猪圆环病毒2型:流行毒株基因组序列分析及其对Toll样受体传导通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒(Porcine circovirus, PCV)属于圆环病毒科,圆环病毒属,无囊膜,直径约17nm,其基因组为一单链环状DNA。是最小的动物病毒之一。根据PCV的致病性、抗原性及核苷酸序列,PCV可分为PCV1和PCV2两个型,PCV1对猪为非致病性的,但是PCV2与猪的很多疾病综合征有关,统称为猪圆环病毒病(Porcine circovirus disease, PCVD),以断奶仔猪多系统衰竭综合症(Post-weaning Multisystemic Wasting Syndrome, PMWS)最为常见,主要感染7-15周龄仔猪,临床症状包括消瘦、呼吸困难、腹泻、可视粘膜苍白、也会伴发皮炎,剖检可见淋巴结肿胀,肾脏损伤,具有高死亡率。
     本研究的主要目的是:(1)在全基因组水平分析浙江地区猪圆环病毒2型的流行毒株的分子特征;(2)应用双报告基因以及荧光定量检测法,建立研究TLRs通路的技术体系;(3)初步探索猪圆环病毒2型基因组中影响Toll样受体传导通路的核酸片段。
     1.本研究应用PCR方法对2008-2009年99份疑似病猪脾脏、肺脏、淋巴结混合组织样本进行PCV2检测,并以组织DNA为模板进行PCV2的全基因组扩增,克隆后进行测序。结果显示,2008与2009年浙江地区PCV2的平均阳性率47.5%,与往年相比基本持平。随机选取18份阳性病料进行PCV2全基因组测序分析,18个毒株均属于Group1,其中5个毒株(27.8%)属于1A分支,3个毒株(16.7%)属于1B分支,9个毒株(50%)属于1C分支。可见Group1依然是浙江地区PCV2的主导基因型,随着PCV2的流行,1C分支从无到有,并逐渐占据主导地位,但该分支的致病性特征还有待进一步研究。
     2.为了建立与先天免疫相关的TLR通路研究平台,本研究利用TLRs的配体[Poly(I:C)、ODN1826]和胞内TLRs通路抑制剂[氯喹(Chloroquine,Chq)],运用双报告基因的相对荧光定量检测方法,通过分析NF-κB以及相关TLRsmRNA表达量的变化,建立研究TLRs通路的技术体系。50μg/mL Poly(I:C)与50μM ODN1826刺激RAW264.7后,细胞内NF-κB表达量分别比未刺激细胞增高238%与113%,差异极显著(P<0.01);相应TLR配体TLR3与TLR9的mRNA表达量是未刺激细胞的12.9与1.5倍,前者差异极显著(P<0.01)。因此,利用双报告基因以及相对荧光定量检测方法研究TLRs通路是可行的。利用此方法初步研究了PCV2基因组中影响TLRs通路的核酸片段,结果表明ssDNA比dsDNA对NF-κB这一TLR通路上的关键分子影响更大。
     综上所述,本研究初步探明了浙江地区PCV2流行毒株的分子特征,建立了研究先天免疫相关的TLR通路技术平台,探讨了PCV2基因组对TLR通路的影响。为深入研究PCV2氨基酸变异与病毒致病性关系、PCV2感染与免疫特性奠定了良好基础。
Porcine circovirus (PCV) is a member of the family Circoviridae, a recently established virus family composed of small, non-enveloped viruses, with a circular, single-stranded DNA genome, it is one of the smallest animal viruses. According to the pathogenicity, antigenicity and nucleotide sequence of PCV, PCV can be divided into two types, PCV1 and PCV2. PCV1 is considered to be non-pathogenic to pigs by experimental inoculation and was circulating widely in swine population in the world. PCV2 has been recently associated with a number of disease syndromes, which have been collectively named porcine circovirus diseases (PCVD). Post-weaning multisystemic wasting syndrome (PMWS) is the most common. PMWS is distributed worldwide, and occurred in 7-15 weeks old piglets. Its clinical symptoms include weight loss, respiratory problems, diarrhea, visible mucous membranes pale, dermatitis, Lymph node swelling and kidney damage are often seen upon necropsy. Its mortality rate is high, particularly when co-infected with other pathogens.
     The main objectives of this study were (1) to characterize the genomic structure of PCV2 isolates prevalent in Zhejiang; (2) to establish a research platform to study TLRs pathway by using dual reporter gene assay and relative quantitative RT-PCR; and (3) to probe the effect of nucleotide fragments of PCV2 on the pathway of Toll-like receptors.
     1. To gain insights into the molecular epidemiological characteristics of PCV2 isolates prevalent in Zhejiang, PCV2-specific PCR method was used for mixed tissue samples, including spleen, lung and lymph nodes of diseased pigs during 2008-2009. Eighteen PCV2 isolates were then randomly selected for sequencing and sequence analysis. Out of 99 samples,47 were PCV2 positive (47.5%), and PCV2-positive rates in 2008 and 2009 remained at similar level to those during 2004-2006. Among 18 PCV2 isolates sequenced,5 belonged to subgroup 1A (27.8%),3 to subgroup 1B (16.7%), and 9 to subgroup 1C (50%). Group 1 remains to be the predominant PCV2 genotype in Zhejiang. Remarkably, subgroup 1C isolates has emerged in the region in recent years, and account for the majority at present, suggesting that this genotype probably plays a predominant role in the prevalence of PCV2. However, the pathogenic features of subgroup 1C isolates require further study.
     2. In order to set up a platform for research on TLR-mediated innate immune pathways, we used TLRs ligand (Poly (I:C) and ODN1826) as well as intracellular TLRs pathway inhibitor Chloroquine (Chq) as model molecules to detect NF-κB and TLRs mRNA expression levels by means of dual reporter gene assay and the relative quantitative RT-PCR. With 50μg/mL Poly (I:C) and 5μM ODN1826 stimulation, the cellular expression of NF-κB in RAW264.7 was significantly higher than unstimulated cells (238% and 113%, P<0.01); the corresponding TLR ligands of TLR3 and TLR9 mRNA expression were also significantly higher than unstimulate cells (12.9(P<0.01) and 1.5). Therefore, the combination of dual reporter gene assay with quantitative RT-PCR may be used to examine the TLRs pathway by PCV2. We found that single strand DNA fragment of PCV2 was more potent than double strand DNA in inducing NF-κB expression.
     In summary, the present study revealed the molecular characteristics of PCV2 isoaltes prevalent in recent years in Zhejiang. The dual reporter assay in combination with quantitative RT-PCR could be used to examine the effect of PCV2 nucelotide fragments on expression of molecules along the TLR pathways. These works has laid the foundation for studying the relationship between amino acid mutations and PCV2 pathogenicity as well as between PCV2 infection and host immune responses.
引文
[1]Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines[J]. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Erste Abteilung Originale.1974.226(2):153-167.
    [2]Tischer I, Gelderblom H, Vettermann W, et al. A very small porcine virus with circular single-stranded DNA[J]. Nature,1982,295(5844):64-66.
    [3]Dulac GC, Afshar A. Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs[J]. Canadian Journal of Veterinary Research,1989,53(4):431-433.
    [4]Allan G, Meehan B, Todd D, et al. Novel porcine circoviruses from pigs with wasting disease syndromes[J]. The Veterinary Record.1998.142(17):467-468.
    [5]Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs[J]. Journal of Virology.1998, 2(6):5262-5267.
    [6]陆承平.最新动物病毒分类简介[J].中国病毒学.2005.20(6):682-688.
    [7]Allan GM, Phenix KV, Todd D, et al. Some biological and physico-chemical properties of porcine circovirus[J]. Journal of Veterinary Medicine,1994:17-26.
    [8]Tischer I, Mields W, Wolff D, et al. Studies on epidemiology and pathogenicity of porcine circovirus[J]. Archives of Virology.1986.91(3-4):271-276.
    [9]Olvera A, Cortey M, Segales J. Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality[J]. Virology.2007.357(2):175-185.
    [10]de Boisseson C, Beven V, Bigarre L, et al. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs[J]. The Journal of general virology.2004.85(2):293-304.
    [11]Timmusk S, Wallgren P, Brunborg IM, et al. Phylogenetic analysis of porcine circovirus type 2 (PCV2) pre-and post-epizootic postweaning multisystemic wasting syndrome (PMWS)[J]. Virus Genes.2008.36(3):509-520.
    [12]Carman S, Cai HY, DeLay J, et al. The emergence of a new strain of porcine circovirus-2 in Ontario and Quebec swine and its association with severe porcine circovirus associated disease--2004-2006[J]. Canadian Journal of Veterinary Research.2008.72(3):259-268.
    [13]Cheung AK, Lager KM, Kohutyuk 01, et al. Detection of two porcine circovirus type 2 genotypic groups in United States swine herds[J]. Archives of Virology.2007. 152(5):1035-1044.
    [14]Dupont K, Nielsen EO, Baekbo P, et al. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time[J]. Veterinary Microbiology.2008.128(1-2):56-64.
    [15]Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2[J]. Journal of Virology. 2004.78(15):8135-8145.
    [16]Mahe D, Blanchard P, Truong C, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes[J]. The Journal of General Virology.2000.81(7):1815-1824.
    [17]Wang X, Jiang W, Jiang P, et al. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice[J]. Vaccine. 2006.24(16):3374-3380.
    [18]Kamstrup S, Barfoed AM, Frimann TH, et al. Immunisation against PCV2 structural protein by DNA vaccination of mice[J]. Vaccine.2004.22(11-12):1358-1361.
    [19]Liu J, Chen I, Chua H, et al. Inhibition of porcine circovirus type 2 replication in mice by RNA interference[J].-Virology.2006.
    [20]金宁一,秦晓冰,郑敏,et al.猪2型圆环病毒核酸疫苗的接种Balb/c小鼠实验免疫研究[J].中国生物工程杂志.2005.25(7):76-79.
    [21]Liu Q, Willson P, Attoh-Poku S, et al. Bacterial expression of an immunologically reactive PCV2 ORF2 fusion protein[J]. Protein Expression Purification.2001.21(1):115-120.
    [22]Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis[J]. Journal of Virology. 2005.79(13):8262-8274.
    [23]GiIlespie J, Opriessnig T, Meng XJ, et al. Porcine circovirus type 2 and porcine circovirus-associated disease[J]. Journal of Veterinary Internal Medicine.2009.23(6):1151-1163.
    [24]Segales J, Domingo M. Postweaning_multisystemic wasting syndrome(PMWS) in pigs. A review[J]. The Veterinary Quarterly.2002.24(3):109-124.
    [25]Segales J, Rosell C, Domingo M. Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease[J]. Veterinary Microbiology.2004.98(2):137-149.
    [26]Wellenberg GJ, Stockhofe-Zurwieden N, Boersma WJ, et al. The presence of co-infections in pigs with clinical signs of PMWS in The Netherlands:a case-control study[J]. Research in Veterinary Science.2004.77(2):177-184.
    [27]Smith WJ, Thomson JR, Done S. Dermatitis/nephropathy syndrome of pigs[J]. The Veterinary Record.1993.132(2):47.
    [28]Thacker EL. Immunology of the porcine respiratory disease complex[J]. Veterinary Clinical North American Food Animal Practical.2001.17(3):551-565.
    [29]Morozov I, Sirinarumitr T, Sorden SD, et al. Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome[J]. Journal of Clinical Microbiology.1998.36(9):2535-2541.
    [30]Ellis J, Krakowka S, Lairmore M, et al. Reproduction of lesions of postweaning multisystemic wasting syndrome in gnotobiotic piglets[J]. Journal Veterinary Diagnostic Investigation.1999.11(1):3-14.
    [31]Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex[J]. Veterinary Journal.2003.166(3):251-256.
    [32]Harms PA, Sorden SD, Halbur PG, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus[J]. Veterinary Pathology.2001.38(5):528-539.
    [33]Allan GM, McNeilly F, Ellis J, et al. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication[J]. Archives of Virology.2000.145(11):2421-2429.
    [34]O'Connor B, Gauvreau H, West K, et al. Multiple porcine circovirus 2-associated abortions and reproductive failure in a multisite swine production unit[J]. The Canadian Veterinary Journal.2001.42(7):551-553.
    [35]Johnson CS, Joo HS, Direksin K, et al. Experimental in utero inoculation of late-term swine fetuses with porcine circovirus type 2[J]. Journal of Veterinary Diagnostic Investigation. 2002.14(6):507-512.
    [36]Hines RK, Lukert PD. Porcine circovirus as a cause of congenital tremors in newborn pigs[J]. Proceedings of the American Association on Swine Practitioners.1994:344-345.
    [37]Stevenson GW, Kiupel M, Mittal SK, et al. Tissue distribution and genetic typing of porcine circoviruses in pigs with naturally occurring congenital tremors [J]. Journal of Veterinary Diagnostic Investigation.2001.13(1):57-62.
    [38]Ellis J, Spinato M, Yong C, et al. Porcine circovirus 2-associated disease in Eurasian wild boar[J]. Journal Veterinary Diagnostic Investigation.2003.15(4):364-368.
    [39]Chianini F, Majo N, Segales J, et al. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS)[J]. Veterinary Immunology and Immunopathology. 2003.94(1-2):63-75.
    [40]Sarli G, Mandrioli L, Laurenti M, et al. Immunohistochemical characterisation of the lymph node reaction in pig post-weaning multisystemic wasting syndrome (PMWS)[J]. Veterinary Immunology and Immunopathology.2001.83(1-2):53-67.
    [41]Drolet R, Larochelle R, Morin M, et al. Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus-type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia[J]. Veterinary Pathology.2003.40(2):143-148.
    [42]Ellis JA, Bratanich A, Clark EG, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome[J]. Journal of Veterinary Diagnostic Investigation.2000.12(1):21-27.
    [43]Pallares FJ, Halbur PG, Opriessnig T, et al. Porcine circovirus type 2 (PCV-2) coinfections in US field cases of postweaning multisystemic wasting syndrome (PMWS)[J]. Journal of Veterinary Diagnostic Investigation.2002.14(6):515-519.
    [44]Grau-Roma L, Crisci E, Sibila M, et al. A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence[J]. Veterinary Microbiology.2008.128(1-2):23-35.
    [45]Lyoo KS, Park YH, Park BK. Prevalence of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and porcine parvovirus from aborted fetuses and pigs with respiratory problems in Korea[J]. Journal of Veterinary Science.2001.2(3):201-207.
    [46]Shi KC, Guo X, Ge XN, et al. Cytokine mRNA-expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2[J]. Veterinary Microbiology. 140(1-2):155-160.
    [47]Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein[J]. Cell. 1988.52(2):269-279.
    [48]Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor[J]. Nature.1991.351 (6325):355-356.
    [49]Seitz M. Toll-like receptors:sensors of the innate immune system[J]. Allergy.2003.58(12): 1247-1249.
    [50]Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway[J]. Journal of Immunology.2005. 175(6):3594-3602.
    [51]Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway[J]. Nature Immunology. 2003.4(11):1144-1150.
    [52]Arancibia SA, Beltran CJ, Aguirre IM, et al. Toll-like receptors are key participants in innate immune responses[J]. Biological Research.2007.40(2):97-112.
    [53]Armstrong L, Medford AR, Hunter KJ, et al. Differential expression of Toll-like receptor (TLR)-2 and TLR-4 on monocytes in human sepsis[J]. Clinical and Experimental
    Immunology.2004.136(2):312-319.
    [54]Tsujimoto H, Ono S, Majima T, et al. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis[J]. Shock.2005.23(1):39-44.
    [55]Nomura F, Akashi S, Sakao Y, et al. Cutting edge:endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression[J]. Journal of Immunology.2000.164(7):3476-3479.
    [56]Mullen GE, Kennedy MN, Visintin A, et al. The role of disulfide bonds in the assembly and function of MD-2[J]. Proceedings of the National Academy of Sciences of the United States of America.2003.100(7):3919-3924.
    [57]Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin[J]. Annual Review of Immunology.1995.13:437-457.
    [58]Uehori J, Matsumoto M, Tsuji S, et al. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan[J]. Infection and Immunity.2003.71(8):4238-4249.
    [59]Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity[J]. Nature Immunology.2001.2(8):675-680.
    [60]Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens[J]. The Journal of Experimental Medicine.2001.194(6):863-869.
    [61]Mueller T, Terada T, Rosenberg IM, et al. Th2 cytokines down-regulate TLR expression and function in human intestinal epithelial cells[J]. Journal of Immunology.2006. 176(10):5805-5814.
    [62]Kaisho T, Hoshino K, Iwabe T, et al. Endotoxin can induce MyD88-deficient dendritic cells to support Th2 cell differentiation[J]. International Immunology.2002.14(7):695-700.
    [63]Takabayashi K, Libet L, Chisholm D, et al. Intranasal immunotherapy is more effective than intradermal immunotherapy for the induction of airway allergen tolerance in Th2-sensitized mice[J]. Journal of Immunology.2003.170(7):3898-3905.
    [64]Lee KG, Xu S, Wong ET, et al. Bruton's tyrosine kinase separately regulates NFkappaB p65RelA activation and cytokine interleukin (IL)-10/IL-12 production in TLR9-stimulated B Cells[J]. The Journal of Biological Chemistry.2008.283(17):11189-11198.
    [65]Lemmers B, Salmena L, Bidere N, et al. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling[J]. The Journal of Biological Chemistry.2007.282(10):7416-7423.
    [66]Liu N, Ohnishi N, Ni L, et al. CpG directly induces T-bet expression and inhibits IgG 1 and IgE switching in B cells[J]. Nature Immunology.2003.4(7):687-693.
    [67]Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis[J]. Nature.2007.450(7173):1253-1257.
    [68]Thompson JM, Iwasaki A. Toll-like receptors regulation of viral infection and disease[J]. Advanced Drug Delivery Reviews.2008.60(7):786-794.
    [69]Ghosh TK, Mickelson DJ, Fink J, et al. Toll-like receptor (TLR) 2-9 agonists-induced cytokines and chemokines:I. Comparison with T cell receptor-induced responses[J]. Cellular Immunology.2006.243(1):48-57.
    [1]Hirai T, Nunoya T, Ihara T, et al. Dual infection with PCV-2 and porcine epidemic diarrhoea virus in neonatal piglets[J]. The Veterinary Record.2001.148(15):482-484.
    [2]Madec F, Rose N, Grasland B, et al. Post-weaning multisystemic wasting syndrome and other PCV2-related problems in pigs:a 12-year experience[J]. Transboundary and Emerging Diseases.2008.55(7):273-283.
    [3]Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis[J]. Journal of Virology. 2005.79(13):8262-8274.
    [4]Gillespie J, Opriessnig T, Meng XJ, et al. Porcine circovirus type 2 and porcine circovirus-associated disease[J]. Journal of Veterinary Internal Medicine.2009.23(6):1151-1163.
    [5]Olvera A, Cortey M, Segales J. Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality[J]. Virology.2007.357(2):175-185.
    [6]de Boisseson C, Beven V, Bigarre L, et al. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs[J]. The Journal of General Virology.2004.85(2):293-304.
    [7]Timmusk S, Wallgren P, Brunborg IM, et al. Phylogenetic analysis of porcine circovirus type 2 (PCV2) pre-and post-epizootic postweaning multisystemic wasting syndrome (PMWS)[J]. Virus Genes.2008.36(3):509-520.
    [8]Carman S, Cai HY, DeLay J, et al. The emergence of a new strain of porcine circovirus-2 in Ontario and Quebec swine and its association with severe porcine circovirus associated disease--2004-2006[J]. Canadian Journal of Veterinary Research.2008.72(3):259-268.
    [9]Cheung AK, Lager KM, Kohutyuk OI, et al. Detection of two porcine circovirus type 2 genotypic groups in United States swine herds[J]. Archives of Virology.2007. 152(5):1035-1044.
    [10]Dupont K, Nielsen EO, Baekbo P, et al. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time[J]. Veterinary Mmicrobiology.2008.128(1-2):56-64.
    [11]Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology.1982.157(1):105-132.
    [12]Shuai J, Wei W, Li X, et al. Genetic characterization of porcine circovirus type 2 (PCV2) from pigs in high-seroprevalence areas in southeastern China[J]. Virus Genes.2007. 35(3):619-627.
    [13]Wang F, Guo X, Ge X, et al. Genetic variation analysis of Chinese strains of porcine circovirus type 2[J]. Virus Research.2009.145(1):151-156.
    [14]Larochelle R, Magar R, D'Allaire S. Genetic characterization and phylogenetic analysis of porcine circovirus type 2 (PCV2) strains from cases presenting various clinical conditions [J]. Virus Research.2002.90(1-2):101-112.
    [15]Ellis JA, Bratanich A, Clark EG, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome[J]. Journal of Veterinary Diagnostic Investigation.2000.12(1):21-27.
    [16]Pallares FJ, Halbur PG, Opriessnig T, et al. Porcine circovirus type 2 (PCV-2) coinfections in US field cases of postweaning multisystemic wasting syndrome (PMWS)[J]. Journal of Veterinary Diagnostic Investigation.2002.14(6):515-519.
    [17]Drolet R, Larochelle R, Morin M, et al. Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia[J]. Veterinary Pathology.2003.40(2):143-148.
    [18]Grau-Roma L, Crisci E, Sibila M, et al. A proposal on porcine circovirus type 2 (PCV2)
    genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence[J]. Veterinary Microbiology.2008.128(1-2):23-35.
    [19]Lyoo KS, Park YH, Park BK. Prevalence of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and porcine parvovirus from aborted fetuses and pigs with respiratory problems in Korea[J]. Journal of Veterinary Science.2001.2(3):201-207.
    [20]Shi KC, Guo X, Ge XN, et al. Cytokine mRNA expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2[J]. Veterinary Microbiology. 140(1-2):155-160.
    [21]Li WL, Wang XW, Ma T, et al. Genetic analysis of porcine circovirus type 2 (PCV2) strains isolated between 2001 and 2009:genotype PCV2b predominate in postweaning multisystemic wasting syndrome occurrences in eastern China[J]. Virus Genes.2010.40:244-251.
    [22]Cheung AK. Homologous recombination within the capsid gene of porcine circovirus type 2 subgroup viruses via natural co-infection[J]. Archives of Virology.2009.154(3):531-534.
    [23]Grenfell BT, Pybus OG, Gog JR, et al. Unifying the epidemiological and evolutionary dynamics of pathogens[J]. Science.2004.303(5656):327-332.
    [24]Fenaux M, Opriessnig T, Halbur PG, et al. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo[J]. Journal of Virology.2004.78(24):13440-13446.
    [25]Rutz M, Metzger J, Gellert T, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence-and pH-dependent manner[J]. European Journal of Immunology.2004.34 (9):2541-2550.
    [26]Chu WM, Ostertag D, Li ZW, et al. JNK2 and IKKbeta are required for activating the innate response to viral infection[J]. Immunity.1999.11(6):721-731.
    [27]Al-Salleeh F, Petro TM. TLR3 and TLR7 are involved in expression of IL-23 subunits while TLR3 but not TLR7 is involved in expression of IFN-beta by Theiler's virus-infected RAW264.7 cells[J]. Microbes and infection.2007.9(11):1384-1392.
    [28]Nicol MQ, Mathys JM, Pereira A, et al. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and Ul cells[J]. Journal of Virology.2008.82(16):7790-7798.
    [29]Echchannaoui H, Leib SL, Neumann U, et al. Adjuvant TACE inhibitor treatment improves the outcome of TLR2-/-mice with experimental pneumococcal meningitis[J]. BMC Infectious Diseases.2007.7:25.
    [30]Baron ML, Gauchat D, La Motte-Mohs R, et al. TLR Ligand-Induced Type I IFNs Affect Thymopoiesis[J]. Journal of Immunology.2008.180(11):7134-7146.
    [31]Bertin S, Pierrefite-Carle V. Autophagy and toll-like receptors:a new link in cancer cells[J]. Autophagy.2008.4(8):1086-1089.
    [32]Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature.2000.408(6813):740-745.
    [33]Hasslung FC, Berg M, Allan GM, et al. Identification of a sequence from the genome of porcine circovirus type 2 with an inhibitory effect on IFN-alpha production by porcine PBMCs[J]. The Journal of General Virology.2003.84(11):2937-2945.
    [34]Wikstrom FH, Meehan BM, Berg M, et al. Structure-dependent modulation of alpha interferon production by porcine circovirus 2 oligodeoxyribonucleotide and CpG DNAs in porcine peripheral blood mononuclear cells[J]. Journal of Virology.2007.81(10):4919-4927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700