东濮凹陷及邻区凹陷上古生界热演化史与二次生烃史研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积盆地热演化史在油气勘探和油气成藏研究中占重要的地位。东濮凹陷及邻区受印支、燕山、喜山多次构造运动的改造和影响,中生代、新生代盆地类型明显不同,导致烃源岩热演化程度及热演化史复杂。对于研究区热演化史的恢复,以活动论及地质发展阶段论思想为指导,将盆地热历史与整个区域构造演化史的结合起来进行研究。将采用今、古地温并重;测试分析古温标样品,将地震、钻井与露头资料相结合,充分考虑不同期次盆地的叠加、改造对盆地地温场影响,建立热演化史的概念模型,分演化阶段恢复了不同构造单元的热演化史和生烃史,指出了东濮凹陷及邻区凹陷上古生界有利生烃区。主要取得了以下的认识:
     1、分析连续测温资料,认为研究区现今地温场格架主要受地壳深部结构、构造背景的控制。东濮凹陷地壳薄,临清坳陷中部区次之,开封坳陷最厚且受北北东向和北西西向两组断裂相互牵制和影响,导致地温梯度依次减小,分别为34℃/km、27-32℃/km、23.3-29.1℃/km之间。现今地温场平面分布受研究区构造格局的控制,相同层位埋藏厚度大的部位,地温高;埋藏浅的隆起部位温度低。
     2、在区域构造特征分析的基础上,有针对性的重新测试包裹体、磷灰石裂变径迹样品。综合分析,认为不同的构造单元古地温差别较大,将其划分为古今地温接近型、古地温高于今地温型两种类型。以兰聊断裂带、汤阴地堑、临清中部隆起区以及济源凹陷中央隆起带为例,分别确定了研究区中生代三叠纪的古地温梯度为31.7℃/km,早、中侏罗世古地温梯度为27.8℃/km,早白垩世末的古地温梯度分别为40-50℃/km;古近纪地温梯度为30-37℃/km。
     3、综合构造演化特征及多种古温标方法,划分了四个热演化阶段,确定了关键时期(中生代晚期)的古地温梯度为35-45℃/km,热流值可达90mW/m~2以上,热演化程度在此时期迅速升高,确定研究区中生代晚期(130-140Ma)发生了一期构造热事件。这次构造热事件对油气的生成运移和聚集起着十分重要的作用,在隆起和凹陷边缘使烃源岩达到最大演化程度,现今仍然处于生烃阶段。
     4、应用多种古地温研究方法与盆地模拟方法相结合,恢复了不同构造单元的古地温演化史,共划分了5种不同构造单元的热演化史类型。即中生代以来持续沉降增温型、中生代—古近纪持续增温新近纪以来降温型、中生代早期增温—中生代晚期降温—新生代增温型、中生代增温—降温交替变化新生代以来持续沉降增温型、抬升降温型。从热演化史的角度来看,前四类热演化史类型是古生界烃源岩找气的较为有利类型。
     5、东濮凹陷及其邻区古生界烃源岩二次生烃具明显的迟滞性,各构造单元生烃史有明显差异。结合构造演化特点和后期保存条件分析,确定东濮凹陷东、西部次凹、中央隆起带和中牟凹陷为明显二次生烃的有利区。
The thermal history of sedimentary basins plays an important role on studies of petroleum exploration and hydrocarbon accumulation. The tectogenesis of Indosinian movement Yanshan movement and Himalayan orogenic movement reconstruct Dongpu sag and surrounding regions. Different basin types of Palaeozoic Mesozoic and Cenozoic lead to the complication of thermal evolution degree and paleogeothermal gradient of the source rocks. Using mobilistic theory and geoevolutionism as the governing principle restored thermal history of region of interest by the combination thermal history and the region structural evolution. The present-day temperature and palaeogeothermal are same important. By combination the seismic, drilling and outcropping data, according to the prototype basin of different time and thinking fully the influence of the superimpose and reformation by multiphase and multistage tectonic movements to geothermal, upbuilded conceptual model of thermal history, simulated the thermal evolution of the source rocks of Paleozoic in different tectonic units in accordance with the evolutionary phase, estimated the favorable hydrocarbon generation areas.
     1 Based on volumes of temperature data, the distribution of temperature is affected by deep-crustal structure and tectonic setting. Crust thinkening from Dong sag to middle part of Lingqing depression, Kaifeng depression has a more thickness Crust than Lingqing depression, and it is joint controled by the NNE and NWW faulting, which lead to the decrease of temperature gradient, the corresponding gradient is 34℃/km, 27-32℃/km and 23.3-29.1℃/km respectively. The distribution of temperature is affected by structural framework, tectonic position of buried deeply has higher temperature and the upwelling area has lower temperature at the same horizon.
     2 On the basis of analysis structural feature, inclusion and apatite fission track sample was retested oriented. The type of palaeogeothermal in Dongpu sag and surround regions was divided into two types by multidisciplinary analysis multiple data, (1)present-day temperature is close to palaeogeothermal,(2)palaeogeothermal is higher than present-day temperature. On the studies of Lanliao faulted zone, Tangyin graben, uplift of Linqing depression and central uplift belt of Jiyuan depression, temperature gradient of Triassic, Early-Middle Jurassic, Early Crataceous, Early Teriary is 31.7℃/km,27.8℃/km,40-50℃/km, 30-37℃/km, respectively.
     3, Using feature of structural evolution and multiple geothermometer, four thermal evolution phase were divided .The paleogeothermal gradient of critical time (late Mesozic) is 35-45℃/km and heat flow is higher than 90mW/m~2, and the degree of thermal evolution rising rapidly. A tectonic heat event happened in Late Mesozoic era in 130-140Ma.It is very important to hydrocarbon generation, migration and accumulations. Oil source rock of mole track and depression marginal zone are in largest degree of thermal evolution and still in the phase of hydrocarbon generation nowadays. To the oil source rock in depression, Cenozoic is the time of thermal evolution increasing and secondary hydrocarbon generation for the great subsidence.
     4 Combination geothermometer and basin modeling, reconstructed thermal history of different tectonic unit, five type of history of thermal was divided, i.e. (1)sustained elevating temperature after Mesozoic, (2)sustained elevating temperature after Mesozoic-Early and temperature drop after Neogene, (3)elevating-decreasing temperature alternately in early and late phase of Mesozoic and Cenozoic, (4) elevating-decreasing temperature alternately in Mesozoic and sustained elevating temperature after Cenozoic,(5)decreasing temperature for uplift. Viewed at thermal history, the first four types is beneficial to find gas.
     5 The secondary hydrocarbon of Dongpu sag and surrounding regions's has the lag effect obviously. The different tectonic unit has different history of hydrocarbon generation. Combination characteristic of structural evolution and condition of conservation, the beneficial secondary hydrocarbon generation district of Upper Paleozoic were ascertained, i.e. Eastern and Western depression of Dongpu sag, central uplift belt of Dongpu sag and Zhongmou sag.
引文
1.程本和.济阳坳陷沾化东区现今地温场及热历史[J].地球物理学报,2001,44(2):238-244
    2.陈发景,汪新文.中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式[J].现代地质,1997,11(4):409-424
    3.陈国达.“燕山运动”的历史意义[J].大地构造与成矿学.1992,16(2):111-112
    4.陈光汉.华北盆地的构造演化及油气分布[J].石油试验地质.1990,12(1):1-7
    5.陈孔权,文徐言,张文淮,等.松辽盆地南部有机包裹体特征及石油地质意义[J].石油与天然气地质.1995,16(2):138-147
    6.陈刚,赵重远,李丕龙.等.Ro反演的盆地热史恢复方法与相关问题.石油与天然气地质[J].2002,23(4):343-347
    7.陈墨香.华北地热[M].北京:科学出版社,1988,1-218
    8.常俊合,岳玉山,吕红玉,等.东濮凹陷上古生界热演化史与生烃期关系[J].石油勘探与开发,2004,31(2):33-34
    9.常远,刘锐,杨嘉.磷灰石裂变径迹技术与地学应用综述[J].上海地质,2004,1:47-53
    10.丁林.磷灰石裂变径迹定年方法的进展及应用[J].第四纪地质,1997,3:272-280
    11.丁林.裂变径迹定年方法的进展与应用[J].第四纪研究,1997,(3):272-280
    12.杜旭东,李洪革,陆克政,等.华北地台东部及邻区中生代(J-K)原型盆地分布及成盆模式探讨[J].石油勘探与开发,1999,26(4):5-9
    13.杜旭东,张一伟,陆克政,等.中国含气(油)盆地的构造格架和成因类型.中国科学(D辑),1996,26(6):493-498.
    14.付明希,胡圣标,汪集呖.华北东部中生代热体制转换及其构造意义[J].中国科学(D辑),2004,34(6):514-520
    15.冯乔,柳益群,张小莉,等.叠合盆地的热演化史与油气生成—以新疆吐鲁番-哈密盆地南部构造带为例[J].石油天然气地质,2004,25(3):268-293
    16.宫色,李剑,张英,等.煤的二次生烃机理探讨[J].石油实验地质,2002,24(6):541-549
    17.郭随平,王良书,施央申,等.应用磷灰石裂变径迹研究沉积盆地的热史[J].南京大学学报,1995,31(3):469-475
    18.郭随平,施小斌,王良书.胜利油区东营凹陷热史分析—磷灰石裂变径迹证据[J].石油与天然气地质,1996,17(1):32-36
    19.龚育龄,王良书,刘绍文,等.济阳凹陷地温场分布特征[J].地球物理学报,2003,46(5):652-658
    20.龚育龄,王良书,刘绍文,等.济阳坳陷大地热流分布特征[J].中国科学(D辑),2003,33(4):384-391.
    21.何国琦,王庭印,王式洗.试论华北太行山晚中生代深成岩浆活动的大地构造背景[C].见:地质研究论文集,北京:北京大学出版社.1982,21-28
    22.何丽娟.沉积盆地构造热演化模拟的研究进展[J].地球科学进展,2000,15(16):661-665
    23.侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究.北京大学学报(自然科学版),200137(6):845—851.
    24.胡圣标,汪集旸.沉积盆地热体制研究的基本原理和进展[J].地学前缘,1995,2(4):171-179
    25.胡圣标,汪集旸.利用镜质体反射率数据估算地层剥蚀厚度[J].石油勘探与开发,1999,26(4):42-45
    26.胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626
    27.胡圣标,张容燕,周成礼.油气盆地地热史恢复方法[J].勘探家,1998,3(4):52-54
    28.胡圣标、张容燕、罗毓晖,等.渤海盆地热历史及构造—热演化特征[J].地球物理学报,1999,42(6):748-755
    29.黄少鹏.我国大陆地区大地热流与地壳厚度的变化[J].地球物理学报,1992,35(4):441-450
    30.胡宗全,王传刚,张玉兰,等.渤海湾盆地东濮凹陷上古生界潜山油气成藏条件评价[J].石油实验地质,2004,26(6):553-561
    31.金春爽,乔德武.浅谈盆地热历史及烃源岩热演化研究在中国油气资源战略选区调查评价中的意义[J].地质通报,2006,25(9-10):1050-1054
    32.贾承造,何登发,陆洁民.中国喜玛拉雅运动的期次及其动力学背景[J].石油与天然气地质,2004,25(2):121-125
    33.纪友亮,胡光明,黄建军,等.渤海湾地区中生代地层剥蚀量及中、新生代构造演化研究[J].地质学报,2006,80(3):351-358
    34.康铁笙,王世成.地质热历史研究的裂变径迹法[M].北京:科学出版社,1991
    35.康铁笙,王世成,翟鹏济,等.用磷灰石裂变径迹研究地质热历史的方法及其在临清凹陷的应用[J].石油学报,1990,11(2):22-32
    36.刘德良,陶士振,张宝民.包裹体在确定成藏年代中的应用及应注意的问题[J].天然气地球科学,2005,16(1):16-19
    37.刘秋生.内幕逆断块—东濮凹陷可能的油气勘探新领域[J].石油学报,1989,10(4):14-17
    38.刘绍龙.华北地区大型三叠纪原始沉积盆地的存在[J].地质学报,1986,60(2):128-137
    39.刘顺生,张峰,胡瑞英,等.裂变径迹年龄测定—方法、技术、原理[M].北京:地质出版社,1984
    40.刘训.对中国东部燕山运动的一些认识[J].地质论评,1982,128(5):429-436
    41.刘小平,刘太成,蒋礼宏,等.南华北盆地黄口凹陷构造形成演化及油气勘探前景[J].石油勘探与开发,2000,27(5):8-12
    42.柳广弟.含油气盆地沉降史和热史分析[A].见:陆克政.含油气盆地分析[C].北京:石油大学出版社,2000.320-328
    43.李德生.渤海湾含油气盆地的地质和构造特征[J].石油学报,1980,1(4):356-365
    44.李慧莉,邱楠生,金之钧.利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史[J].地质科学,40(1):129-132
    45.李如汉,陈洪丽,李银花,等.东濮凹陷文23气藏成藏条件分析[J].江汉石油学院学报,2000,23(4):23-25
    46.李思田.沉积盆地的动力学分析—盆地研究领域的主要趋向[J].地学前缘,1995,2(3):1-8
    47.李小明.裂变径迹退火动力学及其研究进展[J].矿物岩石地球化学通报,1999,18(3):129-132
    48.李小明,谭凯旋.裂变径迹定年方法的研究现状及存在的问题[J].地质地球化学,2000,28(4):96-100
    49.柳少波,顾家裕.包裹体在石油地质研究中的应用与问题讨论[J].石油与天然气地质,1997,18(4):326-342
    50.罗照华,邓晋福,李王文,等.太行山构造岩浆带K-Ar法同位素年龄分析[J].现代地质,1996,10(3)344-349
    51.马文璞.大别山北麓的石炭系及其大地构造意义[J].地质学报,1991,65:17-36
    52.马文璞.区域构造解析[M].北京:地质出版社,1992
    53.马杏垣,刘和甫,王维襄,等.中国东部中、新生代裂陷作用和伸展构造.地质学报,1983,(1):22-32
    54.聂宗笙.华北地区的燕山运动.地质科学,1985,(4):320-333
    55.覃建雄.流体包裹体在沉积盆地中的应用[J].地质科学情报,1994,13(2):39-45
    56.覃建雄.矿物流体包裹体研究在油气资源评价和油气勘探远景预测中的应用[J].地质科技情报,1993,12(1):47-52
    57.漆家福,于福生,陆克政,等.渤海湾地区的中生代盆地构造概论.地学前缘,2003,10(特刊):199-206
    58.邱楠生.沉积盆地热体制理论与应用[M].石油工业出版社,2004
    59.邱楠生.中国大陆地区沉积盆地热状况剖面[J].地球科学进展,1998,13(5):447-451
    60.冉启贵.华北晚古生代煤岩成烃及二次成烃研究[J].石油勘探与开发,1995,22(增刊):6-91
    61.冉启贵,胡国艺,陈发景.镜质体反射率的热史反演[J].石油勘探与开发,1998,25(6):29-32
    62.任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990
    63.任战利.关于沉积盆地古地温场问题的探讨[J].西北大学学报(增刊),1991,21:227-234
    64.任战利.沉积盆地热演化史研究新进展[J].地球科学进展,1992,7(3):43-49
    65.任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999
    66.任战利.中国北方沉积盆地热演化史的对比[J].石油与天然气地质,2000,21(1):33-37
    67.任战利,刘池阳,张小会,等.酒泉盆地群热演化史恢复及其对比研究[J].地球物理学报,2000,43(5):635-645
    68.任战利,冯建辉,崔军平,等.东濮凹陷杜桥白地区天然气藏的成藏期次[J].石油与天然气地质,2002,23(4):376-381
    69.任战利,崔军平,冯建辉,等.东濮凹陷桥口地区油气藏形成期次研究[J].石油勘探与开发,2002,29(6):15-18
    70.任战利,赵重远,陈刚,等.沁水盆地中生代晚期构造热事件[J].石油与天然气地质,1999,20(1):46-48
    71.任战利,肖晖,刘丽,等.沁水盆地构造—热演化史的裂变径迹证据[J].科学通报(增刊),2005,50:87-92
    72.任战利,肖晖,刘丽,等.沁水盆地中生代构造热事件发生时期的确定[J].石油勘探与开发,2005,32(1):43-47
    73.任战利,肖晖,刘丽,等.沁水盆地新生代抬升冷却事件的确定[J].石油与天然气地质,2005,26(1):109-113
    74.沈传波,梅廉夫,凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望[J].地质科技情报,2005,24(2):57-63
    75.施继锡,李本超,傅家谟,等.有机包裹体及其与油气的关系[J].中国科学(D辑),1987,(3):318-326
    76.施小斌.磷灰石裂变径迹数据的热史反演及其局限性[J].地质科学,1998,33(2):187-194
    77.施小斌,汪集旸,罗晓容.古温标重建盆地热史的能力探讨[J].地球物理学报,2000,43(3):386-392
    78.宋子堂.临清凹陷晚侏罗世至早白垩世西界的恢复及意义[J].石油实验地质,1994,16(1):30-34
    79.唐军.华北地区古地温梯度研究与古生界油气生成[J].河南石油,1998,12(6):1-3
    80.王德仁,高平,武晓玲,等.东濮凹陷上古生界成藏条件研究[J].国外油田工程,2004,20(1):1-3
    81.王红军,蔡迎春.流体包裹体常规特征在油气成藏研究中的应用[J].石油勘探与开发,2001,28(2):43-46
    82.王璐,刘顺生.磷灰石裂变径迹的退火作用及其在沉积盆地油气勘探中的应用—以东濮凹陷为例[J].大地构造与成矿学.1998,22(3):259-263
    83.王良书,刘绍文,肖卫勇,等.渤海湾盆地大地热流分布特征[J].科学通报.2002,47(2):151-155
    84.王立志.白庙地区下第三系地层热史模拟[J].断块油气田,1994,1(5):6-11
    85.王世成.基于磷灰石裂变径迹数据的热史反演[J].科学通报,1994,39(9):816-819
    86.王世成.裂变径迹热年代学的新进展[J].核技术,1996,19(10):577-580
    87.王世成.磷灰石裂变径迹在地质热历史研究中的应用[J].1998,27(4):227-231
    88.王世成,袁万明,王兰芬,等.花海凹陷的热演化和生烃期的磷灰石裂变径迹证据[J].地球学报,1999,20(4):428-432
    89.汪缉安,熊亮萍,杨淑贞.地热与石油[M].北京:科学出版社,1985:
    90.汪缉安,汪集旸.中国大陆沉积盆地热特征成油气资源[C].见:赵重远主编,含油气盆地地质学研究进展,西安:西北大学出版社,1993,227-234
    91.魏志彬,张大江,许怀先,等.EASY%Ro模型在我国西部中生代盆地热史研究中的应用[J].石油勘探与开发,2001,28(2):43-46
    92.薛爱民.利用磷灰石裂变径迹资料在反演热演化史的综合分析方法[J].地球物理学报,1994,37(3):338-343
    93.肖斌.东濮凹陷油气资源评价问题探讨[J].石油学报,2003,24(4):17-25
    94.肖卫勇,王良书,李华,等.渤海盆地地温场研究[J].中国海上油气(地质),2001,15(2):105-110
    95.徐汉林,赵宗举,吕福亮,等.南华北地区的构造演化与含油气性[J].大地构造与成矿学,2004,28(4):450-463
    96.许化政,周新科.东濮凹陷文留气藏天然气成因与成藏史分析[J].石油勘探与开发,2005,32(4):118-124
    97.许化政,周新科.文留地区石炭—二叠纪煤系煤系及生烃潜力[J].石油与天然气地质,2004,25(4):400-407
    98.谢奕汉,范宏瑞,王英兰.流体包裹体与盆地油气的生成和演化[J].地质科技情报(增刊),1998,17:100-104
    99.姚多喜,支霞臣,唐修义.鲁西南地区煤变质演化的热动力学模式及其特征[J].煤炭学报.2002,27(2):119-122
    100.杨森楠,杨巍然冲国区域大地构造学[M].北京:地质出版社,1985
    101.叶正仁,Bradford H Hager.全球地表热流的产生与分布[J].地球物理学报,2001,44(2):171-178
    102.臧绍先,刘永刚,宁杰远.华北地区岩石圈热结构的研究[J].地球物理学报,2002,45(1):56-66
    103.朱家蔚,戚厚发,廖永胜.文留煤成气藏的发现及其对华北盆地找气的意义[J].石油勘探与开发,1983,10(1):4-12
    104.朱炎铭,秦勇,范炳恒.渤海湾盆地三叠系沉积厚度恢复及其意义[J].中国矿业大学学报,2001,30(2):195-200
    105.朱炎铭,宋志敏,秦勇.渤海湾盆地深层古生界油气勘探前景[J].中国矿业大学学报,2002,31(4):343-348
    106.朱炎铭,秦勇等.黄骅坳陷裂变径迹分析与古生代烃源岩受热演化[J].煤炭学报,2001,26(2):113-116
    107.张勤文,黄怀曾.中国东部中、新生代构造—岩浆活化史[J].地质学报,1982,56(2):111-122
    108.张峰,刘铁庚,张凤祥.裂变径迹法研究白云鄂博东矿的成矿时代及热历史[J].自然科学进展,1997,7(2):202-206
    109.张恺.渤海湾盆地深部壳一幔结构和大地热流场对油气分布、富集规律控制的探讨.石油勘探与开发,1993,20(6):1-7
    110.张功成.济源凹陷盆地结构构造特征与油气勘探前景[J].断块油气田,1997,4(5):5-11
    111.张有生.沉积有机质二次生烃特征及其反应动力学研究[D].徐州:中国矿业大学,1999
    112.张亚敏,吕延仓,徐林丽,等.东濮凹陷兰聊断裂带构造演化与油气勘探[J].石油与天然气地质,2000,21(1):57-60
    113.张岳桥,赵越,董树文,等.中国东部及邻区早白垩世裂陷盆地构造演化阶段[J].地学前缘,2004,11(3):123-133
    114.张英利,赵长毅,朱炎铭.华北地区上古生界二次生烃及成藏条件特征[J].沉积学报,2006,24(5):747-755
    115.邹华耀,吴智勇.镜质体反射率在重建盆地古地温中的应用—中国东部、西部中、新生代沉积盆地古地温特征[J].沉积学报,1998,16(1):112-119
    116.邹艳荣,杨起,刘大锰.华北晚古生代煤二次生烃的动力学模式.地球科学,1999,24(2):189-192
    117.郑礼全,李贤庆,钟宁宁.华北地区上古生代煤系有机质热演化与二次生烃探讨[J].煤田地质与勘探.2002,30(3):21-25
    118.周中毅,潘长春.沉积盆地古地温测定方法及其应用[M].广州:广东科技出版社,1992,1-109
    119.周礼成,冯石,王世成,等.用AFTA方法评估临清坳陷丘3井地热史和地层剥蚀量[C].见含油气盆地地质学研究进展,西北大学出版社,1993,263-271
    120.周礼成,冯石,王世成,等.磷灰石裂变经迹长度分布数值模拟及地质应用[J].石油试验地质,1994,16(4):409-416
    121.周祖翼,廖宗廷,杨风丽,等.裂变径迹分析及其在沉积盆地研究中的应用[J].石油试验地质,2001,23(3):332-337
    122.周祖翼,Donolick R.基于磷灰石裂变径迹分析数据的时间—温度历史的多元动力学模拟[J].石油实验地质,2001,23(1):97-102.
    123.周章保.渤海湾盆地临清坳陷构造热演化与上古生界煤成气藏[D].中国地质大学博士论文,2002
    124.赵重远,刘池洋主编,华北在克拉通沉积盆地形成与演化及其油气赋存[C].西安:西北大学出版社,1990
    125.赵越.燕山地区中生代造山运动及构造演化[J].地质论评,1990,36(1):1-12
    126.赵孟为.磷灰石裂变径迹法在盆地热史研究中的应用[J].石油学报,1992,13(4):1-9
    127.赵文智,何登发.含油气系统理论在油气勘探中的应用[J].勘探家,1996,1(2):12-19
    128.赵文智,张光亚,王红军.石油地质理论新进展及其在拓展勘探领域中的意义[J].石油学报,2005,26(1):1-12
    129.赵靖舟.油气包裹体在成藏年代学研究中的应用实例分析[J].地质地球化学,2002,30(2):83-89
    130.赵伟卫,金强,王伟锋.华北盆地济源凹陷古地温梯度的研究—磷灰石裂变径迹的应用[J].石油实验地质,2002,24(6):555-560
    131.翟鹏济,赵云龙,郝秀红,等.裂变径迹定年实验室标准化刻度[J].核技术,1996,19(10):629-631
    132. Allen P A, Allen J R. Basin Analysis: Principles and Applications, Oxford: Blackwell. Scientific Publicatons, 1992, 53-63
    133. Antia D J. Kinetic method for modeling vitrinite reflectance. Geology, 1986, 14: 606-608
    134. Artemieva I M. Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth and Planetary Science Letters, 2003, 213: 431-446
    135. Bojar A V, Neubauer F, Fritz H. Cretaceous to Cenozoic thermal evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophysics, 1998, 297: 229-249
    136. Barker C E, Pawlewiz M J. The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Palaeogeothermics Lecture Notes in Earth Sciences, Berlin: Springer Verlag, 1986, 5: 79-93
    137. Barker C E, Goldstein R H. A fluid inclusion technique for determining maximum terperature in calcite and its comparision to the vitrinite reflectance geothermometer. Geology, 1990, 18: 1003-1006
    138. Barker C E. A fluid inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology, 1991, 18: 1003-1006
    139. Bostick N H. Thermal alteration of clastic organic particles as an indicator of contact and burial metamorphism in sedimentary rocks. Geoscience & man, 1971, 3: 83-92
    140. Bray R J, Green P F, Duddy I R. Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: a case study from the East Midlands of England data from Alaska and the southern North Sea. In: Exploration Britain: Geological Insights for the Next Decade(Ed. by R. S. P. Hardman), Geological Society of London Special Publication, 1992, 67: 3-25
    141. Burnham A K, Sweeney J J. A chemical kinetic model of vitrinite maturation and reflectance[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2649-2656
    142. Carlson W D. Mechanisms and kinetics of apatite fission-track annealing. American Mineralogist, 1990, 75: 1120-1139
    143. Cart A D. A vitrinite reflectance kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, 1999, 16: 355-377
    144. Carr A D. Thermal history model for the South Central Graben, North Sea, derived using both tectonics and maturation.Internation Journal of Coal Geology.2003,54(1-2):3-19
    145. Charlie F,Kerry G.Stochasticthermal history modeling 1.Constraining heat flow histories and their uncertainty.Marine and Petroleum Geology,2002,19(6):633-648
    146. Connan J.Time-temperature relation in oil genesis.AAPG Bulletin,1974,58:2516-2521
    147. Corrigan J.Inversion apatite fission-track data for thermal history information.Journal of Geophysics Research, 1991,96:10347-10360
    148. Crowley K.Thermal history of Michigan basin and southern Canadian shield from apatite fission track analysis.J. Geophys.Res. 1991,96,697-711
    149. Crowley K.Tectonic siginificance of pecambrian apatite fission-tract ages from the mid-continent united states.Earth Pleanent.Sci.Lett, 1986,79,329-336
    150. Deming D.Some problems in thermal history studies.In:Applications of thermal matarity studies to energy exploration. Denver C O:Eastwood Print and Publ, 1990,61-80
    151. Dong H L,Hall C M,Halliday A N. ~(40)Ar/~(39)Ar illite dating of Late Caledonian(Acadian) metamorphism and cooling of Kbentonites and slates from the Welsh Basin,U.K.Earth and Planetary Science Letters,1997,150:337-351
    152. Duddy I R,Green P F,Laslett G M.Thermal annealing of fission tracks in apatite 3.Variable temperature behaviour.Chemical Geology(Isotope Geoscience Section), 1988,73:25-38
    153. Ershov A V,Brunet M-F,Nikishin A M,et al.Northern Caucasus basin:thermal history and synthesis of subsidence models.Sedimentary Geology,2003,156:95-118
    154. Falvey D A,,Middleton M F.Passive continental margins: evidence for a prebreakup deep crustal metamorphic subsidence mechanism, inc olloquium on geology of continental margins(C_3)[J].Oceanologica Acta, 1981,4(3): 138-142
    155. Feinstein S,Kohm B P,Steckler M S,et al.Thermal history of earsten margin of the Gulf of Suez, I. Reconstuction from bore hole temperature and organic maturity measurements. Tectonophysics,1996,266:203-220
    156. Gallagher K,Ramadale M,Lonergan Land,et al.The role of thermal conductivity mean conductivity measurements in modeling thermal histories in sedimentary basins.Marine and Pertroleum geology, 1997,14(2):201-214
    157. Gallagher K.Evolving temperature histories from apatite fission-track data.Earth and planetary Science Letters, 1995,136:421-435
    158. Gleadow A J W,Duddy I R,Lovering J F.Fission track analysis:a new tool for the evaluation of thermal histories and hydrocarbon potential.Australian Petroleum Exploration Assoc Journal,1983,23:93-102
    159. Gleadow A J W,Duddy I R,Green P F,et al.Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis.Contrib.Mineral.Petrol, 1986,94:405-415
    160. Gibson H J,Stuwe K.Multiphase cooling and exhumation of the southern Adelaide Fold Beltxonstraints from apatite fission track data.Basin Res,2000,12:31-45
    161. Gallagher K,Ramadale M,Lonergan L,et al.The role of thermal conductivity meamal conductivity measurements in modeling thermal histories in sedimentary basins.Marine and Pertroleum geology, 1997,14(2):201-214
    162. Green P F.Comparison of zeta age calibration of fission track dating of apatite zircon and sphene.Chemical Section), 1983,1:285-317
    163. Green P F.The relationship between track shortening and fission tracks age reduction in apatite:combined influences of inherent instability,annealing anisotropy,length bias and system calibration.Earth Planet.Sci.Lett.1991,104:181-195.
    164. Green P F,Duddy I R,Gleadow A J W,et al.Thermal annealing of fission tracks in apatite: 1.A qualitative description.Isotope Geoscience section. 1986,59:237-253
    165. Green P F,Duddy I R,Gleadow A J W,et al.Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration.In: Thermal History of Sedimentary Basins-Methods and Case Histories(Ed.by N. D.Naeser & T.H.McCulloh), 1989,181-195
    166. Green P F,Duddy I R,Laslett G M,et al.Thermal annealing of fission track in apatite 4.Quantitative modeling techniques and extension to geological time-scale.Chem Geol, 1989,79:155-182
    167. Green P F,Duddy I R.,Gleadow A J W,et al. Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. Oil & Gas Geology, 1990,11(2):41-62
    168. Grivet M,Rebertez M,Ben Ghouma N et al.Apatite fission-track age correction and thermal history analysis from projected track length distributions.Chemical Geology(Isotope Geoscience Section),1993,103:157-169
    169. Hansen K,Bergman S C,Henk B.The Jameson Land basin(East Greenland):a fission track study and thermal evolution in the Cenozic North Atlantic Spreading regtime.Tectonophysics 2001,331:307-339
    170. Haszeldine R S,Samson I M,Cornfort C.Dating diagenesis in petroleum basin:a new fluid inclusion method.Nature,1984,307:354-357
    171. He S,Middleton M,Kaiko A,et al.Two case studies of thermal maturity and thermal modeling within the overpressured Jurassic rocks of the Barrow Sub-basin,North West Shelf of Australia.Marine and Petroleum Geology,2002(19):143-159
    172. Hu S B,Sullivan O,Paul B,et.Thermal history and tectonic subsidence of the Bohai Basin,northern China:a Cenozoic rifted and local pull-apart basin.Physics of the Earth and Planetary.2001,126(3-4):221-235
    173. Hurford A J,Green P F.A user's guide to fission track dating calibration.Earth and Planetary Science Letters,1982,59:343-354
    174. Hurford A J,Green P F.The zeta age calibration of fission track dating.Chemical Geology(Isotope Geoscience Section), 1983,1:285-317
    175. Kirsten H.Tracking thermal history in East Greenland: an overview.Global and Planetary Change.2000,24(3-4):303-309
    176. Laslett G M,Green P E,Duddy I R,et al.Thermal annealing of fission tracks in apatite,2.A quantitative annylysis.Chemical Geology(Isotope Geoscience Section). 1987,65:1-13
    177. Lerche I. Inversion of Multiple thermal indicators:quantitave methods of determining paleoheat flux and geological parameters.theoretical development for chemical, physical and geological parameters[J].Mathematical Geology, 1988,20:73-95
    178. Lutz T M,Omar G.An inverse methods of modeling thermal histories from apatite fission-track data.Earth and Planetary Scinece Letters, 1991,104:181-195
    179. Osadetz K G,Kohn B P,Feinstein B S.Thermal history of Canadian Williston basin from apatite fission-track thermochronology-implications for petroleum systems and geodynamic history.Tectonophysics,2002,349(1-4):221-249
    180. Pagel M,Walgenwitz F,Dubessy J.Fluid inclusions in oil and gas-bearing sedimentary formations.In:Burruss J,ed.Thermal modeling in sedimentary basins.Houston,Texas:Gulf Publishing Comp,1985:565-583
    181. Parrish R P.Cenozoic thermal evolution and tectonics of the Coast Mountanis of British Columbia, 1.Fission track dating,apparent uplift rates,and patterns of uplift.Tectonics,1983,2:601-631
    182. Pandey O P,Agrawal P K.Thermal regime,hydrocarbon maturation and geodynamic events along the western margin of India since late Cretaceous.Journal of Geodynamics,2000(30):439-459
    183. Sweeney J J,Burnham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin,1990,74:1559-1570
    184. Sachsenhofer R F,Privalov V A,Zhykalyak M V,et al.The Donets Basin(Ukraine/Russia):coalification and thermal history.International Journal of Coal Geology,2002,49:33-55
    185. Suzuki N,Matsubayashi H,Waples D W. A simpler kinetic model of vitrinite reflectance[J].AAPGBull, 1993,77:1502-1508
    186. Suggate R P.Relations between depth of burial,vitrinite reflectance and geothermal gradient[J].Journal of Petroleum Geology, 1998,21(1):5-32
    187. Thomson S N.Fission track analysis of the crystalline basement rocks of the Calabrian Arc,Southern Italy: evidence of Oligo-Miocene late-orogenic extension and erosion.Tectonophysics,1994, 238:331-351
    188. Tilley B J,Nesbitt B,Longstaffe F J.Thermal history of Alberta Deep Basin:comparative study of fluid inclusion and vitrinite reflectance data.AAPG Bulletin, 1989,73(10): 1206-1222
    189. Tissot B P,Welte D H.Petroleum formation and occurrence.New York:Springer-Yerleg,1984:601-604
    190. Tissot B P,Pelet R,Ungerer P.Thermal history of sedimentary basins maturation indices and kinetics of oil and gas generation.AAPG Bulletin,71(12): 1445-1466
    191. Tingate P R,Duddy I R.The thermal history of the eastern Officer Basin(South Australia):evidence from apatite fission track analysis and organic maturity data.Tectonophysics.2002,349(1-4):251-275
    192. Uysal I T,Glikson M,Golding S D,et al.The thermal history of the Bowan Basin,Queensland,Australia: Vitrinite reflectance and clay mineralogy of Late Permian coal measures. Tectonophysics,2000,323:105-129
    193. Wendta A S,Vidalb O,Chaddertonc L T.The effect of simultaneous temperature,pressure and stress on the experimental annealing of spontaneous fission tracks in apatite: a brief overview.Radiation Measurements 2003,36:339-342
    194. Wood D A.Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method:Implications for petroleum exploration.AAPG Bulletin, 1988,72:115-134
    195. Waple D W.Time and temperature in petroleum formation:application of Lopatin's method of petroleum exploration.AAPG Bulletin, 1980,64:916-926
    196. Wagner G AApatite fission-track geochrono-thermometer to 60℃: Projected length studies.Chemical Geology(Isotope Geoscience Section),1988,72:145-153
    197. Wagner G A,Gleadow A J W.Fitzgerald P G.The significance of the partial annealing zone in apatite fission-track analysis:Projected track length measurements and uplift chronology of the Transant-arctic Mountains.Chemical Geology(Isotope Geoscience Section), 1989,79;295-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700