模具,2002,(2):31~33.
    [38] De Silva, A. K., McGeough, J., Hybrid Electrodischarge-Electrochemical Process for Roughingand Finishing Dies and Moulds[J]. Proceedings of the ISEM-12,1998:397~406.
    [39] V. Fascio, R. Wüthrich, H. Bleuler, Spark assisted chemical engraving in the light ofelectrochemistry[J]. Electrochimica Acta,2004,49:3997~4003.
    [40] Phillips, R. E., ECG: Combining Electrochemical Attack and Abrasion[J]. ManufacturingEngineering,1986, Vol97(6):46~48.
    [41] Imai, Y., Cliftion, D., McGeough, J. A., Some Ultrasonic Effects in machining MaterialsEncountered in the Offshore Industry[J]. Proc.30th MTDR Conference, MacMillar Press,London,1993:119-124.
    [42]王蕾.发动机叶片高精度电解加工阴极设计系统及实验研究[D].南京航空航天大学博士学位论文,南京,2006,12.
    [43] Xu Jiawen, Yun Naizhang, Tang Yangxin, K. P. Rajurkar. The modelling of NC-electrochemicalcontour evolution machining using a rotary tool-cathode[J]. Journal of Materials ProcessingTechnology,2005,109(2):272-277.
    [44] Sun J J, Huang H G, Tian Z Q, et al. Three-dimensional micromachining for microsystems byconfined etchant layer technique[J]. Electrochimica Acta.2001,47(1-2):95-101.
    [45] Kozak J, Rajurkar K P, Ruszaj A, et al. Sculptured Surface Finishing by NC-ElectrochemicalMachining with Ball-End Electrode (ECM-CNC)[J]. Advances in Technology of the Machinesand Equipment,1998,22(1):51-74.
    [46]陈光.整体叶盘在国外航空发动机中的应用[J].航空发动机,1991,(1):1-6.
    [47]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的研究与应用[J].航空学报,2001,22(4):376-378.
    [48]干为民,徐家文,刘延禄.数控展成电解磨削整体叶轮叶片型面的研究[J].中国机械工程,2003,14(1):24-26.
    [49] Schuster R, Kirchiner V, Allongue P, et al.Electrochemical micromachining[J].Science,2000,289(5476):98-101.
    [50] Kock M, Kirchner V, Schuster R.Electrochemical micromachining with ultrashort voltagepulses-a versatile method with lithographical precision[J].Electrochimica Acta,2003,48(20-22):3213-3219.
    [51] Trimmer A L, Hudson J L, Kock M, et al.Single-step electrochemical machining of complexnanostructures with ultrashort voltage pulses[J]. Applied Physics Letters,2003,82(19):3327-3329.
    [52]王沫然,李志信.基于MEMS的微泵研究进展.传感器技术,2002,21(6):59-61.
    [53] Deng K, Dewa A S, Ritter D C, et al. Characterization of gear pumps fabricated by LIGA.Microsystem Technologies,1998(4):163-167.
    [54] Volker Seidemann, Sebastian Butefisch, Stephanus Buttgenbach. Fabrication and investigationof in-plane compliant SU8structures for MEMS and their application to micro valves and microgrippers. Sensors and Actuators,2002,(97-98):457-461.
    [55] W M Qu, Christian Wenzel, Gerald Gerlach. Fabrication of a3D differential-capacitiveacceleration sensor by UV-LIGA. Sensors and Actuators,1999,(77):14-20.
    [56] Qu W, Wenzel C, Drescher K. A vertically sensitive accelerometer and its realization by depthUV lithography supported electroplating. Microelectronics Journal,2000,(31):569-575.
    [57]石晶,于建群.基于MEMS技术的毛细管电泳芯片.中国生物工程杂志.2003,23(10):89-92.
    [58]白兰,吴一辉,张平.基于MEMS的微流体混合器的研究与进展.哈尔滨工业大学学报,2004,36(4):543-545.
    [59]王科平,葛峻,秦明. MEMS静电执行光开关的设计与实验.电子器件,2003,26(3):240-252.
    [60] J Mohr, A Last, U Wallrabe. Free Space Optical Components Based on LIGA Technology.8thMicrooptics Conference, Japan, October24-26,2001.
    [61] Yannick Ansel, Frank Gindele, Jorg Scheurer, et al. Optical Waveguide device realizedusing two SU-8Layer.2002, IEEE:123-124.
    [62] Kim B H, Na C W, Lee Y S, et al.Micro Electrochemical Machining of3D Micro StructureUsing Dilute Sulfuric Acid[J].CIRP Annals-Manufacturing Technology,2005,54(1):191-194.
    [63]朱荻,张朝阳,明平美等,微细电化学加工技术的研究与发展[J].第十一届全国特种加工年会论文集,2005,46~54.
    [64]贾宝贤,王振龙,赵万生,等.基于特种加工的微型制造技术[J].电加工与模具,2003,4:1~4.
    [65] B. Bhattacharyya, J. Munda, Experimental investigation on the influence of electrochemicalmachining parameters on machining rate and accuracy in micromachining domain[J].International Journal of Machine Tools and Manufacture,2003,43(13):1301-1310.
    [66] D. Landolt, P. F. Chauvy, O. Zinger, Electrochemical micromachining, polishing and surfacestructuring of metals: fundamental aspects and new developments[J]. Electrochimica Acta,2003,48(20):3185-3201.
    [67] D. Clifton, A. R. Mount, G. M. Alder, D. Jardine, Ultrasonic measurement of the inter-electrodegap in electrochemical machining[J]. International Journal of Machine Tools&Manufacture,2002,42:1259–1267.
    [68] Y. Li, Y. F. Zheng, G. Yang, L. Q. Peng, Localized electrochemical micromachining with gapcontrol[J]. Sensors and Actuators,2003, Physical,108(1):144-148.
    [69] M. M. Lohrengel, C. Rosenkranz, I. Klüppel, et al. A new microcell or microreactor formaterial surface investigations at large current densities[J]. Electrochimica Acta,2004,49(17):2863-2870.
    [70] Li Yong, Zheng Yunfei, Yang Guang, Peng Liangqiang. Localized electrochemicalmicromachining with gap control[J]. Sensors and Actuators A,2003,108:144~148.
    [71]李小海,王振龙,赵万生.微细电化学加工研究新进展[J].电加工与模具.2004(2):1~5.
    [72]张朝阳.纳秒脉冲电流微细电解加工技术研究[D].南京航空航天大学博士学位论文,2007.
    [73]王昆,朱荻,张朝阳.微细电解线切割加工的基础研究[J].中国机械工程2007,18(7):833-837.
    [74]王昆,朱荻,张朝阳.微细电解线切割加工控制系统[J].机械科学与技术,2007,26(7):845-849.
    [75]王昆,朱荻,王明环.微米尺度线电极的电化学腐蚀法制备[J].机械科学与技术,2007,25(9):1073-1075.
    [76]黄春峰.航空发动机整体叶盘结构及其发展趋势[J].现代零件部件,2005,4:98-103.
    [77]方昌德.航空发动机的发展前景[J].航空发动机,2004,1(30):1-5.
    [78]陈光.航空发动机发展综述[J].航空制造技术,2000,6:19-22.
    [79]王亚军,吴希孟,刘湘.航空发动机技术发展趋势[J].科技中国,2004,(8):44-47.
    [80]江和甫.燃气涡轮发动机的发展与制造技术[J].航空制造技术,2007,(5):36-39.
    [81]姜旭峰,彭著良.航空发动机减重技术研究[J].航空维修与工程,2005,(1):54-56.
    [82]梁春华.现代高涵道比涡扇发动机关键技术[J].国际航空杂志,2005,(7):61-63.
    [83]黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006,(4):94-100.
    [84]黄春峰.航空发动机整体叶盘结构及发展趋势[J].现代零部件,2005,(4):98-101.
    [85]刘家富.整体叶盘结构及制造工艺[J].航空科学技术,1998,(6):21-23.
    [86]王增强.高性能航空发动机制造技术及其发展趋势[J].航空制造技术,2007.1:52-55.
    [87]张田仓,韦依,周梦慰,等.线性摩擦焊在整体叶盘制造中的应用[J].航空制造技术,2004,11:57-59.
    [88]李晓红.先进焊接技术在航空制造中的应用[J].航空制造技术,2004,11:17-20.
    [89]徐家文,王建业,田继安.21世纪初电解加工的发展和应用[J].电加工与模具,2001,6:1-5.
    [90]徐家文,王建业.电解加工在航空制造中的应用及发展,航空制造技术[J],2002,4:27-30.
    [91]单晨伟,张定华,刘维伟,等.叶片测量造型方法研究[J].机床与液压,2006,2:183-185.
    [92] Munda J., Bhattacharyya B. Investigation into electrochemical micromachining (EMM)through response surface methodology based approach[J]. International Journal of AdvancedManufacturing Technology,2008,35(7-8):821-832.
    [93]张永俊,徐家文.展成电解加工中的内喷式阴极设计[J].电加工,1993,5:23-25.
    [94]孙春华,朱荻,李志永,等.考虑流场特性的发动机叶片电解加工阴极设计及数值仿真[J].东南大学学报,2004,34(5):613-617.
    [95]赵万生,詹涵菁,王刚.涡轮叶盘加工技术[J].航空精密制造技术,2000,36(5):1-5.
    [96]王刚,赵万生.涡轮制造技术的现状和发展[J].航空工程与维修,2000,(4):41-43.
    [97]丁立铭.21世纪航空制造技术将发生质的飞跃——谈高推重比发动机的关键制造技术(上).国际航空,2002,(1):53-55.
    [98]曹腊梅,汤鑫,张勇,等.先进高温合金近净形熔模精密铸造技术进展[J].航空材料学报,2006,26(6):238-243.
    [99]徐家文,朱永伟,胡平旺,等.整体叶轮的数控电解加工及其在航天制造中的应用前景[J].宇航材料工艺,2003,1:13-17.
    [100]徐家文,云乃彰,严德荣.数控电解加工整体叶盘的研究、应用和发展[J].航空制造技术,2003,(6):31-35.
    [101] Liu X W. Five-axis NC cylindrical milling of sculptured surface[J]. Computer-Aided Design,1995,27(12):887-894.
    [102] Wilk W, Tota J. Modern technology of the turbine blades removal machining[C]. Internationalconference advanced manufacturing operations,2007:347-355.
    [103]陈良骥,王永章.整体叶轮五轴侧铣数控加工方法的研究[J].计算机集成制造系统,2007,13(1):141-146.
    [104]赵鸿,袁哲俊,卢泽生. TC6钛合金整体叶轮数控铣削工艺[J].推进技术,2000,20(3):83-85.
    [105]凌玮.四坐标侧铣方法加工叶轮的数控实验[J].机电工程,2008,25(2):18-19,63.
    [106]吕程辉.整体叶轮的五轴高速铣削加工工艺优化[D].硕士学位论文,上海:同济大学,2007.
    [107] E.-Y. Heo, D.-W. Kim, B.-H. Kim, et al. Efficient rough-cut plan for machining an impellerwith a5-axis NC machine[J]. International Journal of Computer Integrated Manufacturing,2008,21(8):971-983.
    [108]任军学,田卫军,田荣鑫,等.开式整体叶盘通道侧铣粗加工技术的研究[J].机械科学与技术,2008,27(10):1220-1224.
    [109]胡创国,张定华,任军学,等.开式整体叶盘通道插铣粗加工技术的研究[J].中国机械工程,2007,18(2):153-155.
    [110] LO C.-C.. Efficient cutter-path planning for five-axis surface machining with a flat-endcutter[J]. Computer Aided Design,1999,31(9):557-66.
    [111]肖波,李彬,罗大新.钛合金整体叶轮的高效加工[J].计算机应用,2007,8(4):52-55.
    [112] Li G, Zhao W S, Wang Z L, et al. A special CAD/CAM software for electro-dischargemachining of shrouded turbine blisks[J]. Journal of Shanghai University (English Edition),2007,11(1):74-78.
    [113] Zhan H, Zhao W. EDMing turbopump blisks[J]. Aircraft Engineering and AerospaceTechnology.2002,74(1):19-22.
    [114] Wiley P G. Shockwaves in the rotor world a personal perspective of30years of rotoraerodynamic development in the UK[J]. The Aeronautical Journal,1998,3:113-128.
    [115]韩潇,朱荻.扭叶片整体涡轮电火花成形加工技术[J].航空精密制造技术,2006,42(3):31-34.
    [116]宋小中,云乃彰,陈建宁.数控电火花展成加工螺旋曲面整体叶轮[J].电加工,1995,6:11-14.
    [117] Lee J H, Kang S H, Yang D Y. Novel forging technology of a magnesium alloy impeller withtwisted blades of micro-thickness[J]. CIRP Annals-Manufacturing Technology,2008,57:261-264.
    [118]孙广标.带冠整体涡轮电火花加工技术研究[D].硕士学位论文,西安:西北工业大学.2007.
    [119]杨振朝.整体涡轮电火花加工工艺研究[D].硕士学位论文,西安:西北工业大学.2006.
    [120]吴勇.复杂型面电火花加工CAM技术研究[D].硕士学位论文,上海:上海交通大学,2011.
    [121]康敏,徐家文.整体叶轮精密展成电解加工技术[J].农业机械学报,2006,37(7):208-210.
    [122]吴建民,徐家文.整体叶轮数控展成电解加工运动轨迹及速度研究[J].机械科学与技术,2008,27(8):1089-1091,1096.
    [123]康敏,徐家文.精密展成电解加工整体叶轮的展成运动轨迹确定[J].中国机械工程,2006,17(4):346-349.
    [124] Kang M, Xu J W. Study on the technology of precision electrochemical contour evolutionmachining of integral impellers[C]. Progress of Machining Technology-Proceedings of theSeventh International Conference on Progress of Machining Technology.2004,318-323.
    [125]朱永伟,徐家文,胡平旺,等.整体叶轮数控展成电解加工的计算机辅助编程[J].航空精密制造技术,2001,37(6):21-23.
    [126]徐家文,朱永伟,胡平旺,等.整体叶轮的数控电解加工及其在航天制造中的应用前景[J].宇航材料工艺,2003,1:13-17.
    [127]诺布特.安东尼.布龙斯,约翰.斯图尔特,雷诺斯,等.CN88101230A:电化学制造翼型叶片的方法和装置[P].1988-11-30.
    [128]朱永伟,徐家文,赵建设.大扭曲度整体涡轮叶片展成电解加工成型规律及试验研究.中国机械工程,2006,17(17):1778-1783.
    [129]张明歧,傅军英.高温合金整体叶盘精密振动电解加工方法的应用分析[J].航空制造技术,2009,22(4):26-29.
    [130]范会玉.整体涡轮盘双级叶片电解加工提高叶片表面质量的工艺研究[C].第13届全国特种加工学术会议,江西南昌,2009.
    [131] Wang Jun-ye. Pressure drop and flow distribution in parallel-channel configurations of fuelcells: U-type arrangement[J]. International Journal of Hydrogen energy,2008,33(21):6339-6350.
    [132]陈水俤.多孔管配水均匀性的理论探讨[J].给水排水,1995,5:5-10.
    [133] Chou Hsien-ter, Cheng Ray-yuan. Outflow distribution along multiple-port diffusers[J].Proceedings of the National Science Council, Republic of China, Part A:Physical Science andEngineering,2001,25(2):94-101.
    [134]王峻晔,章明川,吴东棣.流体在多孔管分支系统中的流动机理研究[J].水动力学研究与进展,1999,14(1):34-44.
    [135]白丹.多孔管的优化设计[J].农业机械学报,1994,25(2):56-59.
    [136]白丹,王新.基于遗传算法的多孔变径管优化设计[J].农业工程学报,2005,21(2):42-45.
    [137]陈卓如.工程流体力学[M].北京:高等教育出版社,2004.
    [138] Wang Wei, Zhu Di, Qu Ning-song, et al. Electrochemical drilling inclined holes using wedgedelectrodes[J]. International Journal of Advanced Manufacturing Technology,2010,47(9):1129-1136.
    [139] Zhang Guan-min, Tian Mao-cheng. Simulilation and analysis of flow pattern incross-corrugated plate heat exchangers[J]. Journal of Hydrodynamics,2006,18(5):547-551.
    [140] Hewidy M S. Controlling of metal removal thickness in ECM process[J]. Journal of MaterialsProcessing Technology,2005,160(3):348–353.
    [141]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟[J].北京科技大学学报,2006,28(6):576-580.
    [142]周箭.虚拟仪器及其技术研究[J].浙江大学学报,2000,34(6):686-689.
    [143] Ciancarlo F., Libero, N. Development of virtual data acquisition systems based on multimediainternet working[J]. Computer Standards&Interfaces,1999,21:224-228.
    [144]秦树人.虚拟仪器及其最新发展[J].振动、测试与诊断,2000,20:123-129.
    [145]徐晓东,郑对元,肖武编著. LabView8.5常用功能与编程实例精讲[M].北京:电子工业出版社,2009.
    [146]刘君华,郭会军,赵向阳,等.基于LabVIEW的虚拟仪器设计[M],电子工业出版社,2003:9-15.
    [147] Gary J, Richard J著.武嘉澍,陆劲昆译. LabVIEW图形编程[M].北京:北京大学出版社,2002.
    [148]杨乐平,李海涛,赵勇,等. LabVIEW高级程序设计[M].北京:清华大学出版社,2003.
    [149]谢彦,王丙星,袁丽威,等.基于Labview的共振增强双光子电离-飞行时间质谱数据采集系统[J].计算机与应用化学,2003,20(5):571-573.
    [150] McGeough, J. A., Advanced Methods of Machining[J], Chapman and Hall,1988.
    [151]电解加工编译组,电解加工[M],国防工业出版社,1977.
    [152] Rajurkar, K. P., Wei, B., Schnacker, C. L., Monitoring and Control of ElectrochemicalMachining (ECM), Transactions of the ASME[J]. Journal of Engineering for Industry,1993,115:216-223.
    [153]王明环,朱荻,徐惠宇.提高微细电解加工精度的研究[J].航空精密制造技术,2005,41(6):24~27.
    [154] Ahmed M S, Duffield A. Deep hole drilling using ECM. SME Technical Paper (Series) MS,1989:809-816.
    [155] S. K. Sorkhel, B. Bhattacharyya, Parametric control for optimal quality of the workpiecesurface in ECM, Journal of Materials Processing Technology,1994,40:271~286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700