地下开采地表移动变形的规律研究及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源的开采为国家的能源需求和原材料供给提供了有力的保障,推动了国民经济和工业现代化的快速发展,但地下开采引发的开采沉陷又反过来影响和破坏人类的生存环境,制约了经济和社会的可持续发展。开采沉陷影响的直接表现就是对地表的破坏,随着地下开采规模的不断扩大,地表移动变形问题日趋严重。虽然各级政府和组织已注重了预防与治理工作,但问题依然十分突出,最主要的原因就是开采沉陷理论不够完善,对地表移动变形的机理及规律认识不够。因此,为了最大限度的降低地下开采产生的负面影响,有必要对地下开采引起的地表移动变形规律及其影响因素进行深入研究。
     本文在横向课题“深部开采岩体长期稳定性和地表沉降规律研究”(编号:04207520070527)的支持下,以南京栖霞山铅锌矿为依托,采用现场观测、理论分析和数值模拟相结合进行研究。主要内容如下:
     ①基于随机介质理论,建立了一般地表和山区地表下水平矿层开采、倾斜矿层开采的地表移动变形三维理论模型。分析了两种地表下开采引起的地表移动变形特征及主控因素的变化规律。
     ②介绍了矿区的地表移动监测概况,并根据实测资料反分析求取了地表移动参数,建立了矿区地表移动与变形理论预测模型,系统理论地分析了矿区地表移动变形的特征,并与实测数据进行对比,表明预测效果理想。根据矿区的实际情况对开采深度、开采厚度、深厚比、开采宽度及主要影响范围角的影响规律进行了研究,为进一步开采预测和治理方案的制定提供理论依据。
     ③根据常规三轴实验结果和现场地质调查得到岩层及充填体力学参数,采用有限差分软件FLAC~(3D)建立了矿山三维数值模型,动态模拟了地下开采过程中地表位移场变化,并将计算结果与实测资料、随机介质理论预测结果进行对比综合分析。结果表明,结合随机介质理论和数值模拟综合分析能较理想的预测地表的移动与变形。
     ④将反分析、随机介质理论模型和FLAC~(3D)数值模拟结合,研究了充填体弹性模量、泊松比、内摩擦角及粘聚力对地表移动的影响。研究结果表明:弹性模量的影响最大,其次是内摩擦角,而泊松比和粘聚力影响很小。结论为矿区充填体力学参数设计和优化提供了科学依据。
Exploiting the mine resources could guarantee the energy and material demands of the country, promoting the development of the country economy and the modern industry. But the mining subsidence resulting from the underground mining on the other hand has an adverse impact on human living environment, restricting the sustainable development of the economy and the society. The direct impact of the mining subsidence is ruining the ground surface. With the increase of the mining scale, the ground movement and deformation becomes worse. Although all levels of government and organizations have pay much attention on prevention and treatment, the issue has yet to be solved. The main reason is that the theory for mining subsidence is not complete and the mechanism and the regularity of ground movement and deformation are still unclear. Therefore, understanding the movement and deformation of the ground surface as well as its influence factors is a must so as to reduce the adverse impacts of the underground mining.
     This work is supported by the project“Long-term stability of rock and law of surface subsidence inducing by the deep exploitation”(No. 04207520070527) from najing qixiashan deposit, combing the field observation, theoretical analysis, and numerical simulations. The main conclusions are summarized as follows:
     ①The three-dimensional models for the ground movement and deformation are established based on the stochastic medium theory for different exploiting conditions. The movement and deformation of ground surface for two different conditions are investigated.
     ②The ground surface displacement monitoring of mining areas is introduced briefly. Based on the back analysis of the data, the parameters for the ground movement are obtained, and the prediction models are established. The models are validated by comparing the predictive results with the measured data. Based on the real situation, the impacts of mining depth, mining thickness, depth-thickness-ratio, main influencing angle, mining width are investigated, providing the guidelines for the treatment.
     ③General triaxial tests and field geological survey are performed to obtain the mechanical parameters for rock stratum and filling body. The three dimensional models are established based on the finite difference software FLAC3D, with which the variation of the displacement for the conventional mining and back filling mining are predicted. The simulation results, theoretically predictive results, and the measured results are compared, and it is revealed that random medium theory and numerical simulation can well predict the movement of ground surface.
     ④The impacts on ground movement of elastic modulus of filling body, passion ratio, internal friction angle and cohesive forces are investigated by combing the back analysis, stochastic medium theory and numerical simulations. It is shown from numerical results that: the impacts of elastic modulus is greatest, followed by internal friction angle, the cohesive forces and passion ratio have little impact. The results providing the scientific basis for designing and optimizing the parameters of the filling body .
引文
[1]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [2]余学义,张恩强.开采沉陷学(第二版)[M].北京:煤炭工业出版社,2010.
    [3]贾新果,张彬,杨宁.采煤沉陷土地破坏程度分级研究[J].煤炭工程,2009,6(38):81-84.
    [4]苏晓洲,梁鹏,晏国政等.采矿沉陷区调查[N].瞭望新闻周刊,2010-9-26(41).
    [5]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    [6]纪万斌.塌陷学概论[M].北京:中国城市出版社,1994.
    [7] Whittaker B.N. Surface subsidence aspects of room and pillar mining[J]. Mining Department Magazine, University of Nottingham, 1985, 37:59~67.
    [8] Asaoka A. Observational procedure of settlement Prediction[J]. Soils and Foundations, 1978, 18(4):87-101.
    [9] F.G. Bell, M.G. Culshaw, J.C. Cripps. etc. Engineering geology of underground movement[M]. London, The Geological Society, 1998.
    [10] A.C. Waltham. Ground subsidence[M]. New York, Chapman and Hall, 1989.
    [11]路学忠.宁东煤田采煤沉陷地质灾害规律研究[D].中国地质大学(北京)博士学位论文,2006.
    [12]阿威尔辛.煤矿地下开采的岩层移动[M].北京矿业学院矿山测量教研组译.北京:煤炭工业出版社,1959.
    [13] D. C. Drucker, R. E. Gbison, D. J. Henkel. Soil mechanics and work hardening theories of plasticity[J]. Trans, ASCE,1957,122:338-346.
    [14] Litwiniszyn J. Przemieszczenia gorotworu. w s wietle teorii prawdopodobienstwa. Arch. Gor.Hut. T.Ⅱ,1954.
    [15] Litwiniszyn J. Fundamental principles of the mechanics stochastic medium, Proc. Of 3 Conf. Theo. Appl. Mech, Bongalore, India, 1957.
    [16] Smolarski A. A contribution to the mechanics of a horizontal-homogeneous stochastic medium with inclined layers[J]. Bull. Acad. Pol. Sci ., 1957:89-126.
    [17] Salamon, M.D.G. Elastic analysis of displacements and stresses induced by the mining of seam or roof deposits, J.S.Afr, Inst. Min. Metall.1963, 63:78-81.
    [18]沙拉蒙.地下工程的岩石力学[M].北京:冶金工业出版社,1982.
    [19] Berry, D.S., Sales T W, An elastic treatment of ground movement due to mining[J]. J.Mech.Phys.Solids,1961,9:52-56
    [20] Berry D S,ground movement considered as an elastic phenomenon, Min.Eng. 123,1963,28-43.
    [21] Sirwardane H J, A numerical procedure for prediction of subsidence caused by longwallmining[C], Proceedings Fifth international conference on numerical methods in Geomechanics, A.A.Balkema[A], 1985:116-120.
    [22] Su D W. Finite element modeling of subsidence induced by underground coal mining: The influence of material nonlinearity and shearing along existing planes of weakness[C]. Proceedings 10th international conference on ground control in mining[A], 1991:145-149.
    [23] L.R. Alejano, P. Ramirez-Oyanguren, J. Taboada. FDM predictive methodlogy for subsidence due to flat and inclined coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:475-491.
    [24] Tomaz Ambrozic, Goran Turk. Prediction of subsidence due to underground mining by artificial neural networks[J]. Computers and Geosciences, 2003,5:20-29.
    [25]刘宝琛,廖国华.煤矿地表移动的基本规律[M],北京:中国工业出版社,1965.
    [26]刘宝琛,张家生,廖国华.随机介质理论在矿业中的应用[M].长沙:湖南科技出版社,2004.
    [27] Liu Baochen. Ground surface movement due to underground excavation in China[C]. Comprehensive Rock Engineering[A]. New York: Pergaman Press, 1993:781~817.
    [28]何国清,马伟民,王金庄.威布尔分布函数在地表移动计算中的应用[J].中国矿业学院学报,1982,1:15~17.
    [29]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [30]耿德庸,仲惟林.用岩性综合评价系数P确定地表移动参数[J].煤炭学报,1980,4:15-24.
    [31]仲惟林.用最小二乘法确定地表移动参数[J].煤炭科学技术,1981,6:14-18.
    [32]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1982,2:18-28.
    [33]周国铨,崔继宪等.建筑物下采煤[M].北京:煤炭工业出版社,1983.
    [34]沈惠群.开采引起山区地表移动规律的理论探讨[J].山东矿业学院学报,1986,2:27-37.
    [35]李文秀.山区采矿岩体移动预计方法[J].湖南冶金,1992,1:14-17.
    [36] Li Wenxiu .Fuzzy models for estimation of surface ground subsidence[J].Systems Science and Mathematical Sciences,1990,3:41-52.
    [37]杨硕,张有祥.水平移动曲面的力学预测法[J].煤炭学报,1995,2(21):214~217.
    [38]崔希民.材料大变形大位移的非线性分析及工程应用[D].中国矿业大学北京研究所部博士学位论文,1996
    [39]郭增长.极不充分条件开采地表移动预计方法及建筑物深部压煤开采技术的研究[D].中国矿业大学北京研究所部博士学位论文,2000.
    [40]常占强,王金庄.关于地表点下沉时间函数的研究[J].岩石力学与工程学报,2003,22(9):1496-1499.
    [41]张玉卓,仲催林等,姚建国.岩层移动的位错理论解及边界元法计算[J].煤炭学报,1987,2(3):21-31.
    [42]张玉卓,仲催林.断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1989,1(3):23-31.
    [43]戴华阳,翟厥成,胡友健.山区地表移动的相似模拟实验研究[J].岩石力学与工程学报,2000,19(4):501-504.
    [44]高明中,急倾斜煤层开采岩移基本规律的模型实验[J].岩石力学与工程学报,2004,23(3):441-445.
    [45]赵海军,马凤山,丁德民等.急倾斜矿体开采岩体移动规律与变形机理[J],中南大学学报(自然科学版), 2009,40(5):1423-1429.
    [46]施成华.城市隧道施工地层变形时空统一预测理论及应用研究[D].中南大学博士学位论文,2007.
    [47]乔世范.随机介质变形破坏判据研究及其工程应用[D].中南大学博士学位论文,2006.
    [48]贺跃光.工程开挖引起的地表移动与变形模型及监测技术研究[D].中南大学博士学位论文,2003.
    [49] Kwiatek J. Ochrona Obiktow budowlanych na terenach gomiczych[M].Elsevier Science Pubishers,1989.
    [50]刘波,韩彦辉.FLAC原理实例与应用指南[M].北京:机械工业出版社,2006.
    [51] Itasca Software comp. Theory and background, Constitutive model theory and implementation, User Manual of FLAC [M], 2002
    [52] Itasca Consulting Group Inc. FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 2.10, Users manual. USA: Itasca Consulting Group Inc, 2002.
    [53]谢和平,于广明,杨伦.节理化岩体开采沉陷的损伤统计研究[J].力学与实践,1998,20(6):7~9.
    [54]李文秀,郭玉贵,侯晓兵.地下开采地表下沉分析的弹性力学模型[J].化工矿物与加工,2008,2:26~28.
    [55]余学义.开采速度对地表建筑损物害影响[J].西安科技学院学报,2001,2:97~102.
    [56]周鸣,郭广礼等.电子速测仪SET2在开采沉陷监测中的应用[J].矿山测量,1992,2:8-12.
    [57]盛业华,闫志刚,宋金铃.矿山地表塌陷区的数字近景摄影测量监测技术[J].中国矿业大学学报,2003,32(4):412~415.
    [58] Hoek, Brown E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics of Mining Science, 1997, 34(8): 1165-1186
    [59]煤科院北京开采研究所.煤炭地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,2000.
    [60]郝延锦,陈胜华.硬岩层对岩移参数的影响规律[J].煤,2000,9(4):5-9.
    [61]张家生,刘宝琛.随机介质理论基本参数的反分析确定[J].湘潭矿业学院学报,2004,19(1):5-8.
    [62]易四海.特厚急倾斜煤层水平分层开采地表沉陷规律研究[D].中国矿业大学(北京)博士学位论文,2009.
    [63]金为铣等.摄影测量学[M].武汉:武汉大学出版社,2001.
    [64]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1988.
    [65] Syd. S. peng. Surface subsidence engineering[M]. Colorado: Society for Mining, Metallurgy and Exploration,Inc,1992.
    [66]同济大学数学教研室.高等数学(下册)[M].北京:高等教育出版社,1996.
    [67] Marquardt DW. An algorithm for least squares estimation of nonlinear parameters[J].SIAM Journal,1963,11(2):431-441.
    [68]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [69]张家生.地表移动理论及数值分析方法的研究[D].长沙矿冶研究院博士论文,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700