金乌贼胚胎与幼体发育生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金乌贼(Sepia esculenta),隶属软体动物门(Mollusca)、头足纲(Cephalopoda)、乌贼目(Sepioidea)、乌贼科(Sepiidae)、乌贼属(Sepia),主要分布于我国渤海、黄海、东海、南海,日本北海道以南,朝鲜西南海域及菲律宾群岛海域。其肉质鲜美,营养价值高,是一种具有较高经济价值的头足类。但近年来由于资源的过度开发和产卵场环境的破坏,金乌贼产量逐年降低。为恢复这种传统渔业资源,研究人员相继开展了金乌贼增殖技术的研发,但金乌贼的养殖仍然存在诸多困难,例如初孵仔乌的成活率较低,开口饵料的成本较高等。为了解决这些问题,研究金乌贼胚胎发育的生理过程及幼体生长发育的生物学势在必行。因此本文运用生理学、组织学及行为学等研究方法,系统描述了金乌贼胚胎发育过程,阐述了其胚胎发育过程中生化成分和呼吸代谢的变化,并对其胚后发育的生长模式、性腺分化、骨板形成及摄食行为进行了深入的研究和探讨。所得结果如下:
     1.金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究
     采集金乌贼及曼氏无针乌贼(Sepiella maindroni)受精卵,观察了金乌贼胚胎发育过程,比较分析了2种乌贼受精卵和仔乌的形态特征;分别研究了金乌贼受精卵在盐度20、25、30(对照)、33、36及曼氏无针乌贼受精卵在盐度15、20、25、30(对照)、36条件下的孵化率,分析了2种乌贼受精卵在192h盐度突变过程中卵液渗透压和受精卵Na+-K+~ATPase活力的变化,比较了其在相同盐度20、25、30、36条件下的孵化率及耐受盐度突变的生理适应过程。结果表明,金乌贼胚胎发育第7d器官开始分化,第14d器官开始形成,盐度30、水温22~24oC时,其孵化时间为20~21d;盐度30处理组,2种乌贼受精卵的孵化率均显著高于其他盐度处理组(P<0.01);在192h盐度突变过程中,2种乌贼受精卵卵液渗透压随环境盐度的变化而变化,金乌贼受精卵卵液渗透压与环境渗透压相等,而曼氏无针乌贼受精卵卵液渗透压比环境渗透压平均高出60mosm/kg,2种乌贼受精卵均未检测到Na+-K+~ATPase活性。比较发现,虽然2种乌贼受精卵渗透调节能力均较弱,但曼氏无针乌贼受精卵比金乌贼能更好地适应盐度变化。
     2.金乌贼胚胎发育过程中主要生化成分转化与利用模式的研究
     系统研究了金乌贼胚胎发育过程中胚胎体积的变化及水分、蛋白质、脂肪、碳水化合物、氨基酸、脂肪酸含量等主要生化成分的转化与利用,探讨了胚胎在发育过程中的能量来源和消耗规律。结果表明,胚胎发育早期,胚胎体积和水分含量逐渐降低,至器官分化期后则显著上升(P<0.05);蛋白质是卵黄中主要的营养成分(55.19%~78.45%),脂肪(9.86%~15.56%)次之,而碳水化合物(1.62%~2.97%)含量最低;胚胎发育过程中,蛋白质和脂肪含量分别下降了23.3%和0.4%,而碳水化合物含量增加了0.46%;总氨基酸和必需氨基酸含量在胚胎发育早期保持稳定,但孵化时含量显著降低(P<0.05),整个胚胎发育过程中必需氨基酸含量降低了25.7%,主要由于蛋氨酸(70.3%),缬氨酸(63.0%)和苯丙氨酸(58.5%)含量的大幅减少;最重要的脂肪酸分别为饱和脂肪酸C16:0、多不饱和脂肪酸C22:6和C20:5,在胚胎发育过程中,不饱和脂肪酸和饱和脂肪酸的利用率分别为5.69%和6.15%,且单不饱和脂肪酸的利用率(29.6%)远远高于多不饱和脂肪酸的利用率(0.05%)。研究结果丰富了头足类胚胎发育生理生态学理论。
     3.温度和胶质外膜对金乌贼胚胎孵化时间及其呼吸代谢的影响
     应用密闭装置,研究了不同温度条件下金乌贼正常胚胎和去卵膜胚胎在发育过程中的耗氧率和排氨率以及胚胎孵化时间。实验结果表明,温度对金乌贼胚胎孵化时间有显著影响(P﹤0.05),在16.0oC条件下对照组孵化时间最长,为49.23d,去膜组为46.14d,而在28.1oC温度下去膜组孵化时间最短,为14.26d,正常组为15.61d,去膜组胚胎的孵化时间均短于对照组;胚胎的耗氧率和排氨率显著受到温度影响(P﹤0.05),且随温度的升高而增大,28.1oC条件下的耗氧率为16.0oC的2倍以上,对照组与去膜组初孵仔乌的耗氧率和排氨率分别与温度呈二次多项式关系;各个温度条件下,去膜组的耗氧率和排氨率显著高于对照组(P﹤0.05),表明胶质外膜虽然对受精卵起到一定的保护作用,但阻碍受精卵氧气的扩散、氨氮的排放,并延长了胚胎的孵化时间。实验结果为优化金乌贼胚胎孵化条件提供了科学依据。
     4.金乌贼早期生长发育模式的研究
     测量了1至56日龄金乌贼幼体的胴背长、胴宽、体重、骨板壳长、壳宽、及骨板层数,分析了金乌贼幼体早期发育方式和功能器官的异速生长模型。结果表明,金乌贼早期发育过程中,胴背长、体重和骨板层数分别与日龄呈指数关系,根据幼体生长率的不同,发育过程分为两个阶段。不同阶段骨板层数的增长率均显著小于1(P<0.05),因此骨板层数不能成为判定乌贼日龄的指标。胴部和骨板的生长均出现异速生长的特点,表明有关运动的重要器官具有优先发育的特征。本研究结果验证了在早期发育过程中功能器官的异速生长亦存在于头足类中的假设。
     5.金乌贼幼体性腺分化的组织学研究
     利用显微组织学方法,观察了初孵仔乌至107日龄金乌贼幼体的性腺发育过程,确定了金乌贼幼体性腺分化时间。结果表明,初孵仔乌性腺为未分化性腺,在外套腔底部含有一簇原始生殖细胞;在养殖水温20±1°C条件下,卵巢分化时间为20日龄,分化标志为性腺中卵原细胞的出现,表明诱导全雌乌贼最适合的时间为幼体20日龄或之前;精巢的分化时间为86日龄,分化标志为性腺中精原细胞的出现,精巢分化比卵巢分化晚,分化之前一直处于静止状态;107日龄时精细小管的出现,也从解剖学层面证实了精巢的分化;20日龄至86日龄性腺未分化个体势必会分化为雄性。
     6.温度波动对金乌贼幼体骨板形成的影响
     研究了不同温度波动对金乌贼幼体骨板形成的影响。共设置15个温度波动周期,每个温度波动周期4d,不同温度波动设置如下:A组(26°C,3d;16°C,1d),B组(26°C,2d;16°C,2d)和C组(对照组;26°C,0d;16°C,4d;无温度波动)实验进行60d。结果显示,温度波动对幼体乌贼的存活率无显著影响(P>0.05);每个温度波动周期,幼体形成的平均骨板轮层数分别为2.45±0.02(A组)、2.00±0.02(B组)、1.78±0.02(C组),单因素方差分析显示各组间存在显著差异(P<0.05);不同温度波动处理,幼体的骨板轮层数与日龄之间均可用线性关系表示;与对照组相比,A组有最高的骨板生长率和最低的室率及骨板轮层间距;骨板轮层数分别与骨板生长率及室率呈二次多项式关系。温度波动能够导致金乌贼幼体骨板轮层暗纹的缺失,从而形成温度标记,但暗纹缺失的位置并不固定,因此这种温度标记的方法需结合其他标记方法一同使用。
     7.金乌贼幼体摄食行为及摄食能力的研究
     实验室条件下,观察了金乌贼幼体的摄食行为,并对胴背长为8.2~22.9mm幼体的摄食能力进行了系统研究。结果发现,金乌贼幼体对糠虾的摄食行为分为攻击和吃食两个部分,其中攻击行为又主要分为发现、定位和捕捉三个阶段;金乌贼幼体摄食成功率较高,胴背长大于10mm的幼体摄食成功率均大于80%;摄食发生次数、攻击距离、最大攻击距离和总摄食时间与个体胴背长均呈二次多项式关系,而总摄食量和食饵操纵时间分别与其呈指数、幂数关系;摄食发生次数、攻击距离、最大攻击距离、总摄食时间和总摄食量随生长而增大,但食饵操纵时间随生长减少,表明金乌贼幼体随生长发育摄食能力迅速增强。实验结果丰富了头足类行为生态学理论知识。
The golden cuttlefish Sepia esculenta is a large, commercially importantcephalopod in the Far East sea of Russia and the coasts of China, Japan, Korea andthe Philippines. In recent years, the resource has sharply decreased and has been nearextinction because of excessive fishing and severe destruction of their spawningenvironment. Consequently, recovery methods and techniques have been developed torestore the cuttlefish resources. But there are still some problems, such as the lowsurvival rate of the newly hatched larvae and the high cost of the initial feeds. Tosolve these problems, it is necessary to know the physiological procsee of theembryonic and post embryonic development of this species. In this study, embryonicdevelopment and post embryonic development of S. esculenta were investigated bystatistical, physiological, histological and behavioral methods. The results are asfollows:
     1. A comparative study of Sepia esculenta and Sepiella maindroni on embryonicdevelopment and ability of salinity tolerance
     Fertilized eggs of Sepia esculenta and Sepiella maindroni were collected fromthe wild and the embryonic development of S. esculenta was observed in thelaboratory. The morphological characters of fertilized eggs and newly hatched larvaebetween the two species were also compared. The effects of different seawatersalinities of20,25,30(control),33,36for S. esculenta and15,20,25,30(control),36for S. maindroni on hatching rate were studied, respectively. Changes in egg fluidosmolality and egg Na+-K+~ATPase activity of S. esculenta and S. maindroni werealso measured during the abrupt salinity changes of192h, respectively. Hatching rates of fertilized eggs at the same salinity and physiological adaptation to the abruptsalinity changes during192h were compared between S. esculenta and S. maindroni.The results showed that organ differentiation happened when embryo was7-day-old,whileorgan formation occurred when embryo was14-day-old for S. esculenta. Theincubation period of S. esculenta fertilized egg ranged from21d to22d at22~24°Cand salinity of30. Hatching rates of S. esculenta and S. maindroni under the controltreatment were significantly higher than those under the other salinity treatments(P<0.01), indicating that salinity of30is the suitable hatching salinity for fertilizedeggs of two species. Fluid osmotic pressure of S. esculenta and S. maindroni fertilizedegg changed as seawater salinity altered during the abrupt salinity change. The eggfluid osmotic pressure of S. esculenta was equal to the medium osmotic pressure,while the egg fluid osmotic pressure of S. maindroniwas60mosm/kg higher thanthose in the medium. Activities of Na+-K+~ATPase were not found in fertilized eggsof two species. These results indicate that fertilized eggs of two species have littleability in regulating the osmotic pressure. However, fertilized egg of S. maindroni canaccommodate the salinity alteration better than S. esculenta.
     2. Biochemical composition of cuttlefish (Sepia esculenta) eggs during embryonicdevelopment
     In this study, changes in egg volume, water content, proteins, carbohydrates,lipids, amino acids and fatty acids in cuttlefish (Sepia esculenta) were determinedduring embryogenesis to understand the nutritional requirements in the early lifephase. The egg volume and the water content decreased significantly (P<0.05) duringthe early embryonic development, and then increased abruptly after the beginning oforgan differentiation. During embryonic development, protein was found as the majorcontent in the yolk and the percent composition varied to a large extent (55.19%to78.45%). By contrast, carbohydrates (9.86%to15.56%) and lipids (1.62%to2.97%) were lower. During the embryonic development, proteins and lipids showed23.3%and0.4%decrease in dry weight, respectively, whereas carbohydrates exhibited a0.46%increase in dry weight. Total amino acids and essential amino acids (EAAs)were stable during the early embryonic developmental stage, but decreasedsignificantly until the eggs hatched (P<0.05). The largest utilisation of the yolkprotein possibly occurred with respect to EAA (25.7%) because of a decrease inmethionine (70.3%), valine (63.0%) and phenylalanine (58.5%). The most importantfatty acids were saturated fatty acid (SFA) C16:0and polyunsaturated fatty acids(PUFAs) C22:6and C20:5. Unsaturated fatty acids (UFAs) and SFA decreased at asimilar rate during embryonic development (5.69%and6.15%, respectively). ForUFAs, monounsaturated fatty acids were consumed at a greater rate than PUFAs (29.6%and0.05%, respectively). These data contribute to the understanding on thebiochemistry and physiology of cuttlefish embryos and pre-feeding larval stages.
     3. Effects of temperature and capsule layer on oxygen consumption andammonia excretion during embryonic development of cuttlefish Sepia esculenta
     The metabolic responses of the embryo Sepia esculenta in terms of oxygenconsumption and ammonia excretion to changes in temperature and capsule layerwere investigated. Temperature had significant effects on hatching time (P<0.05). At16.0oC, the control group had the longest hatching time (49.23d), while the hatchingtime for the group with egg capsule removed was46.14d. At28.1oC, the group withegg capsule removed had the shortest hatching time (14.26d), while the hatching timefor the control group was15.61d. Temperature had significant effects on oxygenconsumption rate and ammonium excretion rate during embryonic development (P<0.05), and metabolic rate increased with the increasing temperature. The relationshipbetween temperature and oxygen consumption rate as well as ammonia excretion rateof the hatchlings could be described as the quadratic model, respectively. Metabolic rate increased with the development stage. Under all temperature conditions, groupwith egg capsule removed had higher oxygen consumption rate and ammoniumexcretion rate (P<0.05) than that in group with the capsule intact indicating that thecapsule impede the oxygen diffusion and ammonia excretion as well as prolong thehatching time of the embryo. The data contribute to optimize the hatching conditionof cuttlefish embryos.
     4. Study on early development and growth pattern in golden cuttlefish Sepiaesculenta
     Early development and allometric growth patterns of Sepia esculenta larvaeraised under culture conditions were described.From hatching to day56, ten larvaewere sampled every five day and measured dorsal mantle length, mantle breadth,body weight, cuttlebone length, cuttlebone breadth and lamella number. Therelationship between dorsal mantle length, body weight, lamella number and dayscould be described as the exponential model, respectively. However, there were twodifferent phases during early development, because of the different growth rate of thejuvenile. The lamella in the cuttlebone was notdeposited daily that demonstratedthenumber of lamellas in the cuttlebonedid not correspond to actual age.In addition,allometric growth of mantle and cuttlebone were discovered, indicating that theseimportant organs like swimming organ had developed prior to other ones.The presentresultssupport the hypothesis of differential growth patterns for primary functionsduring early ontogeny in cephalopod.
     5. Histological observation on sexual differentiation in golden cuttlefish Sepiaesculenta
     In the present study sexual differentiationwere investigated in culturedindividualsof a gonochoristic species of cuttlefish, Sepia esculenta during newly hatched larvae to107days old using light microscopy. At the time of hatching, theinitially undifferentiated gonad contains primordial germ cells. Ovarian differentiation,initiated20days post hatching (DPH), is characterized by the appearance of theoogonia. Testes remain undifferentiated until differentiation of thespermatogoniahappened at86DPH. The appearance of the developing seminiferous tubules (107DPH) confirmed testicular differentiation. The individuals that do not form an ovaryduring20DPH to84DPH are destined to become males.
     6. Effects of temperature fluctuations on cuttlebone formation of cuttlefish Sepiaesculenta
     The morphological characteristics and the cuttlebone formation of Sepiaesculenta exposed to different water temperature fluctuations were investigated underlaboratory conditions. Temperature fluctuation cycles (15cycles,60d in total)consisted of the following three regimes of4d duration: keeping water temperature in26°C for3d (Group A),2d (Group B),0d (Group C, control); then keeping watertemperature in16°C for the next1,2,4d. No significant difference in the survivalrate was observed between the control and temperature fluctuation groups (P>0.05).Lamellar depositions in a temperature fluctuation cycle were2.45±0.02for Group A,2.00±0.02for Group B, and1.78±0.02for Group C (P<0.05). The relationshipbetween age and number of lamellas in the cuttlebone of S. esculenta under eachwater temperature fluctuation could be described as the linear model and the numberof lamellas in the cuttlebone did not correspond to actual age. Group A had the highestcuttlebone growth index (CGI), the lowest locular index (LI), and inter-streakdistances comparing with those of control group. However, the number of lamellasand LI or CGI showed a quadratic relationship for each temperature fluctuation group.In addition, temperature fluctuations caused the breakage of cuttlebone dark rings,which was considered a thermal mark. The position of the breakage in the dark rings was random. This thermal mark can be used as supplementary information formarking and releasing techniques.
     7. Study on feeding behavior and feeding ability of juvenile cuttlefish Sepiaesculenta
     Feeding behavior of the golden cuttlefish Sepia esculenta was observed inlaboratory conditions. The feeding behavior on prawns consisted of two phase namely,attacking and eating. The sequence of attacking behavior comprised three phases:attention, positioning and seizure. The successful feeding rate of the juvenilecuttlefish whose dorsal mantle length (DML) was>10mm was relatively high, noless than80%. The relationship between DML and feeding times, attacking distance,maximum of attacking distance, total feeding time could be described as the quadraticmodel, respectively while the relationship between DML and total feeding amount,handling time was exponential model, respectively. Feeding times, attacking distance,maximum of attacking distance, total feeding time and total feeding amount increasedwith growth while handling time decreased with growth. Feeding ability of juvenilecuttlefish rapidly increased with growth.
引文
Agin, V., Dickel, L., Chichery, R. and Chichery, M. P.(1998). Evidence for a specific short-termmemory in the cuttlefish, Sepia. Behavioral Processes43,329–334.
    Amaratunga, T.(1983). The role of cephalopods in the marineecosystem. In Caddy, J.F. eds.Advances in the assessmentof world cephalopod resources. FAO Fisheries Technical Paper231,379–412.
    Arakawa, Y.(1960). Miscellaneous notes on Mollusca,2. Mating and spawning habits of somemarine mollusca. Venus21,72–78.(in Japanese with English Abstract)
    Arkhipkin, A. and Bizikov, V.(1996). Possible imitation of jellyfish by the squid paralarvae of thefamily Gonatidae (Cephalopoda, Oegopsida). Polar Biology16,531–534.
    Arkhipkln, A. I. and Seibel, B. A.(1999). Statolith microstructure from hatchlings of the oceanicsquid, Gonatus onyx (Cephalopoda, Gonatidae) from the Northeast Pacific. Journal of PlanktonResearch21,401–404.
    Arnold, J. M.(1965). Normal embryonic stages of the squid Loligo pealii (LeSueur). BiologyBulletin128,24–32.
    Arnold, J. M.(1974). Embryonic development of the squid. In: Arnold JM, Summers WC, GilbertDL, Manalis RS, Daw NW, Lasek RJ (eds) A guide to laboratory use of the squid Loligopealeii. Marine Biological Laboratory, Woods Hole, MA, p2444
    Arnold, J. M. and O’Dor, R. K.(1990). In vitro fertilization and embryonic development ofoceanic squid. Journal of Cephalopod Biology1,2136.
    Arnold, J. M. and Singley, C. T.(1989). Ultrastructural changes in the cells of the Hoyle organduring hatching of the squid Loligo pealei. Journal of Cephalopod Biology1,1–14.
    Bettencourt, V. and Guerra, A.(1999). Carbon-and oxygen-isotope composition of the cuttleboneof Sepia officinalis: a tool for predicting ecological information? Marine Biology133,651–657.
    Bettencourt, V. and Guerra, A.(2000). Growth increments and biomineralization process incephalopod statoliths. Journal of Experimental Marine Biology and Ecology248,191–205.
    Bettencourt, V. and Guerra, A.(2001). Age studies based on daily growth increments in statolithsand growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biology139,327–334.
    Blanc, A. and Daguzan, J.(1999). Young cuttlefish Sepia officinalis (Mollusca: Sepiidae) in theMorbihan Bay (south Brittany, France): accessory prey of predators. Journal of the MarineBiological Association of the UK79,1133–1134.
    Blanc, A. and Daguzan, J.(2000). Size selectivity in the diet of the young cuttlefish Sepiaofficinalis (Mollusca: Sepiidae). Journal of the Marine Biological Association of the UK80,1137–1138.
    Boletzky, S. V.(1989). Recent studies on spawning, embryonic development, and hatching in theCephalopoda. Advances in Marine Biology25,85–115.
    Boletzky, S. V.(1997). Puffing smoke-rings under water: the functional morphology of inkejectors. In Functional Morphology of Cephalopods (S. V. Boletzky, P. Fioroni and A. Guerra,eds). Vie et Milieu47,180-181.
    Boletzky, S. V.(2002). Yolk sac morphology in cephalopod embryos. In "Cephalopods-Presentand Past"(H. Summesberger, K. Histon and A. Daurer, eds), Abhandlungen der GeologischenBundesanstalt (Wien)57,57–68.
    Boletzky, S. V., Rowe, L. and Aroles, L.(1973). Spawning and development of the eggs, in thelaboratory, of Illex coindetii (Mollusca: Cephalopoda). Veliger15,257–258.
    Boucaud-Camou, E. and Roper, C. F. E.(1995). Digestive enzymes in paralarval cephalopods.Bulletin of Marine Science57,313–327.
    Boucaud-Camou, E. and Roper, C. E E.(1998). The digestive system of rhynchoteuthionparalarvae (Cephalopoda: Ommastrephidae). Bulletin of Marine Science62,81–87.
    Boucaud-Camou, E., Yim, M. and Tresgot, A.(1985). Feeding and digestion of young Sepiaofficinalis L.(Mollusca: Cephalopoda) during post-hatching development. In Biology anddistribution of Early Juvenile Cephalopods (K. Mangold and S. v. Boletzky, eds). Vie et Milieu35,263–266.
    Bouchaud, O. and Galois, R.(1990). Utilization of egg-yolk lipidsduring the embryonicdevelopment of Sepia officinalis L. in relation to temperature of the water.ComparativeBiochemistry and Physiology97B (3),611–615.
    Budelmann, B. U., Schipp, R. and Boletzky, S. V.(1997). Cephalopoda. In "Microscopic Anatomyof Invertebrates"(E W. Harrison, ed.), vol.6A: Mollusca II, chapter3, pp.119–414.Wiley-Liss, New York.
    Burbach, J. P., Hellemons, A., Hoekman, M., Grant, P. and Pant, H. C.(2001). The stellateganglion of the squid Loligo pealeii as a model for neuronal development: expression of aPOU class VI homeodomain gene, Rpf-1. Biological Bulletin201,252–254.
    Caddy, J.F. and Griffiths, R.C.(1995). Living marine resources and their sustainable development.FAO Fisheries Technical Paper353,167p.
    Chen, D. S., Van Dykhuizen, G., Hodge, J. and Gilly, W. E.(1996). Ontogeny of copepodpredation in juvenile squid (Loligo opalescens). Biological Bulletin190,69–81.
    Chiao, C. C. and Hanlon, R. T.(2001). Cuttlefish camouflage: visual perception of size, contrastand number of white squares on artificial checkerboard substrata initiates disruptive coloration.Journal of Experimental Biology204,2119–2125.
    Choe, S.(1966a) On the eggs, rearing, habits of the fry, and growth of some Cephalopoda.Bulletin of Marine Science16,330-348
    Choe, S.(1966b) On the growth, feeding rates and the efficiency of food conversion forcuttlefishes and squids. Korean Journal of Zoology9,72-80.
    Choe, S. and Ohshima Y.(1963) Rearing of cuttlefishes and squids. Nature197,307.
    Cinti, A., Baron, P. J. and Rivas, A. L.,(2004). The effects of environmental factors on theembryonic survival of the Patagonian squid Loligo gahi. Journal of Experimental MarineBiology and Ecology313,225–240.
    De Eguilor, M., Leonardi, M. G., Grimaldi, A., Tettamanti, G., Fiandra, L., Giordana, B.,Valvassori, R. and Lanzavecchia, G.(2000). Integumental amino acid uptake in a carnivorouspredator mollusc (Sepia officinalis, Cephalopoda), Tissue and Cell32,389–398.
    Delgado,C.L., Wada, N., Rosegrant, M.W., Meijer, S. and Ahmed, M.(2003). Fish to2020. Supplyand Demand in Changing Global Markets. WorldFish Center Technical Report62.International Food Policy Research Instituteand WorldFish Center. International Food PolicyResearch Institute, Washington, D.C. and WorldFish Center Penang, Malaysia.236p.
    Dickel, L., Chichery, M. P. and Chichery, R.(1997). Postembryonic maturation of the vertical lobecomplex and early development of predatory behavior in the cuttlefish (Sepia officinalis).Neurobiology of Learning and Memory67,150–160.
    FAO2002. The State of World Fisheries and Aquaculture. FAO Fisheries Department. Food andAgriculture Organization of the United Nations. Rome, Italy,150p.
    FAO2004. The State of World Fisheries and Aquaculture. FAO Fisheries Department. Food andAgriculture Organization of the United Nations. Rome, Italy,153p.
    Fioroni, P.(1990). Our recent knowledge of the development of the cuttlefish (Sepia officinalis).Zoologischer Anzeiger224,1–25.
    Fioroni, P, and Boletzky, S. v.(1990). Morphologische Aspekte der Dotterresorption in dersp teren Embryonalperiode von Octopoden unter besonderer Berticksichtigung von zweiEledone-Arten. Zoologische Beitr ge N. F.33,1–21.
    Furukawa, H. and Sakurai, Y.(2008). Effect of low salinity on the survival and development ofJapanese common squid Todarodes pacificus hatchling. Fisheries Science74,458–460.
    Gowland, E. C., Boyle, P. R. and Noble, L. R.(2002). Morphological variation provides a methodof estimating thermal niche in hatchlings of the squid Loligo forbesi (Mollusca; Cephalopoda).Journal of Zoology258,505–513.
    Hamabe, M.(1962). Embryological studies of the common squid, Ommastrephes sloani pacificus(Steenstrup), in the southwestern waters of the Sea of Japan. Bulltin of Japan Fishery Resouse10,1–45.
    Hanlon, R. T. and Messenger, J. B.(1988). Adaptive coloration in young cuttlefish (Sepiaofficinalis L.): the morphology and development of body patterns and their relation tobehaviour. Philosophical Transactions of the Royal Society of London B320,437–487.
    Hanlon, R, T. and Messenger, J. B.(1996). Cephalopod Behaviour. Cambridge University Press,Cambridge.
    Hayashi, S.(1960). Development of the squid, Ommastrephes sloani pacificus (Steenstrup).Nagasaki Daigaku Suisangakubu Kenkyo Hokoku. Nagasaki Univertisy9,43–48.
    Hernandez-Garcia, V. Martin, A.Y. and Castro, J. J.(2000). Evidence of external digestion ofcrustaceans in Octopus vulgaris paralarvae. Journal of the Marine Biological Association of theUK80,559–560.
    Ikeda, Y., Ito, K. and Matsumoto, G.(2004). Does light intensity affect embryonic development ofsquid (Heterololigo bleekeri)? Journal of the Marine Biological Association of the UK84,1215–1219.
    Ikeda, Y. and Shimazaki, K.(1995). Does nidamental gland jelly induce the formation ofperivitelline space at fertilization in the squid Todarodes pacificus? Journal of the MarineBiologicalAssociation of the UK75,495497.
    Ishikawa, M. and Iwai, E.(1958). Some descriptions on the fishery and biology of the cuttlefish,Sepia esculenta Hoyle, living in Tokyo Bay. Nihon University9,43-51.(in Japanese withEnglish Abstract)
    Jackson, G. D. and Choat, J. H.(1992). Growth in tropical cephalopods: an analysis based onstatolith microstructure. Canadian Journal of Fisheries and Aquatic Sciences49,218–228.
    Jackson, G. D., Lu, C. C. and Dunning, M.(1991). Growth rings within the statolithmicrostructure of the giant squid Architeuthis. The Veliger34,331–334.
    Kataoka, T.(1960). Egg laying behavior of Sepia esculenta in aquarium. Journal of ZoologyAquarium2,12–13(in Japanese)
    Kier, W. M.(1996). Muscle development in squid: ultrastructural differentiation of a specializedmuscle fiber type. Journal of Morphology229,271–288.
    Klein, K.C. and Jaffe, L.A.(1984). Development of in vitro fertilized eggs of the squid Loligopealeii, and techniques for dechorionation and artifical activation. Biology Bulletin167,518.
    Kunisaki, N.(2000). Nutritional Properties of Squid andCuttlefish. In Okuzumi, M.and Fujii, T.eds. Nutritionaland Functional Properties of Squid and Cuttlefish.National CooperativeAssociation of Squid Processors.Japan,218p.
    Laptikhovsky, V. V.(1991). Mathematical models for the study of the duration of cephalopodembryogenesis. Biologicheskij Nauki3,37–48.
    Le Goff R, Gauvrit E, Pinczon Du Sel G, Daguzan J.(1998). Age group determination by analysisof the cuttlebone of the cuttlefish Sepia officinalis L. in reproduction in the Bay of Biscay.Journal of Molluscan Studies64,183–193.
    Lei, S. Zhang, X. Liu, S. and Chen, S.(2012). Effects of temperature fluctuations on cuttleboneformation of cuttlefish Sepia esculenta. Chinese Journal of Oceanology and Limnology30,547–553.
    Lem, A. and Shehadeh, Z. H.(1997). International trade in aquaculture products. FAOAquaculture Newsletter17,3–6.
    Lenz, S., Sundermann, G. and Fioroni, P.(1995). The epidermal lines of Octopus vulgarisLamarck,1798, and Sepiola affinis Naef,1912(Mollusca: Cephalopoda) at hatching state.Zoologischer Anzeiger234,145–157.
    Marquis, F.(1989). Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam.(Cephalopoda, Octopoda), eine histologische Analyse. Verhandlungen der NaturforschendenGesellschaft in Basel99,23–76.
    Martins, M. C.(1997). The statoliths of Loligo vulgaris and L. forbesi hatchlings: preliminarymorphological study. In "Functional Morphology of Cephalopods"(S. v. Boletzky, P. Fioroniand A. Guerra, eds). Vie et Milieu47,171–176.
    Matsuno, A. and Ouji, M.(1988). Ultrastructural studies on development of the tail gland of acuttlefish, Sepiella japonica. Development, Growth and Differentiation30,673–680.
    Meinertzhagen, I. A.(1990). Development of the squid's visual system. In "Squid as ExperimentalAnimals"(D. L. Gilbert, W. J. Adelman and J. M. Arnold, eds), pp.399–419. Plenum Press,New York and London.
    Messenger, J. B.(2001). Cephalopod chromatophores: neurobiology and natural history.Biological Reviews76,473–528.
    Morris, C. C.(1991). Methods for in situ experiments on statolith increment formation, withresults for embryos of Alloteuthis subulata. In "Squid Age Determination Using Statoliths"(EJereb, S. Ragonese and S. v. Boletzky, eds). N.T.R.-LT.PP.(Mazara del Vallo, Italy), SpecialPublication1, pp.67–72.
    Morris, C. C.(1993). Environmental effects on increment formation in embryonic statoliths of thesquid Alloteuthis subulata (Myopsida: Loliginidae). Journal of Cephalopod Biology2(2),23–32.
    Nabhitabhata, J. and Nilaphat, P.(2000). Behaviour of juvenile cephalopods: preference fortexture and brightness of substrata. Phuket Marine Biological Center Special Publication21,103–112.
    Naef, A.(1923). Die cephalopoden. Fauna et Flora di Golfo del Napoli Monographia,35(2),plates9–12.
    Naef, A.(1928). Die cephalopoden. Fauna et Flora di Golfo del Napoli Monographia,35(2):186–194.
    Natsukari, Y. and Komine, N.(1992). Age and growth estimation of the European squid, Loligovulgaris, based on statolith microstructure. Journal of the Marine Biological Association of theUnited Kingdom72,271–280.
    Natsukari, Y., Nakanose, T. and Oda, K.(1988). Age and growth of Ioliginid squid Photololigoedulis (Hoyle,1885). Journal of Experimental Marine Biology and Ecology116,177–190.
    Nixon, M. and Mangold, K.(1996). The early life of Octopus vulgaris (Cephalopoda:Octopodidae) in the plankton and at settlement: a change in lifestyle. Journal of Zoology,London239,30–327.
    Nixon, M.(1988). The buccal mass of fossil and recent Cephalopoda. In "Paleontology andNeontology of Cephalopods"(M. R. Clarke and E. R. Trueman, eds; Vol. l2of "The Mollusca",K. M. Wilbur, ed.), pp.103–122. Academic Press, London.
    Ohshima, Y. and Choe, S.(1961). On the rearing of young cuttlefish and squid. Bulletin of theJapanese Society of Scientific Fisheries27,979-986.(in Japanese with English Abstract)
    O'Dor, R. K. and Dawe, E. G.(1998). Illex illecebrosus. In "Squid Recruitment Dynamics-TheGenus Illex as a Model, the Commercial Illex Species and Influences on Variability"(P. G.Rodhouse, E. G. Dawe and R. K. O'Dor, eds). FAO Fisheries Technical Paper376,77–104.
    O'Dor, R. K. and Webber, D. M.(1986). The constraints on cephalopods: why squid aren't fish.Canadian Journal of Zoology64,1591–1605.
    Paulij, W. P., Bogaards, R. H. and Denucé, J. M.(1990). Influence of salinity on embryonicdevelopment and the distribution of Sepia officinalis in the Delta Area (South Western part ofThe Netherlands). Marine Biology107,17–23.
    Paulij, W. P., Herman, P. M. J., Roozen, M. E. F. and Denucé, J. M.(1991a). The influence ofphotoperiodicity on hatching of Sepia officinalis. Journal of the Marine Biological Associationof the UK71,665–678.
    Paulij, W. P., Kallen, J. L. and Denucé, J. M.(1991b). Hemispheric-apex cells in the mantleepithelium of Loligo vulgaris and Loligo forbesi hatchlings and juveniles: A transmissionelectron microscope study. Invertebrate Reproduction and Development19,51–60.
    Paulij, W. P., Zurburg, W., Denucé, J. M. and Van Hannen, E. J.(1990). The effect of copper onthe embryonic development and hatching of Sepia officinalis L. Archives of EnvironmentalContamination and Toxicology19,797–801.
    Raya, C. P. and Hemandez-Gonzalez, C. L.(1998). Growth lines within the beak microstructure ofthe octopus Octopus vulgaris Cuvier,1797. In "Cephalopod Biodiversity, Ecology andEvolution"(A. I. L. Payne, M. R. Lipinski, M. R. Clarke and M. A. C. Roeleveld, eds). SouthAfrican Journal of Marine Science20,135–142.
    Richard A.(1969). The part played by temperature in the rhythm of formation of markings on theshell of the cuttlefish Sepia officinalis L.(Mollusca Cephalopoda). Experientia,25:1051.
    Ruíz-Capillas, C., Moral, A., Morales, J. and Montero, P.(2002).Characterization of non-proteinnitrogen in the Cephalopodsvolafor (Illex coindetii), pota (Todaropsiseblanae) and octopus(Eledone cirrhosa). Food Chemistry76,165–172.
    Sakurai, Y. and Ikeda, Y.(1994). Laboratory rearing methods of Todarodes pacificus for theecological study of life cycle. In: Yatsu A (ed) Proc Squid Stock Ocean Conditions1993.National Research Institute for Far Sea Fisheries, Shimizu, p51–69(in Japanese).
    Sakurai, Y., Young, R. E., Hirota, J., Mangold, K., Vecchione, M., Clarke, M. R. and Bower, J.(1995). Artificial fertilization and development through hatching in the oceanic squidsOmmastrephes bartramii and Sthenoteuthis oualaniensis (Cephalopod: Ommastrephidae).Veliger38,185191.
    Sen, H.(2004) A preliminary study on the effects of different light intensities on hatching ofEuropean squid (Loligo vulgaris lamarck,1798) eggs. Turkish Journal of Fisheries and AquaticSciences4:01–04.
    Sen, H.(2005) Temperature tolerance of loliginid squid (Loligo vulgaris Lamarck,1798) eggs incontrolled conditions. Turkish Journal of Fisheries and Aquatic Sciences5,53–56.
    Shashar, N., Hanlon, R. T. and Petz, A. de M.(1998). Polarization vision helps detect transparentprey. Nature393,222–223.
    Shigeno, S. Kidokoro, H., Goto, T., Tsuchiya, K. and Segawa, S.(2001a). Early ontogeny of theJapanese common squid Todarodes pacificus (Cephalopoda, Ommastrephidae) with specialreference to its characteristic morphology and ecological significance. Zoological Science18,1011–1026.
    Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S. and Yamamoto, M.(2001b). Development ofthe brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage.Zoological Science18,527–541.
    Shigeno, S. Kidokoro, H., Tsuchiya, K., Segawa, S. and Yamamoto, M.(2001c). Development ofthe brain in the oegopsid squid, Todarodes pacificus: an atlas from hatchling to juvenile.Zoological Science18,1081–1096.
    Shigeno, S., Tsuchiya, K. and Segawa, S.(2001d). Conserved topological patterns andheterochronies in loliginid cephalopods: comparative developmental morphology of the ovalsquid Sepioteuthis lessoniana. Invertebrate Reproduction and Development39,161–174.
    Shigeno, S., Tsuchiya, K. and Segawa, S.(2001e). Embryonic and paralarval development of thecentral nervous system of the loliginid squid Sepioteuthis lessoniana. The Journal ofComparative Neurology437,449–475.
    Sinanoglou, V. J. and Miniadis-Meimaroglou, S.(1998). Fatty acid of neutral and polar lipids of(edible) Mediterranean cephalopods. Food Research International31(6–7),467–473.
    Tanabe, K., Tsukahara, J., Fukuda, Y. and Taya, Y.(1991). Histology of a living Nautilus embryo:preliminary observations. Journal of Cephalopod Biology2,13–22.
    Thompson, J. T. and Kier, W. M.(2001a). Ontogenetic changes in fibrous connective tissueorganization in the oval squid, Sepioteuthis lessoniana Lesson,1830. Biological Bulletin201,136–153.
    Thompson, J. T. and Kier, W. M.(2001b). Ontogenetic changes in mantle kinematics duringescape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson,1830. BiologicalBulletin201,154–166.
    Tomarev, S. I., CaUaerts, P., Kos, L., Zinovieva, R., Halder, G., Gehring, W. and Piatigorsky, J.(1997). Squid Pax-6and eye development. Proceedings of the National Academy of Science,U.S.A.94,2421–2426.
    Vecchione, M. and Hand, V. A.(1989). Digestive-gland histology in paralarval squids(Cephalopoda: Loliginidae). Fishery Bulletin, US87,995–1000.
    Villanueva, R.(2000b). Differential increment-deposition rate in embryonic statoliths of theloliginid squid Loligo vulgaris. Marine Biology137,161–168.
    Villanueva, R., Quintana, D., Petroni, G., Bozzano, A.,(2011). Factors influencing the embryonicdevelopment and hatchling size of the oceanic squid Illex coindetii following in vitrofertilization. Journal of Experimental Marine Biology and Ecology407,54–62.
    Voight, J. R. and Grehan, A. J.(2000). Egg brooding by deep-sea octopuses in the North PacificOcean. Biological Bulletin198,94–100.
    Watanabe, K., Sakurai, Y., Segawa, S. and Okutani, T.(1996). Development of the ommastrephidsquid Todarodes pacificus, from fertilized egg to rhynchoteuthion paralarva. AmericanMalacological Bulletin13,7388.
    Watase, S.(1891) Studies on cephalopods. I. Cleavage of the ovum. J Morphol4:247302
    West, J. A., Sivak, J. and Doughty, M. J.(1995). Microscopical evaluation of the crystalline lensof the squid (Loligo opalescens) during embryonic development. Experimental Eye Research60,19–35.
    Williamson, R.(1995). A sensory basis for orientation in cephalopods. Journal of the MarineBiological Association of the United Kingdom75,83–92.
    Yamamoto, M.(1988). Normal embryonic stages of the pygmy cuttlefish, Idiosepius pygmaeusparadoxus Ortmann. Zoological Science5,989–998.
    Yamamoto, T.(1942). On the embryonal development of Sepia esculenta Hoyle. Botany andZoology10,443-448.(in Japanese with English Abstract)
    Yatsu, A., Tafur, R. and Maravi, C.(1999). Embryos and rhynchoteuthion paralarvae of the jumboflying squid Dosidicus gigas (Cephalopoda) obtained through artificial fertilization fromPeruvian waters. Fisheries Science65,904908.
    Young, J. Z.(1991). Light has many meanings for cephalopods. Visual Neuroscience7,1–12.
    肖述,郑小东,王如才,王昭萍.2003,头足类耳石轮纹研究进展,中国水产科学,10:73–78.
    韦柳枝.2004.山东日照近海金乌贼生物学研究.[硕士学位论文],青岛,中国海洋大学.
    魏臻邦.1964.金乌贼生活习性的初步观察.动物学杂志,1(2):132–134.
    赵厚钧,魏邦福,胡明,等.2004.金乌贼受精卵孵化及不同材料附着基附卯效果的初步研究.海洋湖沼通报,26(3):64–68.
    Alderdice, D. F.(1988). Osmotic and ionic regulation in teleost eggs and larvae. In: ThePhysiology of Developing Fish: Eggs and Larvae. Fish Physiology, Vol.11A. Hoar, W. S. andRandall, D. J., editors. London: Academic Press,163-251.
    Alderdice, D. F. and Forrester, C. R.(1971a). Effects of salinity and temperature on embryonicdevelopment of the Petrale sole (Eopsetta jordani). Journal of the Fisheries Research Board ofCanada28,727-744.
    Alderdice, D. F. and Velsen, F. P. J.(1971b). Some effects of salinity and temperature on earlydevelopment of Pacific herring Clypea pallasi. Journal of the Fisheries Research Board ofCanada29,1545-1562.
    Arima, S., Hiramatsu, T. and Tako, N.(1962). Mass production of deedling and maintenance ofSepiidae. Annual Research,71-100.
    Cinti, A., Barón, P. J. and Rivas, A. L.(2004). The effects of environmental factors on theembryonic survival of the Patagonian squid Loligo gahi. Journal of Experimental MarineBiology and Ecology313(2),225-240.
    Furukawa, H. and Sakurai, Y.(2008). Effect of low salinity on the survival and development ofJapanese common squid Todarodes pacificus hatchling. Fisheries Science74(2),458-460.
    Paulij, W. P., Bogaards, R. H. and Denucé, J. M.(1990). Influence of salinity on embryonicdevelopment and distribution of Sepia officinalis in the Delta Area (South Western part of TheNetherlands). Marine Biology107,17-23.
    Sakurai, Y., Kiyofuji, H., Saitoh S, Goto, T. and Hiyama, Y.(2000). Changes in inferred spawningareas of Todarodes pacificus (Cephalopoda:Ommastrephidae) due to changing environmentalconditions. ICES Journal of Marine Science57,24-30.
    Wei, L. Z., Gao, T. X. and Zhang, X. M.(2005). Isozyme analysis of Sepia esculenta(Cephalopoda: Sepiidae). Journal of Fishery Sciences of China12(5),549-556.
    Zheng, X. D., Ikeda,M., Kong, L. F., Lin, X. Z., Li, Q. and Taniguchi, N.(2009). Genetic diversityand population structure of the golden cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae)indicated by microsatellite DNA variations. Marine Ecology30(4),448-454.
    董正之.(1991)世界大洋经济头足类生物学.济南:山东科学技术出版社,197-207.
    郝振林,张秀梅,张沛东.(2007)金乌贼的生物学特性及增殖技术.生态学杂志,26(4):601-606.
    蒋霞敏,符方尧,李正,等.(2007)曼氏无针乌贼的卵子发生及卵巢发育.水产学报,31(5):607-617.
    李成林,张艳萍,赵斌,等.(2009)胶州湾曼氏无针乌贼资源量与季节变化的调查研究.渔业科学进展,30(3):62-67.
    李佳佳.(2008)暗纹东方鲀(Takifugu obscurus)早期发育阶段渗透压调节能力的研究.南京:南京师范大学,1-68.
    李嘉泳.金乌贼(Sepia esculenta Hoyle)在黄渤海的结群生殖和洄游.山东海洋学院报,1963,5(2):69-108.
    刘振勇,苏跃中,谢友佺,等.(2009)曼氏无针乌贼胚胎发育的初步观察.渔业科学进展,30(5):13-19.
    麦贤杰,黄伟健,叶富良,等.(2005)海水鱼类繁殖生物学和人工繁育.北京:海洋出版社:345.
    潘鲁青,唐贤明,刘泓宇,等.(2006)盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响.海洋与湖沼,37(1):1-6.
    孙丽华,陈浩如,王肇鼎.(2006)盐度对军曹鱼胚胎和仔鱼发育的影响.生态科学,25(1):48-51.
    韦柳枝,高天翔,韩志强,等.(2005)日照近海金乌贼生物学的初步研究.海洋大学学报,35(6):923-928.
    谢志浩.(2002)鱼类的渗透压调节.生物学通报,37(5):222.
    徐力文,刘广锋,王瑞旋,等.(2007)急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响.应用生态学报,18(7):1596-1600.
    张玺,齐钟彦,李洁民.(1962)中国经济动物志-海产软体动物.北京:科学出版社:213-217.
    张炯,卢伟成.(1965)曼氏无针乌贼Sepiella maindroni繁殖习性的初步观察.水产学报,2:35-41.
    郑元甲,陈雪忠,程家骅,等.(2003)东海大陆架生物资源与环境.上海:上海科学技术出版社,:722-727.
    Arnold, J. M.(1965). Normal embryonic stages of squid Loligo pealii (Lesueur). BiologicalBulletin128,24–32.
    Bell, J. G. and Sargent, J. R.(2003). Arachidonic acid in aquaculture feeds: current status andfuture opportunities. Aquaculture218,491–499.
    Benkendorff, K., Davis, A. R., Rogers, C. N. and Bremner, J.B.(2005). Free fatty acids andsterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties.Journal of Experimental Marine Biology and Ecology316,29-44.
    Bligh, E. G. and Dyer, W. J.(1959). A rapid method of total lipid extraction and purification.Canadian Journal of Biochemistry and Physiology37,911–917.
    Bouchaud, O. and Galois, R.(1990). Utilization of egg-yolk lipids during the embryonicdevelopment of Sepia officinalisL. in relation to temperature of the water. ComparativeBiochemistry and Physiology Part B97,611–615.
    Bouchaud, O.(1991). Energy consumption of the cuttlefish Sepia officinalis L.(Mollusca:Cephalopoda) during embryonic development, preliminary results. Bulletin of Marine Science49,333–340.
    Castro, B. G., Garrido, J. L. and Sotelo, C. G.(1992). Changes in composition of digestive glandand mantle muscle of the cuttlefish Sepia officinalis during starvation. Marine Biology114,11–20.
    Chen, H. Y.(1998). Nutritional requirements of the black tiger shrimp: Penaeus monodon.Review in Fisheries Science6,79–95.
    Clarke, A., Rodhouse, P. G. and Gore, D. J.(1994). Biochemical composition in relation to theenergetics of growth and sexual maturation in the ommastrephid squid Illex argentinus.Philosophical Transactions of the Royal Society of LondonB344,201–212.
    Culkin, F. and Morris, R. J.(1970). The fatty acids of some cephalopods. Deep-Sea Research17,171–174.
    Domingues, P. M., Sykes, A. and Andrade, J. P.(2002). The effects of temperature in the life cycleof two consecutive generations of the cuttlefish Sepia officinalis (Linnaeus,1758), cultured inthe Algarve (South Portugal). Aquaculture International10,207–220.
    G de, D. and Grieshaber, M. K.(1986). Pyruvate reductases catalyzes the formation of lactate andopines in anaerobic invertebrates. Comparative Biochemistry and Physiology Part B83,255–272.
    García-Garrido, S., Hachero-Cruzado, I., Garrido, D., Rosas, C. and Domingues, P.(2010). Lipidcomposition of the mantle and digestive gland of Octopus vulgaris juveniles (Cuvier,1797)exposed to prolonged starvation. Aquaculture International18,1223–1241.
    García García, B. and Aguado-Giménez, F.(2002). Influence of diet on ongrowing and nutrientutilization in the common octopus (Octopus vulgaris). Aquaculture211,171–182.
    Gomi, F., Yamamoto, M. and Nakazawa, T.(1986). Swelling of egg during development of thecuttlefish, Sepiella japonica. Zoological science3,641–645.
    Gunasekera, R. M., De Silva, S. S. and Ingram, B. A.(1999). The amino acid profiles indeveloping eggs and larvae of the freshwater Percichthyid fishes, trout cod, Maccullochellamacquariensis and Murray cod, Maccullochella peelii peelii. Aquatic Living Resources12,255–261.
    Hayashi, K., Kishimura, H. and Sakurai, Y.(1990). Level and composition of diacyl glycerylethers in the different tissues and stomach contents of giant squid Moroteuthis robusta. Bulletinof the Japanese Society of Scientific Fisheries56,1635–1639.
    Heras, H., Gonzalez-Baró, M. R. and Pollero, R. J.(2000). Lipid and fatty acid composition andenergy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids35,645–651.
    Houlihan, D. F., McMillan, D. N., Agnisola, C., Genoino, I. T. and Foti, L.(1990). Proteinsynthesis and growth in Octopus vulgaris. Marine Biology106,251–259.
    Jangaard, P. M. and Ackman, R. G.(1965). Lipids and component fatty acids of the Newfoundlandsquid, Illex illecobrosus (Le Sueur). Journal of the Fisheries Research Board of Canada22,131–137.
    Lee, P. G.(1994). Nutrition of cephalopods: fuelling the system. Marine and FreshwaterBehaviour and Physiology25,35–51.
    Levine, R. L., Mosoni, L., Berlett, B. S. and Stadtman, E. R.(1996). Methionine residues asendogenous antioxidants in proteins. Proceedings of the National Academy of Sciences USA93,15036–15040.
    Liu, Z. Z., Zhu, F. H., Xu, Y. L. and Zhang, P. J.(1999). Improvement in Kjeldahl's methoddetermining protein content of flounder muscle.Marine Science6,1–3.
    Litaay, M., De Silva, S. S. and Gunasekera, R. M.(2001). Changes in the amino acid profilesduring embryonic development of the blacklip abalone (Haliotis rubra). Aquatic LivingResources14,335–342.
    Metcalfe, L. D., Schmitz, A. A. and Pelka, J. R.(1966). Rapid preparation of fatty acid esters fromlipids for gas chromatographic analysis. Analytical Chemistry38,514–515.
    Mourente, G. and Vázquez, R.(1996). Changes in the content of total lipid, lipid classes and theirfatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup.Fish Physiology and Biochemistry15,221–235.
    Navarro, J. C. and Villanueva, R.(2000). Lipid and fatty acid composition of early stages ofcephalopods: an approach to their lipid requirements. Aquaculture183,161–177.
    Newton, A. and Mudge, S. M.(2003). Temperature and salinity regimes in a shallow, mesotidallagoon, the Ria Formosa, Portugal. Estuarine, Coastal and Shelf Science57,73–85.
    Okutani, T.(1995). Cuttlefish and squids of the world in color. National Cooperative Associationof Squid Processors, Tokyo.186pp.
    Petersen, S. and Anger, K.(1997). Chemical and physiological changes during the embryonicdevelopment of the spider crab, Hyas araneus L.(Dccapoda: Majidac). ComparativeBiochemistry and Physiology Part B117,299–306.
    Reitan, K. I., Rainuzzo, J. R. and Olsen, Y.(1994). Influence of live feed on growth, survival andpigmentation of turbot larvae. Aquaculture International2,33–48.
    R nnestad, I., Fyhn, H. J. and Gravningen, K.(1992). The importance of free amino acids to theenergy metabolism of eggs and larvae of turbot Scophthalmus maximus. Marine Biology114,517–525.
    R nnestad, I. and Fyhn, H. J.(1993). Metabolic aspects of free amino acids in developing marinefish eggs and larvae. Reviews in Fisheries Science1,239–259.
    R nnestad, I., Thorsen, A. and Finn, R. N.(1999). Fish larval nutrition: a review of recentadvances in the roles of amino acids. Aquaculture17,201–216.
    Rosa, R., Morais, S., Calado, R., Narciso, L. and Nunes, M. L.(2003). Biochemical changesduring the embryonic development of Norway lobster, Nephrops norvegicus. Aquaculture221,507–522.
    Rosa, R., Costa, P. R. and Nunes, M. L.(2004). Effect of sexual maturation on the tissuebiochemical composition of Octopus vulgaris and O. defilippi (Mollusca: Cephalopoda).Marine Biology145,563–574.
    Rosa, R., Pereira, J. and Nunes, M. L.(2005). Biochemical composition of cephalopods withdifferent life strategies, with special reference to a giant squid, Architeuthis sp. Marine Biology146,739–751.
    Sargent, J. R., McEvoy, L. A. and Bell, J. G.(1997). Requirements, presentation and sources ofpolyunsaturated fatty acids in marine fish larval feeds. Aquaculture155,117–127.
    Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J. and Tocher, D.(1999).Lipid nutrition of marine fish during early development: current status and future directions.Aquaculture179,217–229.
    Sykes, A. V., Almansa, E., Lorenzo, A. and Andrade, J. P.(2009). Lipid characterization of bothwild and cultured eggs of cuttlefish (Sepia officinalis L.) throughout the embryonicdevelopment. Aquaculture Nutrition15,38–53.
    Teshima, S. I.(1998). Nutrition of Penaeus japonicus. Review in Fisheries Science6,97–111.
    Tocher, D. R. and Sargent, J. R.(1984). Analyses of lipids and fatty acids in ripe roes of somenorthwest European marine fish. Lipids19,492–499.
    Vázquez, R., González, S., Rodríguez, A. and Mourente, G.(1994). Biochemical composition andfatty acid content of fertilized eggs, yolk sac stage larvae and first-feeding larvae of theSenegal sole (Solea senegalensis Kaup). Aquaculture119,273–286.
    Villanueva, R., Riba, J., Ruíz-Capillas, C., González, A. V. and Baeta, M.(2004). Amino acidcomposition of early stages of cephalopods and effect of amino acid dietary treatments onOctopus vulgaris paralarvae. Aquaculture242,455–478.
    Wang, Q., Sun, S., Huo, Y. Z. and Yang, B.(2010). The ecology of chaetognaths in Jiaozhou Bay.Oceanologia Et Limnologia Sinica41,639–644.
    Yao, J. J., Zhao, Y. L., Wang, Q., Zhou, Z. L., Hu, X. C., Duan, X. W. and An, C. G.(2006).Biochemical compositions and digestive enzyme activities during the embryonic developmentof prawn, Macrobrachium rosenbergii. Aquaculture253,573–582.
    郝振林,张秀梅,张沛东.(2007)金乌贼的生物学特性及增殖技术.生态学杂志,26(4):601-606.
    雷舒涵,吴常文,高天翔,等(2011)金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究.中国水产科学,18(2):350-359.
    Altman, P. L. and Ditmer D. S.(1971). Respiration and circulation. Bethesda, MD: FASEB
    Boletzky, S. V.(1986). Encapsulation of cephalopod embryos: a search for functional correlations.American Malacological Bulletin4,217-27.
    Claireaux, G. and i Lagardère, J.P.,(1999). Influence of temperature, oxygen and salinity onthemetabolism of the European sea bass. Journal of Sea Research42,157-168.
    Collins, L. A. and Nelson, S. G.(1993). Effects of temperature on oxygen consumption, growth,and development of embryos and yolk-sac larvaeof Siganus randalli (Pisces: Siganidae).Marine Biology117,195-204.
    Cronin, E. R. and Seymour, R. S.(2000). Respiration of the eggs of the giant cuttlefish Sepiaapama. Marine Biology136,863-870.
    De Wachter, B., Wolf, G., Richard, A., and Decleir, W.(1988). Regulation of respiration during thejuvenile development of Sepia officinalis (Mollusca: Cephalopoda). Marine Biology97,365-371.
    Gélabert, A., Pokrovsky, O. S., Schott, J., Boudou, A. and Feurtet-Mazel, A.(2007). Cadmium andleadinteraction with diatom surfaces: a combined thermodynamic and kinetic approach.Geochimica et Cosmochimica Acta71,698-716.
    Glavi, N., Ko ul, V., Antolovi, N. and Bolotin, J.(2011). Oxygen consumption and restingmetabolism of post-hatching cuttlefish Sepia officinalis (Linnaeus,1758). Proceedings.46thCroatian and6thInternational Symposium on Agriculture. Opatija. Croatia.
    Grigoriou, P. and Richardson, C.A.(2009). Effect of body mass, temperature and food deprivationon oxygen consumption rate of common cuttlefish Sepia officinalis. Marine Biology156,2473–2481.
    Johansen, K., Brix, O., Kornerup, S. and Lykkeboe, G.(1982). Factors affecting O2-uptake in thecutlefish, Sepia officinalis. Journal of the Marine Biological Association of the UK62,187-191.
    Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. andVerripopoulos, G.(2005). Oxygen consumption and ammonia excretion of Octopus vulgaris(Cephalopoda) in relation to body mass and temperature. Marine Biology146,725-732.
    Kimura, S., Higuchi, Y., Aminaka, M., Bower, J. R. and Sakurai, Y.(2004). Chemical properties ofegg-mass mucin complexes of the ommastrephid squid Todarodes pacificus. Journal ofMolluscan Studies70,117-121.
    Krogh, A.(1941). The comparative physiology of respiratorymechanisms. University ofPennsylvania Press, Philadelphia.
    Lacoue-Labarthe, T., Oberh nsli, F. R., Teyssié, J.-L., Warnau, M., Koueta, N., and Bustamante, P.(2008). Differential bioaccumulation behaviour of Ag and Cd during the early development ofthe cuttlefish Sepia officinalis, Aquatic Toxicology86,437-446.
    Salthe, S.N.(1965). Increase in volume of the perivitelline chamberduring development of Ranapipiens Schreber. Physiological zoology38:80-98.
    Seibel, B. A.(2007). On the depth and scale of metabolic rate variation: scaling of oxygenconsumption and enzymatic activity in the Class Cephalopoda (Mollusca). Journal ofExperimental Biology210,1-11.
    Sen, H.(2004a). A preliminary study on the effects of salinityon egg development of Europeansquid (Loligo vulgaris lamarck,1798). The Israeli Journal of Aquaculture56(2),93-99.
    Sen, H.(2004b). A preliminary study on the effects of different light intensities onhatching ofEuropean squid (Loligo vulgaris lamarck,1798) eggs. Turkish Journal of Fisheries and AquaticSciences4,1-4.
    Sen, H.(2005). Temperature tolerance of loliginid squid (Loligo vulgaris Lamarck,1798) eggs incontrolled conditions. Turkish Journal of Fisheries and Aquatic Sciences5,53-56.
    Staaf, D., Zeidberg, L. and Gilly, W.(2011). Effects of temperature on embryonic development ofthe Humboldt squid Dosidicus gigas. Marine Ecology Progress Series441,165–175.
    Viarengo, A. and Nott, J.A.(1993) Mechanisms of heavy metal cation homeostasis in marineinvertebrates. Comparative Biochemistry and Physiology104C,355-372.
    Wolf, G., Verheyen, E., Vlaeminck, A., Lemaire, J. and Decleir, W.(1985). Respiration of Sepiaofficinalis during embryonic and early juvenile life. Marine Biology90,35–39.
    雷舒涵,吴常文,高天翔,等.(2011).金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究.中国水产科学,18(2):350–359.
    李加儿.(1991)尖吻鲈幼鱼耗氧率初步研究.海洋学报. l3(3):424-430.
    刘伟.(2010).怀头鲇Silurus soldatovi早期发育生理生态学研究.[中国海洋大学博士学位论文].山东青岛:中国海洋大学.
    唐国盘,刘鉴毅,危起伟,等.(2004)中华鲟胚胎的耗氧率.动物学杂志39(5):30–34.
    Belcari, P.(1996). Length-weight relationship in relation to sexual maturation of Illex copindetii(Cephalopoda: Ommastrephidae) in the Northern Tyrrhenian Sea (Western Mediterranean).Marine Science60,3779–4484.
    Bettencourt, V., and Guerra, A.(2001). Age studies based on dailygrowth increments in statolithsand growth lamellae incuttlebone of cultured Sepia officinalis. Marine Biology139,327-334.
    Choe, S.(1963). Daily age markings on the shell of cuttlefishes. Nature,197,306-307.
    Denton, E. J. and Gilpin-Brown, J. B.(1961). The buoyancy of the cuttlefish, Sepia officinalis (L.).Journal of the Marine Biological Association of the UK41,319-342.
    Domingues, P., Sykes, A. and Andrade, J. P.(2002). The effects of temperature in the life cycle oftwo consecutive generationsof the cuttlefish Sepia officinalis (Linnaeus,1758), cultured in theAlgarve (South Portugal).Aquaculture International10,207-220.
    Domingues, P., Sykes, A., Sommerfield, A., Almansa, E., Lorenzo, A. and Andrade, J. P.(2004).Growth and survival ofcuttlefish (Sepia officinalis) of different ages fed crustaceans and fish.Aquaculture229,239-254.
    González, A.F., Castro, B.G. and Guerra, A.(1996). Age and growth of the short-finned squidIllex coindetii in Galician waters (NW Spain) based on statolith analysis. ICES Journal ofMarine Science53,802–810.
    Gosline, J.M.&DeMont, M.E.,1985. Jet propelled swimmingin squids. Scientific American,252,74–79.
    Hochachka, P. W., Guppy, M., Guderley, H. E., Storey, K. B. and Hulbert, W. C.(1978).Metabolic biochemistry of water vs. air-breathing fishes: muscle enzymes and ultrastructure.Canadian Journal of Zoology56,737–754.
    Koueta, N. and Boucaud-Camou, E.(2001). Basic growth relationsin experimental rearing of earlyjuvenile cuttlefishSepia officinalis L.(Mollusca: Cephalopoda). Journal of Experimental MarineBiology and Ecology265,75-87.
    Lima, A. R. A., Barletta, M., Dantas, D. V., Possato, F. E., Ramos, J. A. A. and Costa, M. F.(2012). Early development and allometric shifts during the ontogeny of a marine catfish(Cathorops spixii-Ariidae). Journal of Applied Ichthyology28,217–225.
    Martínez, P., Bettencourt, V., Guerra, á. and Moltschaniwskyj, N. A.(2000). How temperatureinfluences muscle and cuttlebone growth in juvenile cuttlefish (Sepia elliptica)(Mollusca:Cephalopoda) under conditions of food stress. Canadian Journal of Zoology78,1855-1861.
    Mart n ez, P. and Moltschaniwskyj, N. A.(1999). Description of growth in the tropical cuttlefishSepia elliptica using muscle tissue. Journal of the Marine Biological Association of the UK79,317-321.
    Moguel, C., Mascaró. M., Avila-Poveda, O. H., Caamal-Monsreal, C., Sanchez, A., Pascual, C.and Rosas, C.(2010). Morphological, physiological and behavioural changes duringpost-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus onthe digestive system. Aquatic Biology9,35–48.
    Nevárez-Martínez, M. O., Méndez-Tenorio, F. J., Cervantes-Valle, C., López-Martínez, J. andAnguiano-Carrasco, M. L.(2006). Growth, mortality, recruitment, and yield of the jumbo squid(Dosidicus gigas) off Guaymas. Mexico Fisheries Research79,38–47.
    O’Dor, R. K., and Webber, D. M.(1986). The constraints oncephalopods: why squid aren’t fish.Canadian Journal of Zoology,64:1591–1605.
    O’Dor, R. K. and Webber, D. M.(1991). Invertebrate athletes: Tradeoffs between transportefficiency and power density incephalopod evolution. Journal of Experimental Biology160,93–112.
    Olla, B. L., Davis, M. W., Ryer, C. H. and Sogard, S. M.(1995). Behavioural responses of larvaland juvenile walleye pollock (Theragra chalcogramma): possible mechanisms controllingdistribution and recruitment. ICES Marine Science Symposia201,3–15.
    Osse, J.W. and Boogaart J. G. M. van den (1995). Fish larvae, development, allometric growth,and the aquatic environment. ICES Journal of Marine Science201:21-34.
    Pe a, R. and Dumas, S.(2009). Development and allometric growth patterns during early larvalstages of the spotted sand bass Paralabrax maculatofasciatus (Percoidei: Serranidae). ScientiaMarina73(Special issue),183–189.
    Rodhouse, P.G. and Piatkowski, U.(1995). Fine-scale distribution of juvenile cephalopods in theScotia Sea and adaptive allometry of the brachial crown. Marine Biology124,111–117.
    Shigeno, S., Tsuchiya, K. and Segawa, S.(2001a). Embryonic and paralarval development of thecentral nervous system of the loliginid squid Sepioteuthis lessoniana. Journal of ComparativeNeurology437,449–475.
    Shigeno, S., Kidokoro, H., Tsuchiya, K. and Yamamoto, M.(2001b). Development of the brain inthe oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zoological science18,527–541.
    郝振林,张秀梅,张沛东.(2007)金乌贼的生物学特性及增殖技术.生态学杂志,26(4):601–606.
    何滔,肖志忠,刘清华,等.(2012)条石鲷早期发育阶段的生长模式.水产学报,36(8):1242–1248.
    马境,章龙珍,庄平,等.(2007)施氏鲟仔鱼发育及异速生长模型.应用生态学报,,18(2):2875–2882.
    齐钟彦.(1998)中国经济软体动物.北京:中国农业出版社:293-294.
    单秀娟,窦硕增.(2009)鮸鱼(Miichthys miiuy)仔、稚鱼发育生长方式及其生态学意义.海洋与湖沼,,40(6):714–719.
    郑元甲,陈雪忠,程家骅,等.(2003)东海大陆架生物资源与环境.上海:上海科学技术出版社:722-727.
    Avila-Poveda, O. H., Colin-Flores, R. F. and Rosas, C.(2009). Gonad development during the earlylife of Octopus maya (Mollusca: Cephalopoda). Biology Bulletin216,94–102.
    Baroiller, J. F. and D’ cotta, H.(2001). Environment and Sex determination in farmed fish.Comparative Biochemistry and Physiology130C,99-409.
    Devlin, R. H. and Nagahama, Y.(2002) Sex determination and sex differentiationin fish: Anoverview of genetic, physiological, andenvironmental influences. Aquaculture208,191–364.
    Hoving, H. J. T., Roeleveld, M. A. C., Lipinski, M. R. and Videler, J. J.(2006). Nidamental glandsin males of the oceanic squid Ancistrocheirus lesueurii (Cephalopoda: Ancistrocheiridae)-sexchange or intersexuality? Journal of Zoology269,341–348.
    Hunter, G. A. and Donaldson, E.M.(1983) Hormonal sex control and its application to fish culture.Fish physiology9:223–303.
    Jiang, X. M., Fu, F. Y., Li, Z. and Feng, X. D.(2007). Study on the oogenesis and ovarialdevelopment of Sepiella maindroni.Journal of Fisheries of China31,607–617.
    Lemaire, J. and Richard, A.(1979). Is sexual differentiation in cephalopods embryos (Sepiaofficinalis L) under endocrine control (author's transl). Annales d'Endocrinologie40,91–92.
    Lahnsteiner, F., Weismann, T. and Patzner, R.A.(1997). Structure and function of the ovariancavity and oviduct and composition of the ovarian fluid in the bleak, Alburnus alburnus(Teleostei, Cyprinidae). Tissue Cell29,305–314.
    Laptikhovsky, V. V. and Arkhipkin, A.I.(2001). Oogenesis and gonaddevelopment in the coldwater loliginid squid Loligo gahi (Cephalopoda:Myopsida) on the Falkland shelf. Journal ofMolluscan Studies67,475–482.
    Liu, M. and Sadovy, Y.(2009). Gonad development during sexual differentiation inhatchery-produced orangespotted grouper (Epinephelus coioides) and humpback grouper(Cromileptes altivelis)(Pisces: Serranidae, Epinephelinae). Aquaculture287,191-202.
    Maack, G. and Segner, H.(2003). Morphological development of the gonads inzebrafish. Journal ofFish Biology62,895–906.
    Nakamura, M., Kobayashi, T., Chang, X.-T. and Nagahama, Y.(1998). Gonadal sex differentiationin teleost fish. Journal of Experimental Zoology281,362–372.
    Rasmussen, T. H., Jespersen, A. and Korsgaard, B.(2006). Gonadalmorphogenesis and sexdifferentiation in intraovarianembryos of the viviparous fish Zoarces viviparus (Teleostei,Perciformes, Zoarcidae): A histological and ultrastructuralstudy. Journal of Morphology267,1032–1047.
    Rodríguez-Rúa, A., Pozuelo, I., Prado, M. A., Gómez, M. J. and Bruzón, M. A.(2005). Thegametogenic cycle of Octopus vulgaris (Mollusca: Cephalopoda) as observed on the Atlanticcoast of Andalusia (south of Spain). Marine Biology147,927–933.
    Sandra, G. E. and Norma, M. M.(2010). Sexual determination and differentiation in teleost fish.Reviews in Fish Biology and Fisheries20,101–121.
    Satoh, N. and Egami, N.(1972). Sex differentiation of germ cells in the teleost, Oryzias latipes,during normal embryonic development. Journalof embryology and experimental morphology28,385–395.
    Strüssmann, C. A., Saito, T., Usui, M., Yamada, H. and Takashima, F.(1997). Thermal thresholdsand critical period of thermolabile sex determination in two atherinid fishes, Odontesthesbonariensis and Patagonina hatchery. Journal of Experimental Zoology,278:167-177.
    Strüssmann, C. A. and Nakamura, M.(2002). Morphology, endocrinology, and environmentalmodulation of gonadal sex differentiation in teleost fishes. Fish Physiology and Biochemistry26,13–29.
    Walsh, C. T., Pease, B. C. and Booth, D. J.(2003). Sexual dimorphism and gonadal development ofthe Australian longfinned river eel. Journal of fish biology63,137-152
    Yamamoto, T.(1969). Sex differentiation. In: Hoar, W. S. and Randall, D. J.(Eds.), FishPhysiology. Academic Press, New York, pp.117–175.
    雷舒涵,吴常文,高天翔,等.(2011).金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究.中国水产科学,18(2):350–359.
    Aldanondo, N., Cotano, U., Etxebeste, E., Irigoien, X., álvarez, P., Martínes de Murguía, A andHerrero, D. L.(2008). Validation of daily increments deposition in the otoliths of Europeananchovy larvae (Engraulis encrasicolus L.) reared under different temperature conditions.Fisheries Research9,257-264.
    Bayne, B. L.(1983). Physiological ecology of marine molluscan larvae. In: Wilbue, K. M. ed. TheMollusca. Academic Press, New York. p.299-343.
    Bettencourt, V. and Guerra, A.(2001). Age studies based on daily growth increments in statolithand growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biology139,327-334.
    Choe, S.(1962). The shell and the locular index of the cuttlefishes, Sepia esculenta Hoyle, Sepiaesculenta Sasaki, Sepiella maindroni de Rochebrune. Bulletin of the Japanese Society for theScience of Fish28,1082-1091.
    Choe, S.(1963). Daily age markings on the shell of cuttlefishes. Nature197,306-307.
    Forsythe, J. W.(1993). A working hypothesis of how seasonal temperature change may impact thefield growth of young cephalopods. In: Okutani, T., O’Dor, R. K. and Kubodera, T. eds.Recent Advances in Fisheries Biology. Tokai University Press, Tokyo. p.133-143.
    Hokanson, K. E. F., Kleiner, C. F. and Thorslund, T. W.(1977). Effects of constant temperaturesand diel temperature fluctuations on specific growth and mortality rates and yield of juvenilerainbow trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada34,639-648.
    Hoyle, W. E.(1886). Report on the Cephalopoda collected by H.M.S. Challenger during the years1873-76. Rep Sci Res Voy Challange Zool16,1-245.
    Jereb, P. and Roper, C. F. E. and Vecchione, M.(2005). FAO Species Catalogue for FisheryPurposes. In: Jereb, P. and Roper, C. F. E. eds. Cephalopods of the world. Food andAgriculture Organization of the United Nations, Rome. p.1-19.
    Le Goff, R., Gauvrit, E., Pinczon, Du G. and Daguzan, J.(1998). Age group determination byanalysis of the cuttlebone of the cuttlefish Sepia officinalis L. in reproduction in the Bay ofBiscay. Journal of Molluscan Studies64,183-193.
    Martínez, P., Bettencourt, V., Guerra, á. and Moltschaniwskyj, N. A.(2000). How temperatureinfluences muscle and cuttlebone growth in juvenile cuttlefish (Sepia elliptica)(Mollusca:Cephalopoda) under conditions of food stress. Canadian Journal of Zoology78,1855-1861.
    Natsukari, Y., Hirata, S. and Washizaki, M.(1991). Growth and seasonal change of cuttlebonecharacters of Sepia esculenta. In: Boucaud-Camou, E. ed. Proceedings of the FirstInternational Symposium on the Cuttlefish Sepia, University of Caen, Caen, June1991. Centrede publications de l’Université de Caen, Caen, France. p.49-67.
    Okutani, T.(1995). Cuttlefish and squids of the world in color. National Cooperative Associationof Squid Processors, Tokyo. p.43.
    Ré, P. and Narcso, L.(1994). Growth and cuttlebone microstructure of juvenile cuttlefish, Sepiaofficinalis L., under controlled conditions. Journal of Experimental Marine Biology andEcology177,73-78.
    Richard, A.(1969). The part played by temperature in the rhythm of formation of markings on theshell of the cuttlefish Sepia officinalis L.(Mollusca Cephalopoda). Experientia25,1051.
    Richard, A.(1971). Contribution à l’étude expérimental de la croissance et de la maturationsexuelle chez le Céphalopode Sepia officinalis L.(Mollusque, Céphalopode). Thèse Doctoratd’Etat, Université de Lille.
    Song, Z. B., He, C. L., Fu, Z. D. and Shen, D. Z.(2008). Otolith thermal marking in larvalChinese sucker, Myxocyprinus asiaticus. Environmental Biology of Fishes82,1-7.
    Song, Z. B., Fu, Z. D., He, C. L., Shen, D. Z. and Yue, B. S.(2009). Effects of temperature,starvation and photoperiod on otolith increments in larval Chinese sucker, Myxocyprinusasiaticus. Environmental Biology of Fishes84,159-171.
    Tang, X. M. and Chai, B. F.(1981). Ultrastructural investigation of experimental fracturehealing-IV: electron microscopic observation on transformation and fate of fibroblast andchondrocytes. Chinese Journal of Medince94,291-300.
    Volk, E. C., Schroder, S. L. and Grimm, J. J.(1999). Otolith thermal marking. Fisheries Research43,205-219.
    Yagi, T.(1960). Studies on the identification method of races in Sepia esculenta Hoyle by usingthe locular index of shells. Bulletin of the Japanese Society for the Science of Fish26,640-645.
    Zheng, X. D., Xiao, S., Wang, Z. P. and Wang, R. C.(2007). Histological and histochemicalanalyses of the cuttlebone sac of the golden cuttlefish Sepia esculenta. Journal of OceanUniversity of China6,393-397.
    郝振林,张秀梅,张沛东.(2007)金乌贼的生物学特性及增殖技术.生态学杂志,26(4):601–606.
    Chen, D. S, Van Dykhuizen, G., Hodge, J. and Gilly, W. F.(1996). Ontogeny of copepod predationin juvenile squid (Loligo opalescens). Biological Bulletin190,69–81.
    Duval, P., Chichery, M.P. and Chichery, R.(1984). Prey capture by the cuttlefish (Sepia officinalisL): an experimental study of two strategies. Behavioural processes9,13–21.
    Fujita, T., Hirayama, I., Matsuoka, T. and Kawamura, G.(1997). Spawning behavior and selectionof spawning substrate by cuttlefish Sepia esculenta. Nippon Suisan Gakkaishi63,145–151.
    Hao, Z. L., Zhang, X. M., Kudo, H. and Kaeriyama, M.(2010). Development of the retina incuttlefish Sepia esculenta. Journal of Shellfish Research29,463-470.
    Kier, W. M.(1991). Squid cross-striated muscle: the evolution of a specialized muscle fiber type.Bulletin of Marine Science49,389-403.
    Koueta, N. and Boucaud-Camou, E.(2001). Basic growth relations in experimental rearing ofearly juvenile cuttlefish Sepia officinalis L.(Mollusca: Cephalopoda). Journal of ExperimentalMarine Biology and Ecology265,75–87.
    Lei, S., Zhang, X., Liu, S. and Chen, S.(2012). Effects of temperature fluctuations on cuttleboneformation of cuttlefish Sepia esculenta. Chinese Journal of Oceanology and Limnology30,547-553.
    Messenger, J.B.(1968). The visual attack of the cuttlefish, Sepia officinalis. Animal Behaviour16,342–357.
    Moguel, C., Mascaró, M., Avila-Poveda, O. H., Caamal-Monsreal, C., Sanchez, A., Pascual, C.and Rosas, C.(2010). Morphological, physiological and behavioural changes duringpost-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus onthe digestive system. Aquatic Biology9,35-48.
    Kasugai, T.(2001). Feeding behaviour of the Japanese pygmy cuttlefish Idiosepius paradoxus(Cephalopoda: Idiosepiidae) in captivity: evidence for external digestion? Journal of the MarineBiological Association of the UK81,979-981.
    Villanueva, R.(1995). Experimental rearing and growth of planktonic Octopus vulgaris fromhatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences52,2639-2650.
    Villanueva, R., Nozais, C. and Boletzky, S.(1996). Swimming behaviour and food searching inplanktonic Octopus vulgaris from hatching to settlement. Journal of Experimental MarineBiology and Ecology208,169–184.
    Wada, T., Takegaki, T., Mori, T. and Natsukari, Y.(2005). Sperm displacement behavior of thecuttlefish Sepia esculenta (Cephalopoda: Sepiidae). Journal of Ethology23,85–92.
    Watanuki, N., G. Kawamura, S. Kaneuchi, and T. Iwashita.(2000). Role of vision in behavior,visual field, and visual acuity of cuttlefish Sepia esculenta. Fisheries Science66,417–423.
    陈四清,刘长琳,庄志猛,等.(2008)饵料、盐度对金乌贼幼体生长的影响.渔业现代化,35(6):23-25.
    范帆,尹飞,彭士明,等.(2011)饥饿胁迫对曼氏无针乌贼幼体的影响.生态学杂志,30(10):2262-2268.
    郝振林,张秀梅,张沛东.(2007)金乌贼的生物学特性及增殖技术.生态学杂志,26(4):601–606.
    郝振林.(2007)金乌贼的行为习性及标志技术的研究.[中国海洋大学硕士学位论文].山东青岛:中国海洋大学.
    雷舒涵,吴常文,高天翔,等,(2011)金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究.中国水产科学,18(2):350–359.
    齐钟彦.(1998)中国经济软体动物.北京:中国农业出版社:293–294.
    沈亚芬,沈金根,朱曙东.(2010)中药海螵蛸药理作用研究进展.中国药业,10:8.
    宋王申和丁安伟.(2001)乌贼墨化学成分和药理作用研究概况.时珍国医国药,4:377-378.
    殷名称,鲍宝龙,苏锦祥.(1999)真鲷仔鱼早期阶段的摄食能力——发育反应和功能反应.海洋与湖沼,30:591-596
    郑元甲,陈雪忠,程家骅,等.(2003)东海大陆架生物资源与环境.上海:上海科学技术出版社:722-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700