大倾角液压支架整架仿真与稳定性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过几十年的发展,煤炭科学技术取得了长足的进步,其开采工艺日趋成熟及装备水平在不断提高,液压支架作为综采工作面的关键设备,是决定煤炭综采成败的关键因素。我国的液压支架设计技术已经达到了一定的发展水平,但适用于大倾角综放工作面的液压支架设计技术发展缓慢,因此本文以国家十一五科技支撑计划项目“复杂条件煤矿综放工作面关键设备研究”为研究背景,在借鉴国内外液压支架先进设计制造经验的基础上,运用理论计算、计算机辅助设计和试验相结合的方法,成功地设计了适用于大倾角综放工作面的液压支架。
     为解决大倾角液压支架设计的难点,本文的主要研究工作和创新性从以下几个方面得以体现:首先,根据设计要求对大倾角液压支架的重要组成机构四连杆进行优化设计,在传统的几何作图法和电算法的基础上提出了一种新型的设计方法,主要利用ADAMS软件构建四连杆机构的数学模型和定义设计参数,然后进行优化求解,最终得出最优参数,从而实现了对四连杆机构的参数化设计和优化;其次,借助CAD/CAE技术,采用自上而下的设计理念对液压支架进行设计、运动学仿真和有限元分析,应用Pro/E和ADAMS对支架进行三维建模和运动学仿真,完成整架干涉检查和运动轨迹仿真,验证了结构设计的合理性,根据MIT312-2000液压支架通用技术条件,应用COSMOS软件建立液压支架整架受力分析模型,完成对整架强度分析及关键部件的受力分析,验证了该型支架可靠性,为支架的设计提供了可靠的依据;最后,对大倾角液压支架稳定性技术进行了深入的分析研究,构建了支架的防滑防倒数学模型并进行分析,为大倾角液压支架防倒防滑设计提供了理论依据,并且样机在试验及实际应用中均满足使用要求,验证了此理论的可行性。
     本文的研究丰富和发展了大倾角综放工作面液压支架设计理论和方法,为大倾角液压支架的设计提供了有效的理论和方法。
Coal Science and Technology has made great progress after several dozens year development, the production practice reaches its maturity and the mine equipment level improves constantly. Hydraulic support is the key equipment in fully mechanized coalface, so it is the key factor to decides full-mechanized mining success or failure. Hydraulic support design technology has been reached a fairly high level in our country, but the technology designing for deeply inclined coal seam develops slowly. So this paper was against the background of the national 11th Five-year Plan State science and technology support projects "The key equipment research on the complex conditions of fully mechanized caving face ", we successfully designed the hydraulic support which were adequate for 46 deeply inclined coal seam by means of theoretical arithmetic, CAD and experiment, which based on referring to the advanced experience of designing and manufacturing hydraulic support at home and abroad.
     In order to solve the problems of heavy dip angle hydraulic support design, this thesis contains following main research work and achievements: To begin with, optimization design of four-bar linkage of hydraulic support in deeply inclined coal seam was carried. A new method for the design was proposed in this paper, which based on the traditional methods of geometrical construction and computational program. By means of ADAMS software, mathematic model was constructed and design parameters were defined, then the model was optimized for obtaining the optimum result. Using this new method that can achieve parametric design and optimization design. In the next place, using CAD/CAE technology, hydraulic support was designed by design theory from top to bottom, simulation and FEA was carried out. 3d modeling of hydraulic support was established and kinematics simulation was carried out by using Pro/E and ADAMS, finished interference detection and kinematics simulation of motion trail, the rationality of structure design was validated. Dynamic analysis model was established, then strength of the whole support and force analysis of key parts were finished by using COSMOS according to MIT312-2000. The reliability of support was validated, dependable basis was provided for support design. Ultimately, This paper analyzed and studied the stability technology of the heavy dip angle hydraulic support. Mathematic model of anti-skid and anti-collapse was constructed, then analyzed the model. The dependable theoretical basis was provided for support design of anti-skid and anti-collapse. The prototype met design requirement through experiment and practical application, the feasibility of theory was validated.
     The design theory and methods of heavy dip angle hydraulic support in the fully-mechanized top coal caving face were enriched and developed through the study. The dependable theory and methods were provided for heavy dip angle hydraulic support design heavy dip angle hydraulic.
引文
1.伍永平,员东风等.大倾角煤层综采基本问题研究[J].煤炭学报,2000,25(5):624-628
    2.张鞠.机械行业的CAD/CAM/CNC技术[J].煤矿机械,2003,(12):49-51
    3.刘晓兵,高天.CAD技术的发展趋势及主流软件产品[J].中国制造业信息化,2003,32(1):41-45
    4.李占利,王天平.液压支架CAD研究现状[J].矿山机械,1994,(5):26-28
    5.罗恩波.国内外液压支架现状及我国的发展趋势[J].煤矿机电,2000,(3):27-29
    6.高郁.我国液压支架技术现状及发展[J].煤炭技术,2003,22(7):4-6
    7.冯振忠.大倾角液压支架设计要点及应用注意事项[J],煤炭工程,2007,(2):21-23
    8.邱开坤.大倾角液压支架的研制[J],煤炭科学技术,1994,22(7):53-56
    9.丁绍南.复杂工作面液压支架设计[M].北京:世界图书出版公司,1992,16-53
    10.鲁忠良,景国勋,肖亚宁.液压支架设计使用安全辨析[M].北京:煤炭工业出版社,2006,55-80
    11.苗耀华.液压支架四连杆机构计算机辅助设计[J].煤炭科学技术,2007.35(6):51-54
    12.郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2003,136-172
    13.韩凤霞,胡登高,范迅.液压支架四连杆机构的三维建模和运动仿真[J].煤矿机械,2006,27(09):67-68
    14.王国彪,高荣.液压支架四连杆机构运动学的优化分析[J].辽宁工程技术大学学报,1991,(03)
    15.王国法等.液压支架空间力学模型受力分析[J].煤炭学报,1992,18(4):47-51
    16.熊光楞,陈晓波,郭斌.复杂产品设计的仿真现状与发展趋势[J].清华大学,2002,8(9):673-677
    17.郝轶宁,王军政,汪首坤.六自由度运动姿态模拟系统的研究[J],北京理大学学报,2002,22(3):331-334
    18.王洪瑞.液压6-DOF并联机器人操作运动和力控制的研究[M],河北学出版社,2001
    19.黄真,孔令富,方跃法.并联机器人机构理论及控制[M],机械工业出版社,1997
    20.李瑞涛,方湄,张文明,彭龙洲.虚拟样机技术的概念及应用[J],金属矿山,2000,7
    20.李瑞涛,方湄,张文明,彭龙洲.虚拟样机技术的概念及应用[J],金属矿山,2000,7(7):38-40。
    21.李入宪主编.有限元法基础[M],国防工业出版社,2002
    22.伍义生,吴永礼等译.有限元法基础教程,电子工业出版社,2003
    23.Gounarisa GD,Anifantisb NK.Structural damping determination by finite element approach.Comput Struct 1999;73:445-52
    24.Ganapathia M,Patela BP,Boisseb P,Politc O.Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis.Composites:Part B 1999;30:245-56
    25.Capsoni A.A mixed finite element model for plane strain limit analysis computations.Commun Numer Methods Eng1999,15:101-12
    26.李军,邢俊文,覃文浩.ADAMS实例教程[M].北京理工大学出版社,2002
    27.叶修梓,陈超祥主编.COSMOS基础教程:COSMOSWorks Designer[M],机械工业出版社,2007
    28.岳永强,曹连民,刘海峰.基于Solidworkscosmos的同步齿轮泵轴的疲劳分析[J],煤矿机械,2007,28(11):73-75
    29.徐华俊,周龙,栾振辉.基于Solidworks的薄煤层液压支架设计[J],煤矿机械,2007,28(11):20-22
    30.郝兆喜,赵建武.浅谈液压支架参数化建模及运动分析方法[J].山西煤炭管理干部学院学报,2007,(04):89-90
    31.朱诗顺.液压支架结构与材料优化设计的理论、方法及应用的研究[D].西安:西安矿业学院,1994
    32.中华人民共和国煤炭行业标准.MT312-2000液压支架通用技术条件.北京:中国标准出版社,2000
    33.中华人民共和国煤炭行业标准.MT/T587-19%液压支架结构件技术条件.北京:中国标准出版社,2000
    34.中华人民共和国煤炭行业标准.MT/T556-19%液压支架设计规范.北京:中国标准出版社,1996
    35.乔红兵,赵雪松,范迅等.轻放液压支架掩护梁强度有限元分析[J],矿山压力与顶板管理,2003,(4):45-48
    37.张惠民等.液压支架部件应力分区计算修正法[J].煤炭学报,1998,38(3):88-91
    38.邱开坤.大倾角液压支架可靠性研究[J].无锡:煤矿机电产品可靠性研讨会论文集,1993,6-9
    39.王永军.支撑掩护式液压支架受力分析[J].煤矿开采,2007,(3):14-16
    40.汪孝生,郭之宝.组合钢梁放顶煤在大倾角复杂构造煤层中的开采试验[J].中国煤炭学会第六届青年科学技术研讨会论文集,2000,157-161
    41.丁绍南.液压支架设计[M].北京:世界图书出版社,1992
    42.杨振复,罗恩波等.放顶煤开采技术与放顶煤液压支架[M].北京:煤炭工业出版社,1990
    43.许尚贤.机械设计中的有限元法[M].北京:机械工业出版社,1992
    44.谢贻权.弹性与塑性力学中的有限单元法[M].北京:机械工业出版社,1981
    45.赵衡山.国内外液压支架试验规范浅析[J].煤炭科学技术,1997,35(1):35-38
    46.Kulako,V.N.Geo mechanical conditions of mining steep coal beds[J],Journal of Mining Science,1995,151(7):136-143
    47.庞矿安,刘俊峰,董德彪.大倾角放顶煤液压支架稳定性动态分析[J].煤矿开采,2005,(6):1-4
    48.何全洪.大倾角复合顶板工作面推垮型冒顶机理分析[J].矿山压力与顶板管理,2002,(1):81-83
    49.胡玉奎,韩于羹,曹铮韵.系统动力学模型的进化[J].系统工程理论与实践,1997,(10):132-136
    50.胡振东,洪嘉振.刚柔祸合系统动力学建模及分析[J].应用数学与力学,1999,(10):5-8
    51.员东风,伍永平.大倾角煤层综采工作面调伪仰斜原理与方法大倾角煤层综采工作面调伪仰斜原理与方法[J].辽宁工程技术大学学报(自然科学版),2001,(2):152-156
    52.刘长友,邹永华,王永军等.大倾角仰斜开采工作面合理支护参数的确定[J].江苏煤炭,1998,(2):3-5
    53.王朝阳,焦成尧,范卫星,彭铭.低位放顶煤液压支架在大倾角厚煤层中的应用[J].煤炭技术,2002,(1):57-61
    54.Mathur,R.B,Jain,D.K.Prasad.Extraction of thick and steep coal seams a global overview[J],4th Asian mining.Exploration,exploitation,environment,1993,13(11): overview[J],4th Asian mining.Exploration,exploitation,environment,1993,13(11):475-488
    55.Mrig,G.C:Sinha,A.N Proposing a new method for thick,steep and gassy XV seam of Sudamdih[J].International symposium on thick seam mining:problem and issues (ISTS'92),1992,445-456
    56.章之燕.大倾角综放液压支架稳定性动态分析和防倒防滑措施[J].煤炭学报,2007,(7):705-709
    57.Sehgal,V.K,Kumar.Thick and steep seam mining in North Eastern coalfields[J].International symposium on thick seam mining:problem and issues(ISTS'92),1992:457-469
    58.Aksenov,V.V:Lukashev,G.E.Design of universal equipment set for working steep seams[J].Ugol,1993,82(4):5-9
    59.Proyavkin,E.T.New nontraditional technology of working thin and steep coal seams[J],Ugol Ukrainy.1993,94(3):2-4
    60.侯社伟,刘西党,原钦领.大倾角轻放工作面支架失稳机理的研究与防治[J].煤矿开采,2001,(3):48-51
    61.张秀才.大倾角厚煤层分层开采底滑事故的防治[J].煤矿安全,1999,(1):12-13
    62.索学权,史勇.大倾角工作面设备下滑控制[J].矿山压力与顶板管理,1999,(1):84-85
    63.王国青.大倾角综采工作面设备防倒防滑措施[J].煤炭科技,2002,(1):13-16
    64.周昌明,陈光强.大倾角综采工作面输送机和支架整体防滑[J].煤矿开采,1999,(3):55-56
    65.Itasca Consulting,Inc.Fast Lagrangian Analysis of Continua in 3 Dimensions[M].1999
    66.Bondarenko,Yu.V:Makeev,A.Yu:Zhurek,P:Klega,Technology of coal extraction from steep seam in the Ostrava-Karvina basin[J].Ugol Ukrainy,1993,138(3):45-48
    67.Skalski,E.T.New method used in Lorraine for extracting steep coal seams[J].Przeglad Gorniczy,1993,118(5):18-23
    68.Ongallo Acedo,J.M.Femandez Villa,A.Lglesias Alvarez,J.L.Experience with integrated exploitation systems in narrow,very steep seams in HUNOSA[J].8th international congress on mining and metalurgy,1998,96(3):16-22
    70.Tao,L.Wang,Y.Movement and failure of overlying strata in a face in steep seam[J].Journal of the China Coal Society,1996,64(11):582-585
    71.Shi Yuanwei.Research on the Interaction Between Roof Strata and Shield Supports[J].16" Conference On Ground Control in Mining,1997
    72.Kulakov,V.N.Stress state in the face region of a steep coal bed[J].Journal of Mining Science(English Translation),1995,186(9):161-168
    73.Bodi.Safety and technological aspects of manless exploitation technology for steep coal seams[J].27th international conference of safety in mines research institutes,1997,132(2):955-965
    74.林忠明,陈忠辉,谢俊文,谢和平.大倾角综放开采液压支架稳定性分析与控制措施[J].煤炭学报,2004,29(03):264-268
    75.郑维强.急-倾斜煤层综放液压支架稳定性分析与防倒防滑装置研究[D].西安科技大学,2006,5-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700