水及联氨溶液中NC30Fe合金的微动磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电蒸汽发生器传热管与支撑板之间的微动损伤,是蒸汽发生器传热管破损失效和能量损失的主要原因之一。研究蒸汽发生器传热管材NC30Fe合金在水和联氨溶液中的微动磨损特性及损伤机理,对于运用微动摩擦学理论,分析解决传热管微动损伤问题,提高核电装备安全保障水平具有实际意义。
     本文采用PLINT高温微动磨损试验机,在室温(20-25℃)、50℃和80℃,法向载荷Fn为20N、50N和100N,位移幅值D为100m、150μm和200μm,频率f为2Hz,循环次数为20000次,研究干态、水及联氨溶液中NC30Fe与1Cr13不锈钢的微动磨损特性及损伤机理;使用扫描电子显微镜(SEM)、电子能谱仪(EDX)、X射线能谱仪(XPS)和NanoMap500DLS双模式轮廓仪等,对摩擦系数、磨痕截面、磨痕断面及磨屑等进行分析。获得以下主要研究结果:
     (1) NC30Fe合金在设定试验条件下,微动运行特性曲线(Ft-D)呈现平行四边形,微动均处于滑移区,微动磨损显著。
     (2)在水及联氨溶液中,随着温度升高,摩擦系数增大,磨损量增加,损伤加剧。
     (3)室温时,水及联氨溶液较干态明显降低了稳态摩擦系数,水中稳态摩擦系数较联氨溶液低;水及联氨溶液的润滑作用明显减轻了材料的摩擦与磨损,水的润滑及减磨作用优于联氨溶液。
     (4)干态时的磨损机制主要表现为摩擦氧化、磨粒磨损及剥层的共同作用;水及联氨溶液中的磨损机制主要表现为磨粒磨损和剥层的共同作用。
     (5)干态时磨屑中的氧化物主要有:Ni2O3、NiO、Cr2O3和Fe203;水中,室温时磨屑中的氧化物主要有:Cr2O3、Cr(OH)3和FeOOH,50℃时磨屑中的氧化物主要有:Ni(OH)2、Cr2O3、Cr(OH)3和FeOOH,80℃时磨屑中的氧化物主要有:Ni(OH)2、NiO、Cr2O3、Cr(OH)3和Fe203;联氨溶液中,室温时磨屑中的氧化物主要有:Cr2O3、Cr(OH)3和FeOOH,50℃时磨屑中的氧化物主要有:Ni(OH)2、NiO、Cr2O3、Cr(OH)3和FeOOH,80℃时磨屑中的氧化物主要有:Ni2O3、 Cr2O3、Cr(OH)、FeO和Fe203/Fe304。
Fretting damage between the nuclear steam generator tubes and support plates has become one of the main reasons for breakage failure of steam generator tubes and energy loss. Therefore the study of fretting wear behavior of NC30Fe alloy in distilled water and hydrazine solution has practical significance for analyzing and solving the fretting damage of heat transfer tubes and improving the level of nuclear power equipment security by using the fretting wear theory.
     PLINT high temperature fretting wear test rig was used to investigate the fretting damage characteristic and mechanism of NC30Fe alloy in ambient, distilled water and hydrazine solution against1Cr13steel under the following conditions:the normal load (Fn) of20N,50N and100N respectively, the displacement amplitude (D) of100μm,150μm and200μm respectively at constant frequency (f) of2Hz, number of cycles (N) of2×104. The setting temperature were room temperature (20~25℃),50℃,80℃. The aqueous medium was distilled water and hydrazine solution respectively. Friction coefficient, worn surface, cross-section of wear scar and debris were analyzed by scanning electron microscopy (SEM), X-ray electron spectrometer, energy dispersive X-ray detector (EDX), and NanoMap500DLS dual-mode profilermeter after fretting wear tests. The following conclusions were obtained:
     (1) All the fretting logs under setting tests conditions were parallelogram which demonstrated that fretting logs were running in the slip regime and fretting wear was significant.
     (2) The friction coefficient and wear capacity in distilled water and hydrazine solution increased and the fretting damage became serious with temperature increased.
     (3) The friction coefficient in distilled water or hydrazine solution was decreased obviously compared with ambient, but it in distilled water was lowest. In comparison to ambient, the wear was lightened in distilled water or hydrazine solution significantly, but it was more serious in hydrazine solution than that in distilled water.
     (4) The abrasive wear, friction oxidation and delamination were the main wear mechanism of NC30Fe in ambient. However, in distilled water or hydrazine solution the abrasive wear and delamination were the main wear mechanisms of NC30Fe.
     (5) In ambient the main oxides of debris were Ni2O3, NiO, Cr2O3and Fe2O3at room temperature. In distilled water the main oxides of debris were Cr2O3, Cr(OH)3and FeOOH at room temperature, the main oxides of debris were Ni(OH)2,Cr2O3,Cr(OH)3and FeOOH at50℃, and the main oxides of debris were Ni(OH)2, NiO, Cr2O3, Cr(OH)3and Fe2O3at80℃.In hydrazine solution the main oxides of debris were Cr2O3, Cr(OH)3and FeOOH at room temperature, the main oxides of debris were Ni(OH)2, NiO, Cr2O3, Cr(OH)3and FeOOH at50℃, the main oxides of debris were Ni2O3, Cr2O3, Cr(OH)3, FeO and Fe2O3/Fe3O4at80℃.
引文
[1]R. B. Waterhouse. Fretting corrosion [M]. Pergamon Press, Oxford,1972.
    [2]R. B. Waterhouse. Fretting fatigue [M]. Elsevier Applied Science, London, 1981.
    [3]周仲荣,罗唯力,刘家浚.微动摩擦学的现状与发展趋势[J].摩擦学报,1997,17(3):272~282.
    [4]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [5]唐辉.世界核电设备与结构将长期面临的一个问题—微动磨损[J].核动力工程,2000,21(3):222-23 1.
    [6]Eden E M, Rose W N, Cunningham F L. The endurance of metals. Proc. Mech. Eng.,1911,4:839~974.
    [7]Gillet H W, Mack E L. Notes on some endurance test of metals. Proc. Am. Soc. Testing Mater., 1924.24:476.
    [8]Tomlinson G A. The rusting of steel surface in contact. Proc. R. Soc. Ser. A.1927,115:472~483.
    [9]E. J. Warlow-Davies. Fretting corrosion and fatigue strength:brief results of preliminary experiments. ARCHIV: Proceedings of the Institution of Mechanical Engineers,1941,146:32~38.
    [10]Mindlin, R. D. Compliance of elastic bodies in contact [J] J. Appl. Mech, 1949,16:259-268.
    [11]F. P. Bowden, D. Tabor, Frederic Palmer. The Friction and Lubrication of Solids. American Journal of Physics,19(17):428~429.
    [12]I-Ming Feng, B. G. Rightmire. An Experimental Study of Fretting. Proceedings of the Institution of Mechanical Engineers,1956,170(1):1055~1064.
    [13]H. H. Uhlig. Mechanism of fretting of corrosion. J. Appl. Mech.,1954, 21:401~407.
    [14]F. P. Bowden, D. Tabor. The Friction and Lubrication of Solids, part Ⅱ. Clarendon Press, Clarendon Press:Oxford University Press,534.
    [15]K. Nishioka, S. Nishimura and K. Hirakawa. Fundamental investigation of fretting fatigue. Bull. JSME,12,1969:180-187,397-414,692~697.
    [16]P.L. Hurricks. The mechanism of fretting[J]Wear,1970,6(15):389~409.
    [17]D.W. Hoeppner and G. L. Goss. Research on the mechanism of fretting fatigue, corrosion fatigue:chemistry, mechanics, and microstructure. Nation Association of Corrosion Engineers, USA,1972:617~626.
    [18]N. P. Suh. The delamination theory of wear. Wear,1973,25:111~124.
    [19]N. P. Suh. An overview of the delamination theory of wear. Wear,1977, 44:1-6.
    [20]R. B. Waterhouse. The role of adhesion and delamination in fretting wear of metallic materials. Wear.1977,45:355~364.
    [21]R. B. Waterhouse. D. E. Taylo. Fretting dEbris and the delamination theory of wear. Wear,1974,29:337~344.
    [22]K. Endo and H. Goto. Initiation and propagation of fretting fatigue cracks. Wear,38,1976:311~324
    [23]H. Czichos, D. Dowson. Tribology. Tribology International,1978,11(4).
    [24]D. G. Goal, D. J. Duquette. The effect of fretting and environment On fatigue crack initiation and early propagation in a quenched and tempered 4130 steel. Metallugical Transaction,1980,11:1555~1561.
    [25]M. Godet. Third-bodies in tribology. Wear,136,1990:317~330.
    [26]Y. Berthier, L. Vincent and M. Godet. Velocity accommodation in fretting. Wear,125,1988:25-38.
    [27]K. L. Johnson. Contact Mechanics. Cambridge University Press,1985
    [28]Zhou Z R, S. Fayeulle and L. Vincent. Cracking behavior of varies aluminum alloys during fretting wear.Wear,155,1992:317~330.
    [29]Zhou Z R. Fissuration induite en petits dEbattements:application au cas dalliages daluminium a ronautiques. Thesis, Ecole Centrale de Lyon,1992.
    [30]Zhou Z R and L. Vincent. Effect of external loading on wear maps of aluminum alloys. Wear,162-164,1993:619~623.
    [31]Zhou Z R and L. Vincent. Mixed fretting regime. Wear,181-183, 1995:531-536.
    [32]Zhou Z R and L. Vincent. Cracking induced by fretting of aluminum alloys. Journal of Tribology, ASME,119,1997:36~42.
    [33]D. A. Hills, D. Nowell. Mechanics of Fretting Fatigue.Springer,1994.
    [34]K. L. Johnson. Contact mechanics and the wear of metals. Wear,1995, 190(2):162~170.
    [35]朱旻昊.径向与复合微动的运行和损伤机理研究:[博士学位论文].成都:西南交通大学,2011.
    [36]张晓宇,任平弟Incoloy800合金的高温微动磨损特性研究[J].中国有色金属学报,2010,8(20):1545~1551.
    [37]Vincent L. Mechanics and materials in fretting. Wear,1992,153:135~148.
    [38]Odfalk M. Vingsbo O. An elastic-plastic model for fretting Contact. Wear, 1992.157:435-444.
    [39]Vingsbo O, Soderberg S. On fretting maps. Wear,1988,126(2):131~147.
    [40]张晓宇.1-800合金高温微动损伤特性研究:[硕士学位论文].成都:西南交通大学,2009.
    [41]任平弟.钢材料微动腐蚀行为研究:[博十学位论文].成都:西南交通大学,2005.
    [42]朱旻昊,罗唯力,周仲荣.表面工程技术抗微动损伤的研究现状[J].机械工程材料,2003,27(4):1~3,29.
    [43]朱曼吴,徐进,周仲荣.抗微动损伤的表面工程设计[J].中国表面工程,2007,20(6):5~10.
    [44]R. B. Waterhouse著,周仲荣等译.微动磨损与微动疲劳[M].成都:西南交通大学出版社,1999.
    [45]董毅,高志远.我国核电事业的发展与Incone1690的研制[J].特种钢术,2004,3:35~40.
    [46]样文斗编著.反应堆材料学[M].北京:原子能出版社,2006.
    [47]卢华星.AP1000蒸汽发生器U型管合金材料国产化研究[J].核动力工程,2011,32(3):29~32.
    [48]Jin-Ki Hong, In-Sup Kim, Chi-Yong Park, Eung-Seon Kim. Microstructural effects on the fretting wear of Incone1690 steam generation tube. Wear,2005, 259:349-355.
    [49]G M Quanglia, et al. Fretting-Corrosion Studies Related to Steam Generator of PWR Power Plants. Corrosion Abstracts.1998.
    [50]D-G Kim, Y-Z Lee. Experimental Investigation on Sliding and Fretting Wear of Steam Generator Tube Materials [J]. Wear (Switzerland),2001,205-251, Part: 1,:637-680
    [51]G.Sui, J.M. Titchmarsh, G.B.Heys. Stress corrosion cracking of alloy600 and alloy690 in hydrogen/steam at 380℃[J].1997,3:565~587.
    [52]Young-Ho Lee, Hyung-Kyu Kim, Hong-Deok Kim, Chi-Yong Park, In-Sup Kim. A comparative study on the fretting wear of steam generator tubes in Korean power plants[J].Wear,2003.7(255):1198~1208.
    [53]Young-Ho Lee. In-Sup Kim. et al. A study on wear coefficient and mechanisms of steam generator tube materials [J]. Wear,2001,250:718~725.
    [54]M.Casales, V.M.Salinas-Bravo, A.Martinez-Villafane. Effect of heat treatment on the stress corrosion cracking of alloy690 [J].2002,2:223~230.
    [55]Jae-do Kwon, Young Suck Chai. A study on fretting behavior in room temperature for Inconel alloy690 [J]. International Journal of Modern Physics.2006, 20:4303~4308.
    [56]Jin-Ki Hong, In-Sup Kim. Environment effects on the reciprocating wear of Inconel 690 steam generator tubes [J]. Wear,2003,255:1174~1182.
    [57]Sung-Hoon Jeong, Chung-Woo Cho, et al. Friction and wear of Incone1690 for steam generator tube in elevated temperature water under fretting condition[J]. Tribology International.2005,38:283~288.
    [58]徐颖,孙德宝,王浩伟等.热处理对690合金抗腐蚀性能影响综述[J].核动力工程,1995,16(5):459-462.
    [59]朱志平,赵永福,周瑜等.690合金在ETA和AVT水工况下的电化学特性[J].腐蚀科学与防护技术,2012,,24(4):285-290.
    [60]张红斌,李守军,胡尧和等.国外关于蒸汽发生器传热管用Incone1690合金研究现状[J].特钢技术,2003,4:2-9.
    [61]张晓宇,任平弟,李长香等.I-800合金微动磨损特性研究[J].核动力工程,2009,30(5):67~70.
    [62]Pranesh Sengupta, Detlef Rogalla, Hans Werner Becker. Development of graded Ni-YSZ composite coarting on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory[J]. Journal of Hazardous Materials,2011,192:208~221.
    [63]H. L. Du, P. K. Datta, J. S. Burnell-Gray. Influence of plasma-sprayed Mo coating on sulphidation behabiour of Inconel600 and Nimonic PE11 alloys [J]. Surface and Coatings Technology,1995,76~77:1~6.
    [64]戴海娜,吕宇鹏等InconelNC30Fe表面处理方法的研究进展[J].金属热处理,2011,36(10):38~41.
    [65]邓华凌,宋云京等InconelNC30Fe管镀铬层激光处理工艺研究[J].热加工工艺.2012,41(14):155~160.
    [66]许文花,吕宇鹏等InconelNC30Fe离子渗氮工艺研究[J].材料热处理学报,2011,32:170~172.
    [67]何欢.低温等离子体辅助Inconel690渗氮工艺研究:[博士学位论文].大连:大连理工大学,2004.
    [68]欧阳予.世界主要核电国家发展战略与我国核电规划[J].现代电力,2006,23(5):1~8.
    [69]肖新建.2011年中国核电发展状况、未来趋势及政策建议[J].探讨与研究,2012,34(2):18~23,47.
    [70]叶奇蓁.中国核电发展战略研究[J].电网与清洁能源,2010,26(1):3-8.
    [71]薛汉俊.核能动力装置[M].北京:原子能出版社.1990.1.
    [72]LOW M B J. Fretting problems and some solutions in power plant machiner [J].Wear,1985,106:315~336.
    [73]丁训慎.蒸汽发生器的微震磨损及其防护[J].核安全,,2006,,3:26-33.
    [74]李宇春.核电站水化学控制工况[M].北京:化学工业出版社.2008.
    [75]Zhang X Y, Ren P D. Fretting wear and friction oxidation behavior of 0Cr20Ni32AlTi alloy at high temperature [J]. Transactions of Nonferrous Metals Society of China,2012,22(4):825~830.
    [76]http://srdata.nist.gov/xps/Default.aspx
    [77]Huang F, Wang J Q, Han E H, Ke W. Short-time Oxidation of Alloy 690 in High-temperature and High-pressure Steam and Water[J]. J. Mater. Sci. Technol., 2012,28(6):562~568.
    [78]侯颖颖,陈雪峰.浅谈氨水对设备的腐蚀及防腐措施[J].中国石油和化工标准与质量,2011,31(11):57.
    [79]余远方,王辉,胡石林.690TT合金在特殊环境下的腐蚀问题[J].中国腐蚀与防护学报,2010,30(3):251-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700