鸡脂肪组织和骨骼肌miRNA的筛选和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是一类非编码的22 nt左右的小RNA,它广泛存在于各种生物体中,通过对靶mRNA的翻译抑制和降解对基因的表达起负性调节作用。miRNA参与了包括增殖、分化、凋亡、发育等很多生物过程。
     本研究构建了4周龄肉鸡脂肪和骨骼肌中小分子RNA的cDNA文库,脂肪文库中筛选出44个已公布鸡miRNA,共16种,39个与其他物种同源miRNA,共5种;骨骼肌文库中筛选出81个已公布鸡miRNA,共27种,31个与其他物种同源miRNA,共4种。通过进一步分析,预测出11个脂肪中潜在新miRNA,共9种,7个骨骼肌中潜在新miRNA,共4种。通过已测出的各种miRNA序列在鸡基因组中的定位,找到5个miRNA基因簇,其中4个基因簇各含有2个miRNA基因,1个基因簇含有4个miRNA基因。在测出的miRNA序列中,通过对相同miRNA序列分析,发现其中一些相同miRNA含有不同的序列,即miRNA序列存在多样性。
     采用生物信息学方法,运用miRNA靶基因预测软件miRanda和TargetScan对脂肪和骨骼肌中miRNA的靶基因进行预测,在脂肪的250个表达基因中预测出192个潜在靶基因,在骨骼肌的250个表达基因中预测出216个潜在靶基因。并对其中每个miRNA的潜在靶基因数和与每个潜在靶基因相互作用的miRNA数进行了统计。这些结果为进一步研究鸡脂肪和骨骼肌中miRNA的靶基因奠定了基础。
     运用TaqMan实时荧光定量PCR技术,结合stem-loop法对文库中的10个miRNA进行鸡12个组织表达量的检测。结果显示,gga-miR-133a和gga-miR-1a在肌肉中特异表达,提示它们在鸡肌肉的生长发育中可能起重要作用;gga-miR-122在肝中表达量最高,在脂肪中有少量表达,提示它可能参与鸡脂肪酸代谢和脂肪生长发育;gga-miR-22、gga-miR-199、miR-23a和miR-145在心肌和肌胃中表达量高,而在骨骼肌中表达量却很少,提示它们在不同的肌肉类型中可能起不同的作用;gga-miR-126、gga-miR-200b和miR-191在骨骼肌和脂肪中表达量都很低,提示它们可能在这两个组织中并不发挥功能。
microRNAs(miRNAs) are a class of~22 nt small noncoding RNAs. They exist extensively in various organisms, negatively regulate gene expression by translational repression and degradation of target mRNAs. miRNAs are involved in many bioprocesses, including proliferation, differentiation, apoptosis and development.
     In this study, we constructed the cDNA libraries of small RNAs from 4 week chicken’s adipose tissue and skeletal muscle. In the adipose library 44(16 varieties) were chicken miRNAs published, 39(5 varieties) were miRNAs homolog to other species. In the skeletal muscle library 81(27 varieties) were chicken miRNAs published, 31(4 varieties) were miRNAs homolog to other species. By further analysis, 11(9 varieties) potential new miRNAs were predicted in adipose, 7(4 varieties) potential new miRNAs were predicted in skeletal muscle. By location of various sequenced miRNAs in chicken genome, 5 miRNA gene clusters were found. Among the 5 miRNA gene clusters, 4 clusters have 2 miRNA genes respectively, 1 cluster has 4 miRNA genes. The sequence polymorphism was revealed by sequence alignment of the obtained miRNAs.
     Based on the bioinformatics method, 192 potential target genes were predicted in 250 expression genes in adipose, 216 potential target genes were predicted in 250 expression genes in skeletal muscle by using miRNA target prediction software miRanda and TargetScan. The interaction between miRNAs and their target genes was analyzed. These results establish a basis for further research on miRNA target genes in chicken adipose and skeletal muscle.
     The expression level of 10 miRNAs in 12 chicken tissues were detected using stem-loop RT and TaqMan real-time fluorescence quantitative PCR. gga-miR-133a and gga-miR-1a are expressed specifically in muscle. They may play an important role in growth and development of chicken muscle. gga-miR-122 has the highest expression level in liver and a low expression level in adipose. It may be involved in fatty acids metabolism and growth and development of chicken adipose. gga-miR-22, gga-miR-199, miR-23a and miR-145 has a high expression level in heart and muscular stomach and a very low expression level in skeletal muscle. They may play different roles in different type of muscle. gga-miR-126, gga-miR-200b and miR-191 has very low expression level in skeletal muscle and adipose. They may play no roles in the two tissues.
引文
[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297
    [2] Lee R C, FeinbaumR L, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854
    [3] Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906
    [4] Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543): 858-862
    [5] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853-858
    [6] Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA, 2003, 9(2): 175-179
    [7] Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Dev, 2002, 16(13): 1616-1626
    [8] Brennecke J, Stark A, Russell R B, et al. Principles of microRNA-target recognition. PLoS Biol, 2005, 3(3): e85
    [9] Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions. Nature Genet, 2005, 37(5): 495-500
    [10] Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression. Genes Dev, 2004, 18(5): 504-511
    [11]陈芳,殷勤伟.调控基因表达的miRNA.科学通报, 2005, 50(13): 1289-1299
    [12] Esau C, Davis S, Murray S F, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 2006, 3(2): 87-98
    [13] Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38(2): 228-233
    [14] Kim H K, Lee Y S, Sivaprasad U, et al. Muscle-specific microRNA miR-206promotes muscle differentiation. J Cell Biol, 2006, 174(5): 677-687
    [15] Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36(Database issue): D154-158
    [16] Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004, 64(9): 3087-3095
    [17] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005, 37(7): 766-770
    [18] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23(20): 4051-4060
    [19] Carthew R W, Sontheimer E J. Origins and Mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655
    [20] Kim V N. MicroRNA Biogenesis: Coordinated Cropping And Dicing. Nat Rev Mol Cell Bio, 2005, 6(5): 376-385
    [21] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415-419
    [22] Han J, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125(5): 887-901
    [23] Suzuki H I, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature, 2009 460(7254): 529-533
    [24] Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science, 2004, 303(5654): 95-98
    [25] Bohnsack M T, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004, 10(2): 185-191
    [26] Grishok A, Pasquinelli A E, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001, 106(1): 23-34
    [27] Hutvagner G, Mclachlan J, Pasquinelli A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531): 834-838
    [28] Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell, 2005, 122(1): 17-20
    [29] Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115(2): 209-216
    [30] Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 2001, 293(5532): 1146-1150
    [31] Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 2002, 16(6): 720-728
    [32] Guo H S, Xie Q, Fei J F, et a1. MicroRNA164 directs NAC1 mRNA cleavage to downregulate auxin signals for lateral root development. Plant Cell, 2005, 17(5): 1376-138
    [33] Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 2005, 122(4): 553-563
    [34] Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004, 304(5670): 594-596
    [35] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, l5(11): 2730-2741
    [36] Liu J, Valencia-sanchez M A, Hannon G J, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol, 2005, 7(7): 719-723
    [37] Pilai R S, Bhattacharyya S N, Artus C G, et a1. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 2005, 309(5740): 1573-1576
    [38] Giraldez A J, MishimaY, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of matemal mRNAs. Science, 2006, 312(5770): 75-79
    [39] Wu L, Fan J, Belasco J Q. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 2006, 103(11): 4034-4039
    [40] Moss E G, Lee R C, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 1997, 88(5): 637-646
    [41] Abrahante J E, Daul A L, Li M, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell, 2003, 4(5): 625-637
    [42] Teleman A A, Maitra S, Cohen S M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev, 2006, 20(4): 417-422
    [43] Xu P, Vernooy S Y, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003, 13(9): 790-795
    [44] Li X, Cassidy J J, Reinke C A, et al. A microRNA imparts robustness against environmental fluctuation during development. Cell, 2009, 137(2): 273-282
    [45] Makeyev E V, Zhang J, Carrasco M A. et al. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell, 2007, 27(3): 435-448
    [46] Visvanathan J, Lee S, Lee B, et al. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 2007, 21(7): 744-749
    [47] Kawasaki H, Taira K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 2003, 423(6942): 838-842
    [48] Poy M N, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014): 226-230
    [49] Mersey B D, Jin P, Danner D J. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet, 2005, 14(22): 3371-3377
    [50] Stark A, Brennecke J, Russell R B, et al. Identification of Drosophila MicroRNA targets. PLoS Biol, 2003, 1(3): E60
    [51] Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 2005, 102(50): 18081-18086
    [52] Hariharan M, Scaria V, Pillai B, et al. Targets for human encoded microRNAs in HIV genes. Biochem BioPhys Res Commun, 2005, 337(4): 1214-1218
    [53] Eis P S, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA, 2005, 102(10): 3627-3632
    [54] Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005, 65(16): 7065-7070
    [55] Tavazoie S F, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175): 147-152
    [56] Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions anddownregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99(24): 15524-15529
    [57] Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA, 2005, 102(39): 13944-13949
    [58] Lee Y S, Kim H K, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem, 2005, 280(17): 16635-16641
    [59] Chen X, Ba Y, Ma L, et a1. Characterization of microRNAs in serum: a novel class of bioMarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10): 997-1006
    [60] Mitchell P S, Parkin R K, Kroh E M, et a1. Circulating microRNAs as stable blood-based Markers for cancer detection. Proc Natl Acad Sci USA, 2008, 105(30): 10513-10518
    [61] Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366
    [62] McManus M T, Sharp P A. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002, 3(10): 737-747
    [63] Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297(5589): 2053-2056
    [64] Hutvágner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589): 2056-2060
    [65] Doench J G, Petersen C P, Sharp P A. siRNAs can function as miRNAs. Genes Dev, 2003, 17(4): 438-442
    [66] Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006, 38(7): 813-818
    [67] Huang T H, Zhu M J, Li X Y, et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One, 2008, 3(9): e3225
    [68] Gu Z, Eleswarapu S, Jiang H. Identification and characterization ofmicroRNAs from the bovine adipose tissue and mammary gland. FEBS Lett, 2007, 581(5): 981-988
    [69] Xu H, Wang X, Du Z, et al. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Lett, 2006, 580(15): 3610-3616
    [70] Darnell D K., Kaur S, Stanislaw S, et al. MicroRNA Expression During Chick Embryo Development. Dev Dyn, 2006, 235(11): 3156-3165
    [71] Glazov E A, Cottee P A, Barris W C, et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res, 2008, 18(6): 957-964
    [72] Callis T E, Chen J F, Wang D Z. MicroRNAs in Skeletal and Cardiac Muscle Development. DNA Cell Biol, 2007, 26(4): 219-225
    [73] van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles. Trends Genet, 2008, 24(4): 159-166
    [74] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048): 214-220
    [75] Rao P K, Kumar R M, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA, 2006, 103(23): 8721-8726
    [76] Liu N, Williams A H, Kim Y, et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA, 2007, 104(52): 20844-20849
    [77] Mccarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 2007, 102(1): 306-313
    [78] Miranda K C, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 2006, 126(6): 1203-1217
    [79] Betel D, Wilson M, Gabow A, et al. The microRNA.org resource: targets and expression. Nucleic Acids Res, 2008, 36: 149-153
    [80] Nam S, Kim B, Shin S, et al. miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res, 2008, 36: 159-164
    [81] Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res, 2006, 34(20): 5863-5871
    [82] Rosenberg M I, Georges S A, Asawachaicharn A, et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol, 2006, 175(1): 77-85
    [83] Boutz P L, Chawla G, Stoilov P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 2007, 21(1): 71-84
    [84] Bland C S, Cooper T A. Micromanaging Alternative Splicing during Muscle Differentiation. Dev Cell, 2007, 12(2):171-172
    [85] Naguibneva I, Ameyar-zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 2006, 8(3): 278-284
    [86] Flynt A S, Li N, Thatcher E J, et al. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet, 2007, 39(2): 259-263
    [87] Kwon C, Han Z, Olson E N, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA, 2005, 102(52): 18986-18991
    [88] Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med, 2007, 13(5): 613-618
    [89] Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007, 120(17): 3045-3052
    [90] Zhao Y, Ransom J F, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 2007, 129(2): 303-317
    [91] Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem, 2007, 282(17): 12363-12367
    [92] Luo X, Lin H, Pan Z, et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem, 2008, 283(29): 20045-20052
    [93] van Rooij E, Sutherland L B, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007, 316(5824): 575-579
    [94] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224):980-986
    [95] Stefani G, Slack F J. Small non-coding RNAs in animal Development. Nat Rev Mol Cell Bio, 2008, 9(3): 219-230
    [96] Wang H, Garzon R, Sun H, et al. NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma. Cancer Cell, 2008, 14(5): 369-381
    [97] Krutzfeldt J. Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with‘antagomirs’. Nature, 2005, 438(7068): 685-689
    [98] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem, 2004, 279(50): 52361-52365
    [99] Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA, 2006, 12(9): 1626-1632
    [100] Hackl H, Burkard T R, Sturn A, et al. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol, 2005, 6(13): R108
    [101] Wang Q, Li Y C, Wang J, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci U S A, 2008, 105(8): 2889-2894
    [102] Lee, R C, Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294(5543): 862-864
    [103] Mitra R D, Shendure J, Olejnik J, et al. Fluorescent in situ sequencing on polymerase colonies. Anal Biochem, 2003, 320(1): 55-65
    [104] Shendure J, Porreca G J, Reppas N B, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 2005, 309(5741): 1728-1732
    [105] Fields S. Molecular biology. Site-seeing by sequencing. Science, 2007, 316(5830): 1441-1442
    [106] Chen X, Li Q, Wang J, et al. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol, 2009, 10(7): R78
    [107] Ma Y J, Dissen G A, Rage F, et al. RNase Protection Assay. Methods, 1996, 10(3): 273-278
    [108] Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470
    [109] Liu C G, Calin G A, Meloon B, et al. An oligonucleotide microchip forgenome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA, 2004, 101(26): 9740-9744
    [110] Krichevsky A M, King K S, Donahue C P, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 2003, 9(10):1274-1281
    [111]刘巍,晁腾飞,龚燕华,等.应用微阵列芯片分析人髓母细胞瘤及瘤旁组织miRNA表达谱差异.首都医科大学学报, 2009, 30(3): 355-359
    [112]邓文星,张映.实时荧光定量PCR技术综述.生物技术通报, 2007, (5): 93-95
    [113] Kubista M, Andrade J M, Bengtsson M J, et a1. The real-time polymerase chain reaction. Mol Aspects Med, 2006, 27(2-3): 95-125
    [114]周芳,杜迎翔,周国华.基因表达量测定方法研究进展.药物生物技术, 2004, 11(4): 267-270
    [115] Rodriguez L D, Hernandez M, Esteve T, et al. A rapid and direct real time PCR-based method for identification of Salmonella spp. J Microbiol Methods, 2003, 54(3): 381-390
    [116] Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33(20): e179
    [117] Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol, 2003, 5(1): R1
    [118] Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets. Cell, 2003, 115(7): 787-798
    [119] Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15-20
    [120] Naguibneva I, Ameyar-Zazoua M, Nonne N, et al. An LNA-based loss-of-function assay for micro-RNAs. Biomed Pharmacother, 2006, 60(9): 633-638
    [121] Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem, 2007, 282(32): 23716-23724
    [122] Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic genehid in DrosoPhila. Cell, 2003, 113(1): 25-36
    [123] Johnson S M, Grosshans H, Shjngara J, et al. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5): 635-647
    [124] Kiriakidou M, Nelson P T, Kouranov A, et al. A combined computational–experimental approach predicts human microRNA targets. Genes Dev, 2004, 18(10): 1165-1178
    [125] Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 2005, 33(4): 1290-1297
    [126] Chhabra R, Adlakha Y K, Hariharan M, et al. Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One, 2009, 4(6): e5848
    [127] Buck A H, Perot J, Chisholm M A, et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA, 2010, 16(2): 307-315
    [128] Ji J, Zhang J, Huang G, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett, 2009, 583(4): 759-766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700