克罗恩病与IL-32的表达及基因多态性的相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察促炎性细胞因子IL-32在克罗恩病(Crohn’s disease)患者肠黏膜中的表达情况,研究CARD15、IRGM、ATG16L1、NKX2-3基因的单核苷酸多态性(single nucleotide polymorphisms, SNP)位点与中国人克罗恩病易感性的关系,为深入研究克罗恩病的发病机制奠定基础,亦为该病的防治提供实验依据。
    
     方法:
     ⑴收集临床确诊的克罗恩病患者(47例)及其健康对照(16名)的组织标本,经病理检验,通过免疫组化以及western blot方法观察IL-32在克罗恩病患者肠黏膜内的表达情况,检验IL-32在克罗恩病患者肠黏膜中的表达与意义。⑵提取克罗恩病患者(32例)和健康对照个体(30名)的外周血,抽提白细胞基因组DNA,检测CARD15_rs2066842、IRGM_rs13361189、ATG16L1_rs2241880以及NKX2-3_ rs10883365的SNP多态性与克罗恩病的关系,根据靶序列片段设计相应的引物,PCR扩增目的片段,经纯化后测序,测序结果分组做统计分析。
     结果:
     ⑴与对照相比,经免疫组化法和western blot法检测的IL-32在克罗恩病患者肠黏膜中表达上调,二者的表达量有显著性差异(P﹤0.05)。⑵克罗恩病病例组和健康对照组基因频率和基因型频率的组间比较显示: CARD15_rs2066842、IRGM_rs13361189、ATG16L1_rs2241880以及NKX2-3_rs10883365的SNP分布频率的差异均无统计学意义(P﹥0.05)。提示这四个基因多态性位点可能与中国人克罗恩病的易感性无关。
     结论:
     ⑴IL-32无论在克罗恩病患者还是在健康对照个体的肠黏膜内均有表达,但在克罗恩病患者肠黏膜内IL-32表达上调,研究显示IL-32表达上调能加重克罗恩病的炎症反应。⑵国外研究报道的与高加索人克罗恩病相关的CARD15_rs2066842,IRGM_ rs13361189、ATG16L1_rs2241880以及与日本人克罗恩病易感性的NKX2-3_rs10883365的SNP位点可能与我国克罗恩病患者的易感性无关,这些SNP的变异至多是增加了中国人罹患克罗恩病的风险。
Objective:
     To explore the expression of interleukin-32(IL-32), a novel pro-inflammatory cytokine in the intestinal mucosa of patients with Crohn’s disease (CD). Nowadays, it has been reported that some sequence variants and other multiple replicating loci contribute to Crohn’s disease susceptibility, such as CARD15(NOD2), IRGM, ATG16L1, NKX2-3, etc. We study the correlations of these single nucleotide polymorphisms(SNPs ) associated with Chinese CD, in order that study the pathogenesis of CD in-depth, and provide experimental basis for prevention and treatment of this disease.
     Methods:
     The biopsy specimens of clinical diagnosis of CD patients (47 cases) and healthy controls (16 cases) were collected, after pathological examinations, the expressions of IL-32 were detected by immunohistochemistry (IHC) and western blot, the results were used for analysis. To evaluate the relations between gene polymorphisms and CD, peripheral blood from CD patients (32 cases) and healthy controls (30 cases)were extracted, genomic DNA was isolated from leukocyte in the peripheral blood, to estimate the relationships of SNPs about CARD15_rs2066842, IRGM_ rs13361189, ATG16L1_rs2241880 and NKX2-3_rs10883365 mutations associated with CD, matched primers were designed according to the target sequences, the fragments of target sequences were amplified by PCR, after purified, the PCR products were sequencing, and the sequencing results were compared, and make statistical analysis.
     Results:
     Compared to controls, the expression of IL-32 in intestinal mucosa with CD patients were up-regulation, and the protein levels of these two groups were significant difference(P﹤0.05). Gene frequencies and genotype frequencies between CD and healthy control groups comparisons showed that: the frequency distributions of the SNPs about CARD15_rs2066842, IRGM_rs13361189, ATG16L1_rs2241880 and NKX2-3 _rs10883365 were no significant difference. It is suggesting that these SNPs of genes variants with Chinese CD patients susceptibility has no correlations.
     Conclusion:
     In spite of the pro-inflammatory cytokine IL-32 was expressed in intestinal mocusa of CD patients and controls, the expression levels of this protein in CD was increased, our studies show that IL-32 up-expression could aggravate chronic inflammatory response in CD. The abroad researchers have reported the SNPs about CARD15_rs2066842, IRGM_rs13361189, ATG16L1_rs2241880 and NKX2-3_ rs10883365 associated with the Caucasians or Japanese CD, but we found that the SNPs of these gene sites variants associated with susceptibility of Chinese CD might not be related, and the SNPs variants at most increased the risk of suffering from CD.
引文
1 Crohn BB, Ginzburg L, Oppenheimer J. Regional ileitis[J]. JAMA, 1932,99:1232- 1239.
    2 Sandler RS, Eisen GM. Epidemiology of bowel inflammatory disease. In: Kirsner JB eds. bowel inflammatory disease. 5th ed. Philadelphia: WB Saunders Company, 2000,89-112.
    3 Loftus EV, Sandborn WJ, Epidemiology of bowel inflammatory disease. Gastroe- nterol Clin Nam, 2002,31(1):1-20.
    4 Mowat AH. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol, 2003,3:331-341.
    5 Van Kruiningen HJ, Ganley LM, Freda BJ. The role of Peyer’s patches in the age- related incidence of Crohn’s disease[J]. J Clin Gastroenterol,1997,25:470-475.
    6 Barreau F, Meinzer U, Chareyre F, et al. CARD15/NOD2 is required for Peyer’s patches homeostasis in mice[J]. Plosone, 2007, 2:e523.
    7 Ahmad T, Satsangi J, McGovern D, et al. The genetics of bowel inflammatory disease[J]. Aliment Pharmacol Ther,2001,15:731-748.
    8 Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of susceptibility locus for Crohn’s disease on chromosome 16[J]. Nature 1996,379:821-823.
    9 Hugot JP, Chamaillard M, Zouali H, et al. Association NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease[J]. Nature 2001,411:599-603.
    10 Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease[J]. Nature, 2001,411:603-606.
    11 Hampe J, Cuthbert A, Croucher PJP, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations[J]. Lancet 2001,357:1925-1928.
    12 Ahamad T, Armuzzi A, Bunce M, et al. The molecular classification of the clinicalmanifestations of Crohn’s disease[J]. Gastroenterology 2002,122:854-866.
    13 Cuthbert AP, Fisher SA, Mirza MM, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease[J]. Gastroenterology, 2002,122:867-874.
    14 Lesage S, Zouali H, Cèzard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease[J]. Am J Hum Genet 2002,70:845-857.
    15 Colombel JF. The CARD15 (also known as NOD2) gene in Crohn’s disease: are there implications for current clinical[J]? Clin Gastroenterol Hepatol 2003,1:5-9.
    16 Parkes M, Barrett JC , Prescott N, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility[J]. Nature Genet,2007,39(7):830-832.
    17 Ogawa M, Yoshimori T, Suzuki T, et a1. Escape of intracellular Shigella from autophagy[J]. Science,2005,307(5710):727-731.
    18 Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development[J]. Cell,2007,128:931-946.
    19 Xavier RJ, Huett A, Rioux JD. Autophagy as an important process in gut homeost- asis and Crohn’s disease pathogenesis[J]. Gut,2008,57:717-720.
    20 Van Limbergen J, Russell RK, Nimmo ER, et al. Autophagy gene ATG16L1 influ- ences susceptibility and disease location but not childhood-onset in Crohn's disea- se in Northen Europe[J]. Inflamm Bowel Dis,2008,14:338-346.
    21 Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nons- ynonymous SNPs indentifies a susceptibility variant for Crohn’s disease in ATG16TL1[J]. Nat Genet,2007,39:207-211.
    22 Welcome Trust Care Control Consortiums (WTCCC). Genome wide association s- tudy of 14.000 cases if severe common diseases and 3000 shared controls[J]. Nature, 2007,447:1516-1517.
    23 Singh SB, Davis AS, Taylor G, et al. Human IRGM induces autophagy to elimin- ate intracellular mycobacteria[J]. Science ,2006,313:1438-1341.
    24 Yamazaki K, Takahashi A, Takazoe M, et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients[J]. Gut,2009,58:228-232.
    25 Müller A, Voswinkel J, Gottschlich S et al. Human Proteinase 3 (PR3) and Its Binding Molecules Implications for Inflammatory and PR3-Related Autoimmune Responses[J]. Ann. N.Y. Acad Sci,2007,1109: 84-92.
    26 Netea M G, Azam T, Ferwerda G et al. IL-32 synergizes with nucleotide oligomerization domain(NOD)1 and NOD2 ligands for IL-1βand IL-6 production through a caspase 1-dependent mechanism[J]. Proc Natl Acad Sci,2005,102(45): 16309-16314.
    27 Kim SH, Han SY, Azam T et al. Interleukin-32, a cytokine and inducer of TNFα[J]. Immunity,2005,22:131-142.
    28 Mun SH, Kim JW, Nah SS et al. Tumor necrosis factorα–induced interleukin-32 is positively regulated via the Syk/protein kinase Cδ/JNK pathway in rheumatoid synovial fibroblasts[J]. Arthritis &Rheumatism,2009,60(3): 678-685.
    29 Dinarello CA, Kim SH. IL-32, a novel cytokine with a possible role in disease[J]. Ann Rheum Dis,2006,65: 61-64.
    30 Hanauer SB. Biologics: the future of IBD therapy. In: Falk Symposium 163“Chronic inflammation of liver and gut”. 2008,march14-15,Hangzhou,China; 39-40.
    31 Podolsky DK. Pieces of a puzzle: multi-factorial pathogenesis of inflammation bowel disease. In: Falk Symposium 163“Chronic inflammation of liver and gut”. 2008, march14-15,Hangzhou,China;19-20.
    32 Jewell DP. Genes. In: Falk Symposium 163“Chronic inflammation of liver and gut”. 2008,march14-15,Hangzhou,China;23.
    33 Mayer L. An epithelial-centric view of IBD. In: Falk Symposium 163“Chronic inflammation of liver and gut”. 2008,march14-15,Hangzhou,China;21-22.
    34 Ogura Y, Inohara N, Benito A, et al. NOD2, a NOD1/APAF-1 family member that is restricted to monocytes and activates NF-κB[J]. J Biol Chem, 2001,276: 4812-4818.
    35 Girardin SE, Sansonetti PJ, Philpott DJ. Intracellular vs extracellular recognition of pathogens in mammal and flies[J]. Trends Microbiol,2002,10:193-199.
    36 Cummings JR, Cooney R, Pathan S, et a1. Confirmation ofthe role ofATGl6L1 as a Crohn’s disease susceptibility gene[J]. Inflamm Bowel Dis,2007, l3(8):941-946.
    37 Yamazaki K, Onouchi Y, Takazoe M, et a1.Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci witll Crohn’s disease in Japanese patients[J]. J Hum Genet,2007,52(7): 575-583.
    38 Lacher M, Schroepf S , Ballauff A, et al. Autophagy 16-like 1 rs2241880 G allele is associated with Crohn’s disease in German children[J]. Acta P?diatrica,2009, 98:1835-1840.
    39 Hata H, Sakaguchi N, Yoshitomi H., et al. Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice[J]. J. Clin. Invest, 2004,114:582-588.
    40 Goda C, Kanaji T, Kanaji S, et al. Involvement of IL-32 in activation-induced cell death in T cells[J]. Int. Immunol,2006,18:233-240.
    41 Joosten L A, Netea MG, Kim SH, et al. IL-32, a proinflammatory cytokine in rheumatoid arthritis[J]. Proc. Natl. Acad. Sci. 2006,103: 3298-3303.
    42 Shoda H, Fujio K., Yamaguchi Y, et al. Interactions between IL-32 and tumor necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases[J]. Arthritis Res. Ther,2006,8:R166.
    43 Novick D, Rubinstein M, Azam T, et al. Proteinase 3 is an IL-32 binding protein[J]. Proc. Natl. Acad. Sci. 2006,103:3316-3321.
    44 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell,2006,124:783-801.
    45 Cho JH. The NOD2 gene in Crohn’s disease: implications for future research into the genetics and immunology of Crohn’s disease[J]. Inflamm Bowel Dis, 2001,7: 271-275.
    46 Rosenstiel P, Fantini M, Brautigam K, et al. TNF-αand IFN-γregulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells[J]. Gastroenterology,2003,124:1001-1009.
    47 Hisamatsu T, Suzuki M, Reinecker HC, et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells[J]. Gastroenterology,2003, 124:993-1000.
    48 Berrebi D, Maudinas R, Hugot JP, et al. CARD15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn’s disease colon[J]. Gut, 2003,52:840-846.
    49赵凝,郑家驹,庞智,等. CARD15基因突变与中国人克罗恩病易感性的关系[J].中华消化杂志,2007,27(4):264-265.
    50龙靖华,智发朝,张迎春,等. NOD2/CARD15基因突变与中国人克罗恩病相关性的研究[J].胃肠病学,2007,12(6):327-330.
    51 Wehkamp J, Harder J, Weichenthal M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosalα-defensin expression[J]. Gut,2004,53:1658-1664.
    52 Schroder JM. Epithelial antimicrobial peptides: innate local host response elements[J]. Cell Mol Life Sci,1999,56:32-46.
    53 Bekpen C,Marques-Bonet T,Alkan C, et al. Death and resurrection of the human IRGM gene[J]. PLoS Genet. 2009,5(3):e1000403.
    54 Rioux JD,Xavier RJ,Taylor KD,et a1. Genome-wide association study identifies new susceptibility loci for Crohn’s disease and implicates autophagy in disease pathogenesis[J]. Nature Genet,2007,9(5): 596-604.
    55 Cario E. Toll-like receptor and gastrointestinal disease: from bench to bedside[J]. Curr Opin Gastroenterol,2002,18:696-704.
    56 Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    57庞智,李美芬,皇甫照,等.中国汉族炎症性肠病幽门螺杆菌感染状况分析[J].世界华人消化杂志,2009,17(35): 3661-3665.
    58 Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease[J]. Gastroenterology,2002,122:44-54.
    59 Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease[J]. The Lancet Infectious Diseases,2003, 3:507-514.
    60 Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease[J]. Gastroenterology, 1998,115:1405-1413.
    61 Glasser AL, Boudeau J, Barnich N, et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death[J]. Infect Immun, 2001, 69: 5529 -5537.
    62 Barnich N, Carvalho FA, Glasser A, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn’s disease[J]. J Clin Invest 2007,117:1566-1574.
    63 Boudeau J, Barnich N, Darfeuille-Michaud A. Type 1 pilimedaited adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells[J]. Mol Microbiol,2001,39:1272-1284.
    1 Dahl CA, Schall RP, He HL et al. Identification of a novel gene expressed in activated natural killer cell and T cells[J]. J Immunol,1992,148:597-603.
    2 Kim SH, Han SY, Azam T et al. Interleukin-32, a cytokine and inducer of TNF alpha[J]. Immunity,2005,22:131-142.
    3 Chen Q, Carroll HP, Gadina M. The newest interleukins: recent additions to the ever-growing cytokine family[J]. Vitam & Horm,2006,74:207-228.
    4 Dinarello CA, Kim SH. IL-32, a novel cytokine with a possible role in disease[J]. Ann Rheum Dis,2006,65: 61-64.
    5 Novick D, Rubinstein M, Azam T et al. Proteinase 3 is an IL-32 binding protein[J]. Proc Natl Acad Sci USA ,2006;103 (9) :3316-3321.
    6 Shioya M, Nishida A, Yagi Y et al. Epithelial overexpression of interleukin-32αin in?ammatory bowel disease[J]. Clinical and Experimental Immunology,2007,149: 480-486.
    7 Sugawara S. Immune functions of proteinase3[M]. Crit Rev Immunol,2005,25: 243-260.
    8 Shoda H, Fujio K, Yamaguchi Y et al. Interactions between IL-32 and tumor necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases[J]. Arthritis Res Ther,2006,8(6):1-13.
    9 Müller A, Voswinkel J, Gottschlich S et al. Human Proteinase 3 (PR3) and Its Binding Molecules Implications for Inflammatory and PR3-Related Autoimmune Responses[J]. Ann. N.Y. Acad Sci,2007,1109: 84-92.
    10 Netea M G, Azam T, Ferwerda G et al. IL-32 synergizes with nucleotide oligomerization domain(NOD)1 and NOD2 ligands for IL-1βand IL-6 production through a caspase 1-dependent mechanism[J]. Proc Natl Acad Sci,2005,102(45): 16309-16314.
    11 Kundu M, Joyoti Basu. IL-32: an emerging player in the immune response network against tuberculosis[J]. PLoS Med,2006,8(3):1210-1211.
    12 Goda C, Kenaji T, Kenaji S et al. Involvement of IL-32 in activation-induced cell death in T cells[J]. International Immunology,2006,18(2):233-240.
    13 Li W, Yang F, Liu Y et al. Negative feedback regulation of IL-32 production by iNOS activation in response to dsRNA or in?uenza virus infection[J]. Eur. J Immunol,2009,39:1019-1024.
    14 Conti P, Youinou P, Theoharides P. Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32) [J]. Autoimmunity Reviews,2007,6: 131-137.
    15 Mun SH, Kim JW, Nah SS et al. Tumor necrosis factorαinduced interleukin-32 is positively regulated via the Syk/protein kinase Cδ/JNK pathway in rheumatoid synovial fibroblasts[J]. Arthritis &Rheumatism,2009,60(3):678-685.
    16 Netea MG, Lewis EC, Azam T et al. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci,2008;105(9):3515- 3520.
    17 Netea MG, Azam T, Lewis EC et al. Mycobacterium tuberculosis induces interleukin-32 production through a Caspase-1/IL-18/Interferon-γ-dependent mechanism[J]. PLoS Med,2006,3(8):1310-1319.
    18 Barksby HE, Nile CJ, Jaedicke KM et al. Differential expression of immuno- regulatory genes in monocytes in response to P. gingivalis and E. coli LPS[J],2009 156(3):479-487.
    19 Rasool S.T, Tang H, Wu JM et al. increased level of IL-32 during human immunodeficiency virus infection suppresses HIV replication[J]. Immunolology Letters,2008,117:161-167.
    20 Li W, Liu Y, Mukhtar MM et al. Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection[J]. PLoS One,2008,3(4):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700