大鼠Hrh1基因新发现的cSNP位点及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组胺(2-[4-imodazole]-ethylamine)是组胺酸在组胺酸脱羧酶(histidine decarboxylase, HDC)作用下形成的体内作用最广泛的单胺类物质之一,是I型超敏反应中的主要效应分子,组胺通过与其相结合的Hrh1(histamine receptor H1)参与机体内多种生理功能的调节。Hrh1是研究神经-内分泌-免疫-效应器轴的重要中介。
     Hrh1作为单拷贝基因,在大鼠基因组中定位于4号染色体,4q42区。直至最近的研究才发现,人类的Hrh1基因属于无内含子的结构基因。截至2009年4月,NCBI中报道的人类基因组无内含子基因约为180个,数量远远少于有内含子基因,但是,真核生物的无内含子基因在比较物种进化与基因组的遗传变异中起着重要的作用,近年来已逐渐引起人们的兴趣。大鼠Hrh1基因也是无内含基因,全长均为外显子。
     目前,针对Hrh1基因多态性与碱基突变的研究尚不多,国内未见有关大鼠Hrh1基因突变的报道。大鼠Hrh1基因与人基因组Hrh1基因具有较高的同源性,其蛋白结构相近,具有两段7个跨膜α螺旋结构域,氨基酸序列比对同源性约80%,因此我们选择大鼠Hrh1基因研究其基因组与转录产物mRNA的碱基突变,核苷酸多态性,为今后研究人类基因组Hrh1基因多态性,相关突变及与Hrh1表达产物(组胺H1受体)的遗传药理学与药物基因组奠定前期实验基础。
     针对我们的研究目的,本课题实验主要分为四个部分。
     第一部分实验,我们研究了大鼠Hrh1基因在大鼠全血基因组、大鼠脑组织转录产物mRNA以及大鼠肝组织转录产物mRNA中序列的碱基差异。
     主要实验操作方法为:从雄性SD大鼠中用碘化钾法提取全血基因组DNA,Trizole法提取大鼠脑组织与肝组织的总RNA。紫外分光光度法与琼脂糖凝胶电泳鉴定提取的核酸纯度与浓度合格后,以脑组织和肝组织的总RNA为模板,RevertAid? First Strand cDNA Synthesis Kits逆转录合成cDNA第一链。根据NCBI公布的大鼠Hrh1基因组DNA(gi: 62750804)及mRNA序列(gi: 220770),应用Vector NTI Suite 10.0软件,针对Hrh1的蛋白编码区序列设计克隆编码区全长的引物,为便于今后研究Hrh1基因的表达,在上下游引物的5’引入不同的限制性酶酶切位点。使用保真度极高的PrimeSTAR? HS DNA Polymerase,以所提取的大鼠全血基因组DNA、脑组织cDNA以及肝组织cDNA为模板,使用聚合酶链反应(PCR)方法克隆大鼠Hrh1编码区全长。PCR产物纯化回收试剂盒对PCR反应的产物进行纯化。用限制性内切酶双酶切法对基因组DNA、脑cDNA、肝cDNA PCR纯化产物与克隆载体pUC19进行双酶切。小量胶回收试剂盒进行酶切产物的纯化回收。T4 DNA Ligase分别将基因DNA,脑cDNA,肝cDNA酶切产物与pUC19载体进行粘性末端的连接,构建pUC19-Hrh1重组载体。
     用Inoue法制备大肠杆菌DH5α的超级感受态。将构建好的pUC19-Hrh1通过热激转化至DH5α的感受态细胞中,用IPTG,X-gal对转化的感受态进行蓝白筛选,用菌落PCR法快速筛选含有pUC19-Hrh1的阳性菌落。对筛选好的阳性菌落进行过夜培养,用小量质粒快速抽提纯化试剂盒进行质粒提取。
     提取的质粒首先进行凝胶电泳,根据质粒条带初步确定质粒的大小。以质粒为模板,进行PCR扩增,根据是否有特异性条带判定重组载体中是否含有目的基因。为保证筛选出的重组载体不含有目的片段的双克隆,以限制性内切酶对提取的质粒进行双酶切鉴定。从筛选合格的重组子中,我们选择了3个血基因的重组克隆子、3个脑cDNA的重组克隆子以及5个肝cDNA的重组克隆子送北京诺赛基因组研究中心有限公司进行测序。
     根据测序结果进行比对,我们发现血基因组3个克隆子与脑cDNA的3个克隆子、肝cDNA的1个克隆子与NCBI中公布的大鼠Hrh1基因组DNA(gi: 62750804)序列100%一致,但与mRNA(gi: 220770)序列的一致性为99.7%,存在4个碱基差异。而肝cDNA组的另4个克隆存在5个位点的碱基突变,分别是237位、928位、1041位、1210位以及1342位。通过分析氨基酸的三联体密码,我们发现928位与1342位突变可导致编码的氨基酸发生改变。928位为蛋氨酸(Met)→缬氨酸(Val),即Val代替了Met;1342位为Val→Met。根据NCBI公布的大鼠Hrh1的cSNP位点,仅237位(rs8155549)的C/T多态与我们的测序结果相符,其余的4个突变位点,未见有相关的报道。因此,我们推测:①大鼠Hrh1基因中,存在有新的cSNP位点。②Hrh1在大鼠体内不同组织中转录时(如脑组织与肝组织),有可能存在RNA水平上的突变,即RNA编辑。
     在第二部分实验中我们主要研究不同抗凝剂对全血基因组DNA提取的纯度和得率,尤其是下游的基因扩增的影响。在第一部分实验中,我们发现当使用肝素钠抗凝时,紫外分光光度法与琼脂糖凝胶电泳检测基因组DNA得率与纯度都令人满意,但PCR扩增时,结果并不稳定,效果亦不理想。在排除多种因素并查阅了相关资料后,推测有可能是抗凝血中抗凝剂的使用对基因组DNA的扩增效率产生影响。考虑到EDTA对PCR反应的催化剂Mg2+的螯合作用,我们没有选择EDTA作为抗凝剂,而是选用枸橼酸钠与肝素作为抗凝剂,分别对大鼠动脉血与静脉血抗凝后,进行实验比较。
     设计了3对引物,引物1扩增β-actin(跨内含子设计,1104 bp);引物2扩增Hrh1基因的部分片段,468bp;引物3扩增Hrh1全长,1477bp。由实验结果可知,当使用肝素钠作为抗凝剂从全血中提取核酸进行基因扩增实验,扩增效率会受到明显的抑制,尤其扩增的目的片段较长(>1000 bp)时。扩增小片段时,肝素钠对PCR的扩增效率影响较小。而动脉血与静脉血的DNA扩增结果没有差异。根据这部分的实验结果,我们在提取血基因DNA时,选择使用枸橼酸钠作为抗凝剂,保证下游实验结果的稳定性。
     为了确定大鼠Hrh1基因的cSNP位点,证实在第一部分实验中的推测,我们进行了第三部分实验。这部分实验选择健康雄性SPF SD级大鼠7只,健康雌性SD大鼠6只,颈静脉取血,碘化钾法提取全血基因组DNA。紫外分光光法与琼脂糖电泳鉴定DNA的浓度与纯度。PrimeSTAR? HS DNAPolymerase高保真扩增大鼠Hrh1编码区全长,琼脂糖电泳鉴定PCR产物,小量胶回收试剂盒进行剩余PCR产物的纯化回收。纯化产物送北京诺赛基因组研究中心有限公司进行测序。
     通过分析13只大鼠的基因组Hrh1序列测序峰图,我们发现在大鼠Hrh1 CDS全长1461 bp中,共有4个cSNP位点,分别为:237位C/T多态;928位A/G多态;1041位C/T多态;1342位G/A多态。并对13例样本4个cSNP位点用SPSS 15.0进行了频率统计。
     截至2009年4月,NCBI中对大鼠Hrh1编码区报道的cSNP位点共为3个,分别为rs8153540(102位A/C多态)、rs8155549(237位C/T多态)以及rs8153541(1404位C/G多态)。
     本课题研究发现的4个cSNP位点仅237位C/T多态性cSNP与NCBI所报道rs8155549相符,其余3个cSNP位点(928位、1041位、1342位)NCBI均未见报道,而NCBI报道的rs8153540、rs8153541本研究中未发现多态性。
     我们发现的大鼠Hrh1基因编码区内4个cSNP位点中,237位与1041位C/T多态引起三联体密码子的改变不会影响编码氨基酸的改变。但928位A/G多态与1342位G/A多态能造成三联密码子编码的氨基酸发生改变,是错义突变。
     我们根据NCBI中公布的人类基因组Hrh1基因DNA序列、mRNA序列;大鼠Hrh1基因DNA序列、mRNA序列;小鼠Hrh1基因DNA序列、mRNA序列,应用Vector NTI Suite 10.0与Lasergene 7.0进行分析比对,发现大鼠Hrh1 cSNP位点与人类基因组Hrh1 cSNP位点,小鼠Hrh1 cSNP有着相似的发生区域。使用NCBI的Protein Blast功能进行了Hrh1基因所编码的蛋白结构预测,可知人类、大鼠、小鼠的Hrh1蛋白结构极为相似,都存在有2段7个跨膜α螺旋结构域,区间均为45~225AA和390~470AA。
     用Lasergene 7.0进行Hrh1编码蛋白多肽链的二级结构预测表明928位和1342位cSNP可导致编码蛋白多肽链310与448位氨基酸的改变。从预测分析可发现,氨基酸改变后会导致α区域与亲水性的改变。结果提示我们,突变引起编码多肽链一级结构的改变,最终导致翻译的蛋白质活性的改变,从而影响受体蛋白的特性和功能。
     为今后进行Hrh1 cSNP相关的遗传药理学与药物基因组学等实验确定相应的检测cSNP的方法,在第四部分实验中,我们探索了等位基因特异性扩增法(alleles specific amplification,ASA)检测928与1342位cSNP。选择第三部分实验中通过测序确定序列的1号(928 A/G, 1342 G/A)、2号(928 G/G, 1342 A/A)、8号(928 A/A, 1342 G/G)大鼠做为测定样本。
     ASA PCR引物的设计至关重要。针对928位(A/G)和1342位(G/A)cSNP位点,应用Vector NTI Suite 10.0软件设计引物。2个位点的引物都是在下游引物3’端设计相应的碱基探针,与探针相邻的碱基设计成错配。提取全血基因组DNA,高保真扩增Hrh1全长,PCR产物纯化回收,稀释后作为ASA PCR的反应模板。选择第一部分实验中通过测序确定的重组质粒Blood 1(928 A, 1342 G)和Liver 1(928 G, 1342 A)做为阳性对照。
     实验结果表明,PCR结果与预期结果一致,证明所设计ASA探针引物完全可行,建立ASA PCR反应体系可靠,为今后对大鼠的Hrh1基因进行分型,进行相应的Hrh1不同基因表型、遗传药理学与药物基因组学等相关实验奠定了前期的基础。
Histamine is derived from the decarboxylation of the amino acid histidine, a reaction catalyzed by the enzyme L-histidine decarboxylase. It is one of monamines which have the most extensively influences on the functions of the body. Histamine is the major response factor in hypersensitivity type I. Mediated by Hrh1 ( histamine receptor H1 ) , histamine regulates comprehensive physiological function in eucaryotic organism. Therefore, Hrh1 is an important agency to study the nerve-incretion-immunity-effector axis.
     As a monocopy gene, Hrh1 is localized at Rattus norvegicus chromosome 4, 4q42 region. Homo Sapiens Hrh1 gene was thought to be intronless until recently. Up to April 2009, the numbers of human’s intronless gene reported at NCBI site were about 180, far less than the number of human’s intron gene. But eukaryotic intronless genes are important datasets for comparative genomics and evolutionary studies, and have evoked interesting of researchers. Rattus Hrh1 is also intronless gene and its full length is entire exon.
     There are few studies about the Hrh1 gene polymorphism and base mutation so far, and there is no report about the mutation of Rattus Hrh1 gene in domestic research. Rattus Hrh1 gene is highly consensus with human genomic Hrh1 gene. Their protein structures are very similar: both have two 7-transmembraneαhelix regions, in which homologous amino acid sequence is about 80%. According to this fact, we chose Rattus Hrh1 gene to study its base mutation and nucleotide polymorphism in genomic DNA and DNA transcript (mRNA), to lay the experimental foundation of polymorphism, relevant mutation, pharmacogenetics, and pharmacogenomics about human Hrh1 gene and its express product (histamine H1 receptor) in the future.
     The subject study is mainly in four parts for the purpose of our investigation.
     In experiment part I, we studied the sequence variation of rattus Hrh1 gene from different origins respectively, i.e. genomic DNA extracted from rat whole blood, transcript mRNA in rat brain tissue and transcript mRNA in rat hepatic tissue.
     We extracted a male SD rat genomic DNA from whole blood using KI method and extracted total RNA from rat brain tissue and hepatic tissue with Trizole. Ultraviolet spectrophotometry and agarose gel electrophoresis were used to detect purity and concentration of obtained nucleic acid. RevertAid? First Strand cDNA Synthesis Kits was used to synthesize first strand cDNA chain with brain total RNA and hepatic total RNA as reaction template. We apply Vector NTI Suite 10.0 to design the primers in compliance with coding sequence of rattus genomic Hrh1 DNA sequences (gi: 62750804) and mRNA sequence (gi: 220770) reported at NCBI site. According to the restriction enzymes digest site at 5’terminus in sense and antisense primer, we can conveniently construct the recombinant express vector in the future. PrimeSTAR? HS DNA Polymerase has very high fidelity, so we used it to clone the rat Hrh1 gene entire coding sequence by polymerase chain reaction with rat genomic DNA, brain cDNA, and hepatic cDNA as template. PCR purification kit was used to purify and recover the product of PCR. Double enzyme restriction was used to digest PCR product of genomic DNA, brain cDNA, and hepatic cDNA, and cloning vector pUC19 Gel extraction kit was used to purify and recover the product of double digestion. T4 DNA Ligase jointed the digestion product of genomic DNA, brain cDNA, hepatic cDNA and vector pUC19 respectively with their cohesive termini. By this, we construct pUC19-Hrh1 recombinant vector.
     The Inoue Method was used to prepare super competent of Ecoli DH5α. pUC19-Hrh1 recombinant vector was transformed into DH5αsuper competent by heat shock, and IPTG, X-gal was used to do a blue-white screen. Colony PCR was used to quickly identify the positive colony with pUC19-Hrh1. The selective positive colony was cultured overnight. Plasmid was extracted from the overnight culture with plasmid DNA extraction kit.
     Agarose gel electrophoresis was used to identify the size of plasmid according their band compared with the marker approximately. PCR amplification with plasmid as template was used to determine the target gene in selective recombinant. Double digestion was used to identify the plasmid to prevent selective plasmid from double cloning with target gene. We selected 3 recombinants of genomic DNA, 3 recombinants of brain cDNA, and 5 recombinants of hepatic cDNA, and committed these recombinants to SinoGenoMax Co., Ltd. for sequencing.
     By the consequence of sequencing, we found it was 100% consensus of 3 recombinants of genomic DNA, 3 recombinants of brain cDNA and 1 recombinant of hepatic cDNA with rattus Hrh1 genomic DNA (gi: 62750804), But only 99.7% consensus with mRNA (gi: 220770), with 4 bases difference. To our surprise, there were 5 base mutations within 4 recombinants of hepatic cDNA, at 237, 928, 1041, 1210, and 1342 locus. After the triplet code of amino acid was analyzed, we found the mutations at 928 and 1342 locus can lead to the change of translation amino acid with that valine replaces methionine at 928 locus and methionine replaces valine at 1342 locus. According to the report of cSNP of Rattus Hrh1 gene at NCBI site, only the C/T polymorphism (rs8155549) at locus number 237 coincides with our result. There was no relevant report about the rest 4 loci mutations. It is suggested that (1) there are new cSNPs in rattus Hrh1 gene; and (2) there may be mutate at RNA level, when Hrh1 gene transcripts in different organs (e.g. brain or liver) of the rat, that is also called RNA editing.
     In experiment part II, we mainly researched the influences of different anticoagulant to the purity and yield of DNA extracted from whole blood genome, especially subsequent PCR amplification. Because, in experiment part I, we extracted genomic DNA from blood anticoagulated with heparin sodium, yield and purify of genomic DNA, detected by ulraviolet spectrophotometry and agarose gel electrophoresis, had no problem. But the result of PCR amplification was not stable and satisfied. Referring to involved information and after excluding many factors, we speculated that anticoagulant in blood may impact PCR amplification efficiency. Considering EDTA as chelant can inhibit the Mg2+ to catalyze PCR, we didn’t choose it in this experiment, but use sodium citrate and heparin sodium as anticoagulant, to anticoagulate arterial blood and venous blood of rat respectively, and then perform the comparison.
     We designed 3 pairs of primers: Primers I amplifiesβ-actin (span across intron, 1104 bp); Primers II amplifies part of Hrh1 gene, 468bp; And primers III amplifies full length of Hrh1 gene, 1477 bp. From the result of experiments, we can make the conclusion that when genomic DNA from blood containing anticoagulant heparin sodium is extracted, the anticoagulant will inhibit PCR amplification efficiency, especially to amplify large size fragment. Heparin sodium inhibited amplification efficiency slightly while small size fragment was amplified. According to the experimental results, we extracted genomic DNA from blood with sodium citrate as anticoagulant, in order to guarantee the stability of sequent experiment.
     Part III of the experiments was cSNP detection in rattus Hrh1, to confirm our conclusion in experiment part I. We selected 13 healthy SPF SD rats, 7 males and 6 females, and phlebotomized the rats from jugular vein. Genomic DNA was extracted from whole blood by KI method. The purity and concentration of DNA samples were detected by the methods of ultraviolet spectrophotometry and agarose gel electrophoresis. PrimeSTAR? HS DNA Polymerase can be used to amplify full length of rattus Hrh1 gene coding sequence accurately. The product of PCR after agarose gel electrophoresis detection was purified and recovered with gel extraction kit. Purified product was committed to SinoGenoMax Co., Ltd. for sequencing.
     After studying the sequencing peak map, we discovered that there are 4 cSNPs in Rattus Hrh1 entire coding sequence which contains 1461 bp: 237 C/T polymorphism, 928 A/G polymorphism, 1041 C/T polymorphism, and 1342 G/A polymorphism. The statistical frequency of 4 cSNPs in 13 samples was analyzed by SPSS 15.0.
     Up to April 2009, the numbers of cSNP reported in rattus Hrh1 coding sequence at NCBI site are 3: (1) rs8153540 (102 A/C polymorphism);(2) rs8155549 (237 C/T polymorphism);and (3) rs8153541 (1404 C/G polymer- phism)。
     In the 4 cSNPs which we discovered, only cSNP 237 coincided with rs8155549 reported by NCBI, and the rest of other 3 cSNPs were not reported at NCBI site at the same time. We did not found the polymorphism about rs8153540 and rs8153541 which NCBI reported.
     In the 4 cSNPs, albeit alter triplet code changed by 237 C/T and 1041 C/T polymorphism will not change the coding amino acid. However, 928 A/G polymorphism and 1342 G/A polymorphism are missense mutation, and the polymorphism can alter the amino acid coded by changing triplet code。
     We applied Vector NTI Suite 10.0 and Lasergene 7.0 to analyze the homo sapience Hrh1 gene DNA sequence and mRNA sequence, Rattus norvegicus Hrh1 DNA sequence and mRNA sequence, and Mus Musculus Hrh1 DNA sequence and mRNA sequence, and discovered that the occurring region of cSNPs in Human Hrh1 gene, rattus Hrh1 gene and mus Hrh1 gene are resemble each other, although the numbers of human cSNPs in Hrh1 gene are much more than the others. By predicting the structure of Hrh1 gene coding protein, we found that their structures are very similar: all of them have two 7-transmem- brance-α-helix regions in the peptide chain, between 45-255AA and 390- 470AA.
     We predicted the secondary structure of Hrh1 protein peptide chain by Lasergene 7.0. The 928 and 1342 cSNPs can change the amino acid 310AA and 448AA in translated peptide chain. According to the secondary structure, alteration of amino acid can change the structure ofαregion and hydrophilicity. The result indicated that the activity of translated protein may be changed, resulting from amino acid mutation induced by the alteration of first structure of coding peptide chain, and finally impact the function and characteristic of receptor protein.
     For establish the approach to detect the cSNPs in rattus Hrh1 gene, which can carry out the experiments involved with pharmacogenetics and pharmacogenomics, in experiment part IV, we explored ASA (alleles specific amplification) PCR to detect the 928 and 1342 cSNPs. Sample rat 1 (928 A/G and 1342 G/A), rat 2 (928 G/G and 1342 A/A), and rat 8 (928 A/A and 1342 G/G), which already confirmed sequence of Hrh1 gene in experimental part III, were chose as detectable sample.
     Primers designed for ASA PCR are keys to the detection. Primers were designed by Vector NTI Suite 10.0 in accordance with 928(A/G) and 1342(G/A) polymorphisms. Primers of two positions were designed homologous base probe at 3’terminus, and the base next to 3’terminus probe was designed as mismatch.
     The genomic DNA was extracted from whole blood, the entire coding sequence of rattus Hrh1 gene was amplified, and the PCR product was purified and recoveried. The PCR product was diluted as template for ASA PCR later. Recombinant plasmid Blood 1 (928 A and 1342 G), and Liver 1 (928 G and 1342 A), for which, the sequences were confirmed in experimental part I, were chose as positive control.
     Experimental consequence showed that result of PCR coincide with our expectation, and proved that the probe primers for ASA PCR are qualify, and the system of ASA PCR reaction is reliable. Our results laid the experimental foundation for genotyping rat involved with Hrh1 gene and researching the mutant phenotype of Hrh1 gene, by the methods of pharmacogenetics and pharmacogenomics about human Hrh1 gene and its express product-histamine H1 receptor in the future.
引文
1.Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system[J]. Nature reviews, Neuroscience, 2003, 4, (2): 121-30.
    2.Higuchi M, Yanai K, Okamura N, etc. Histamine H1 receptors in patients with Alzheimer's disease assessed by positron emission tomography[J]. Neuroscience, 2000, 99, (4): 721-9.
    3.Schmelz M, Schmidt R, Bickel A, etc. Specific C-receptors for itch in human skin[J]. The Journal of Neuroscience, 1997, 17, (20): 8003-8.
    4.Sugimoto Y, Iba Y, Nakamura Y, etc. Pruritus-associated response mediated by cutaneous H3 receptors[J]. Clin Exp Allergy, 2004, 34, (3): 456-9.
    5.Akdis CA, Blaser K. Histamine in the immune regulation of allergic inflammation[J]. The Journal of allergy and clinical immunology, 2003, 112, (1): 15-22.
    6.Schneider E, Rolli-Derkinderen M, Arock M, etc. Trends in histamine research: new functions during immune responses and hematopoiesis[J]. Trends in Immunology, 2002, 23, (5): 255-63.
    7.Caron G, Delneste Y, Roelandts E, etc. Histamine induces CD86 expression and chemokine production by human immature dendritic cells[J]. The American Association of Immunologists, 2001, 166, (10): 6000-6.
    8.Jutel M, Watanabe T, Klunker S, etc. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors[J]. Nature, 2001, 413, (6854): 420-5.
    9.Rob L, Takehiko W, Henk T. Histamine receptors are finally‘coming out’[J]. Trends in Pharmacological Science, 2001, 22, (7): 337-339.
    10.Simons FE. Advances in H1-antihistamines[J]. The New England Journal of Medicine, 2004, 351, (21): 2203-17.
    11.Lovenberg TW, Roland BL, Wilson SJ, etc. Cloning and functional expression of the human histamine H3 receptor[J]. Molecular Pharmacology, 1999, 55, (6): 1101-7.
    12.Oda T, Morikawa N, Saito Y, etc. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes[J]. The Journal of BiologicalChemistry, 2000, 275, (47): 36781-6.
    13.Hofstra CL, Desai PJ, Thurmond RL, etc. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells[J]. The Journal of pharmacology and experimental therapeutics, 2003, 305, (3): 1212-1221.
    14.Burtin C, Scheinmann P, Salomon JC, etc. Decrease in tumour growth by injections of histamine or serotonin in fibrosarcoma- bearing mice: influence of H1 and H2 histamine receptors[J]. British Journal of Cancer, 1982, 45, (1): 54-60.
    15.Andras F, Hargita H, Eszter LM, etc. Paracrine and autocrine interactions in melanoma: histamine is a relevant player in local regulation[J]. Trends Immunol, 2001, 22, (12): 648-652.
    16.Milanese S, Hansen LA, Desch CE, etc. Impact of histamine and histamine2 receptor antagonists on quality of life and antitumour responses: results of a pilot trial[J]. European journal of cancer, 1997, 33, (14): 2436-2437.
    17.Szincsak N, Hegyesi H, Hunyadi J, etc. Cimetidine and a tamoxifen derivate reduce tumour formation in SCID mice xenotransplanted with a human melanoma cell line[J]. Melanoma Research, 2002, 12, (3): 231-240.
    18.Takahashi HK, Yoshida A, Iwagaki H, etc. Histamine regulation of interleukin-18-initiating cytokine cascade is associated with down-regulation of intercellular adhesion molecule-1 expression in human peripheral blood mononuclear cells[J]. The Journal of pharmacology and experimental therapeutics, 2002, 300, (1): 227-35.
    19.Alessandra M, Howard AY, Jessica HS, etc. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization[J]. The Journal of Clinical Investigation, 2001, 108, (12): 1865-1873.
    20.Hellstrand K. Histamine in cancer immunotherapy: a preclinical background[J]. Seminars in Oncology, 2002, 29, (3 Suppl7): 35-40.
    21.Hellstrand K, Hermodsson S, Naredi P, etc. Histamine and cytokine therapy[J]. Acta Oncol, 1998, 37, (4): 347-53.
    22.Hellstrand K, Brune M, Naredi P, etc. Histamine: a novel approach to cancerimmunotherapy[J]. Cancer Invest, 2000, 18, (4): 347-355.
    23.Agarwala SS, Sabbagh MH. Histamine dihydrochloride: inhibiting oxidants and synergising IL-2-mediated immune activation in the tumour microenvironment[J]. Expert Opinion on Biological Therapy, 2001, 41, (5): 869-879.
    24.林晨,胡巢风,江振友.炎症促肿瘤作用的分子机制[J].中国病理生理杂志, 2002, 18, (7): 869-873.
    25.Medina MA, Quesada AR, Nunez de Castro I, etc. Histamine, polyamines, and cancer[J]. Biochem Pharmacol, 1999, 57, (12): 1341-4.
    26.Siegmund R, Felipe P, Gabriele V, etc. Structure activity relationships for bradykinin antagonists on the inhibition of cytokine release and the release of histamine[J]. Peptides, 2000, 21, (4): 527-533.
    27.Suzuki Y, Yamamoto T, Suzumori K, etc. Modified histamine-induced NO-mediated relaxation in resistance arteries in pre-eclampsia[J]. European journal of pharmacology, 2000, 410, (1): 7-13.
    28.Fredriksson R, Lagerstrom MC, Lundin LG, etc. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints[J]. Molecular Pharmacology, 2003, 63, (6): 1256-1272.
    29.Ji TH, Grcssmann M, Ji I. G protein-coupled receptors[J]. The Journal of Biological Chemistry, 1998, 273, (28): 17299-302.
    30.Bond RA, AP IJ. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery[J]. Trends in Pharmacological Sciences, 2006, 27, (2): 92-96.
    31.Barker EL, Westphal RS, Schmidt D, etc. Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands[J]. The Journal of Biological chemistry, 1994, 269, (16): 11687-11690.
    32.Bakker RA, Schoonus SB, Smit MJ, etc. Histamine H1-Receptor Activation of Nuclear Factor-κB: Roles for Gβγ- and Gαq/11-Subunits in Constitutive and Agonist-Mediated Signaling[J]. Molecular Pharmacology, 2001, 60, (5): 1133-42.
    33.Bakker RA, Wieland K, Timmerman H, etc. Constitutive activity of the histamine H1receptor reveals inverse agonism of histamine H1 receptor antagonists[J]. European Journal of Pharmacology, 2000, 387, (1): R5-R7.
    34.Sakhalkar SP, Patterson EB, Khan MM. Involvement of histamine H1 and H2 receptors in the regulation of STAT-1 phosphorylation: inverse agonism exhibited by the receptor antagonists[J]. International Immunopharmacology, 2005, 5, (7-8): 1299-1309.
    35.Wieland K, Bongers G, Yamamoto Y, etc. Constitutive activity of histamine H3 receptors stably expressed in SK-N-MC cells: display of agonism and inverse agonism by H3 antagonists[J]. The Journal of pharmacology and experimental therapeutics, 2001, 299, (3): 908-914.
    36.Morse KL, Behan J, Laz TM, etc. Cloning and characterization of a novel human histamine receptor[J]. The Journal of pharmacology and experimental therapeutics, 2001, 296, (3): 1058-1066.
    37.Ma RZ, Gao J, Meeker ND, etc. Identification of bphs, an autoimmune disease locus, as histamine receptor H1[J]. Science, 2002, 297, (5581): 620-3.
    38.Brink CB, Harvey BH, Bodenstein J, etc. Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology[J]. British Journal of Clinical Pharmacology, 2004, 57, (4): 373-387.
    39.Romkes M, Buch SC. Genotyping technologies: application to biotransformation enzyme genetic polymorphism screening[J]. Methods Mol Biol, 2005, 291: 399-414.
    40.Cheung VG, Nelson SF. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, (25): 14676-9.
    41.Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997, 278, (5343): 1580-1.
    42.Kruglyak L. The use of a genetic map of biallelic markers in linkage studies[J]. Nat Genet, 1997, 17, (1): 21-4.
    43.Wang DG, Fan JB, Siao CJ, etc. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280, (5366):1077-82.
    44.赵书平,张俊洁,尤建, etc.一种碘化钾提取外周血基因组DNA的方法[J].中华医学遗传学杂志, 1999, 16, (6): 395.
    45.苏明,窦科峰,赵爱志, etc.提高柱式胶回收试剂盒DNA回收效率的最佳条件[J].第四军医大学学报, 2002, 23, (6): 505-8.
    46.萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].北京:科学出版社, 2003: 93-96.
    47.Patnaik PR. Investigation of induction effect on the steady state performance of a continuous fermentation for recombinantβ-galactosidase[J]. Process Biochemistry, 2001, 36: 1069-1074.
    48.Ryan W, Collier P, Loredo L e. Growth kinetics of Escherichia coli and expression of a recombinant protein and its isoforms under heat shock conditions[J]. Biotechnol Progress, 1996, 12, (5): 596-601.
    49.Ashkenas J. Gene regulation by mRNA editing[J]. The American Journal of Human Genetics, 1997, 60, (2): 278–283.
    50.Gustafeon S PJA, Bowio EJ, etc. Parameter affecting the yield of DNA from human blood[J]. Analytical Biochemistry, 1987, 165, (2): 294-299.
    51.Holodniy M, Kim S, Katzenstein D, etc. Inhibition of human immunodeficiency virus gene amplification by heparin[J]. Journal of Clinical Microbiology, 1991, 29, (4): 676-9.
    52.Sahu A, Panhburn MK. Identification of multiple sites of interaction between heparin and the complement system[J]. Molecular Immunology, 1993, 30, (7): 679-684.
    53.Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells[J]. J Clin Microbiol, 2001, 39, (2): 485-93.
    54.Sakharkar MK, Kangueane P. Genome SEGE: a database for 'intronless' genes in eukaryotic genomes[J]. BMC Bioinformatics, 2004, 5: 67.
    55.Swan C, Richards SA, Duroudier NP, etc. Alternative Promoter Use and Splice Variation in the Human Histamine H1 Receptor Gene[J]. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, (1): 118-9.
    56.孙凌,郭晓英.口服氯雷他定致皮肤过敏反应1例[J].中国疗养医学, 2008, 17, (1): 50.
    57.颜成德.抗变态反应药物致变态反应[J].广东药学, 1999, 9, (3): 14124.
    58.García-Martín E, Ayuso P, etc. Genetic variability of histamine receptors in patients with Parkinson's disease[J]. BMC Med Genet, 2008, 9: 15.
    59.Jazwinska EC. Exploiting human genetic variation in drug discovery and development[J]. Drug Discov Today, 2001, 6, (4): 198-205.
    60.Brower V. Genome II: the next frontier[J]. Nat Biotechnol, 1998, 16, (11): 1004.
    61.Altshuler D, Brooks LD, Chakravart A, etc. A haplotype map of the human genome[J]. Nature, 2005, 437, (7063): 1299-1320.
    1.Farrall M, Morris AP. Gearing up for genome-wide gene-association studies[J]. Human Molecular Genetics, 2005, 14, (Spec No.2): R157-62.
    2.冯作化.医学分子生物学[M].第1版.北京:人民卫生出版社, 2007: 218-220.
    3.Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat with in the cardiac muscle actin gene[J]. The American Journal of Human Genetics, 1989, 44, (3): 397-401.
    4.Weber JL, May PE. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction[J]. The American Journal of Human Genetics, 1989, 44, (3): 388-96.
    5.Hammond HA, Li Jin, Zhong Y, etc. Evaluation of 13 short tandem repeat loci for use in personal identification applications[J]. The American Journal of Human Genetics, 1994, 55, (1): 175-89.
    6.Romkes M, Buch SC. Genotyping technologies: application to biotransformation enzyme genetic polymorphism screening[J]. Methods Mol Biol, 2005, 291: 399-414.
    7.Cheung VG, Nelson SF. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, (25): 14676-9.
    8.Wang DG, Fan JB, Siao CJ, etc. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280, (5366): 1077-82.
    9.Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997, 278, (5343): 1580-1.
    10.Lewis R. SNPs as windows on evolution[J]. The Scientist, 2002, 16, (1): 16-8.
    11.Kruglyak L. The use of a genetic map of biallelic markers in linkage studies[J]. Nat Genet, 1997, 17, (1): 21-4.
    12.Jazwinska EC. Exploiting human genetic variation in drug discovery and development[J].Drug Discov Today, 2001, 6, (4): 198-205.
    13.Brower V. Genome II: the next frontier[J]. Nat Biotechnol, 1998, 16, (11): 1004.
    14.Cook EHJr, Scherer SW. Copy-number variations associated with neuropsychiatric conditions[J]. Nature, 2008, 45, (7215): 919-23.
    15.Lee JA, Lupski JR. Genomic Rearrangements and Gene Copy-Number Alterations as a Cause of Nervous System Disorders[J]. Neuron, 2006, 52, (1): 103-21.
    16.Iafrate AJ, Feuk L, Rivera MN, etc. Detection of large-scale variation in the human genome[J]. Nature genetics, 2004, 36, (9): 949-51.
    17.Sebat J, Lakshmi B, Troge J. Large-scale copy number polymorphism in the human genome[J]. Science, 2004, 305, (5683): 525-8.
    18.Cappuzzo F, Hirsch FR, Rossi E, etc. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer[J]. Journal of the National Cancer Institute, 2005, 97, (9): 643-55.
    19.Gonzalez E, Kulkarni H, Bolivar H. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science, 2005, 307, (5714): 1434-40.
    20.Swen JJ, Huizinga TW, Gelderblom H, etc. Translating pharmacogenomics: challenges on the road to the clinic[J]. PLoS Medicine, 2007, 4, (8): e209.
    21.Altshuler D, Brooks LD, Chakravart A, etc. A haplotype map of the human genome[J]. Nature, 2005, 437, (7063): 1299-1320.
    22.Deloukas P, Bentley D. The HapMap project and its application to genetic studies of drug response[J]. Pharmacogenomics J, 2004, 4, (2): 88-90.
    23.Marshall E. First check my genome, doctor[J]. Science, 2003, 302, (5645): 589.
    24.HAN X-M, ZHOU H-H. Polymorhism of CYP450 and cancer susceptibility[J]. Acta Pharmacol Sin 2000, 2000, 21, (8): 673-9.
    25.许振华,周宏灏.细胞色素氧化酶P4501A2与药物代谢[J].中国临床药理学杂志, 1996, 12, (2): 115-121.
    26.Landi MT, Sinha R, Lang NP, etc. Human cytochrome P4501A2[J]. IARC Sci Publ, 1999, (148): 173-95.
    27.Chida M, Yokoi T, Fukui T, etc. Detection of three genetic polymorphisms in the5'-flanking region and intron 1 of human CYP1A2 in the Japanese population[J]. Japanese journal of cancer research : Gann, 1999, 90, (9): 899-902.
    28.Nakajima M, Yokoi T, Mizutani M, etc. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans[J]. Journal of biochemistry, 1999, 125, (4): 803-8.
    29.Sachse C, Brockmoller J, Bauer S, etc. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine[J]. British journal of pharmacology, 1999, 47, (4): 445-9.
    30.Srinivasan AF, Rice L, Bartholomew JR, etc. Warfarin-induced skin necrosis and venous limb gangrene in the setting of heparin-induced thrombocytopenia[J]. Archives of internal medicine, 2004, 164, (1): 66-70.
    31.Hassell K. The management of patients with heparin-induced thrombocytopenia who require anticoagulant therapy[J]. Chest, 2005, 127, (2 Suppl): 1S-8S.
    32.Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms[J]. Clinical pharmacology and therapeutics, 2005, 77, (1): 1-16.
    33.Schwarz UI. Clinical relevance of genetic polymorphisms in the humanCYP2C9 gene[J]. European journal of clinical investigation, 2003, 33, (Suppl 2): 23-30.
    34.Ieiri I, Tainaka H, Morita T, etc. Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis[J]. Therapeutic drug monitoring, 2000, 22, (3): 237-44.
    35.Veenstra DL, Blough DK, Higashi MK, etc. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes[J]. Clinical Pharmacology and Therapeutics, 2005, 77, (5): 353-64.
    36.Yang JQ, Morin S, Verstuyft C, etc. Frequency of cytochromeP450 2C9 allelic variants in the Chinese and French populations[J]. Fundamental & clinical pharmacology, 2004, 18, (3): 373-6.
    37.Yasar U, Forslund-Bergengren C, Tybring G, etc. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype[J]. Clinical PharmacologyTherapeutics, 2002, 71, (1): 89-98.
    38.Hallberg P, Karlsson J, Kurland L, etc. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial[J]. Journal of Hypertension, 2002, 20, (10): 2089-93.
    39.Rettie AE, Wienkers LC, Gonzalez FJ, etc. Impaired(S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9[J]. Pharmacogenetics, 1994, 4, (1): 39-42.
    40.Takahashi H, Kashima T, Nomizo Y, etc. Metabolism of warfarin enantiomers in Japanese patients with heart disease having differern CYP2C9 and CYP2C19 genotypes[J]. Clinical Pharmacology Therapeutics, 1998, 63, (3): 519-28.
    41.Schalekamp T, Boink GJ, Visser LE, etc. CYP2C9 genotyping in acenocoumarol treatment: is it a cost-effective addition to international normalized ratio monitoring[J]. Clinical Pharmacology and Therapeutics, 2006, 79, (6): 511-20.
    42.You JH, Chan FW, Wong RS, etc. The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy: a decision analysis[J]. Thrombosis and haemostasis, 2004, 92, (3): 590-7.
    43.Schalekamp T, van Geest-Daalderop JH, de Vries-Goldschmeding H, etc. Acenocoumarol stabilization is delayed in CYP2C93 carriers[J]. Clinical Pharmacology and Therapeutics, 2004, 75, (5): 394-402.
    44.Komatsu T, Yamazaki H, Asahi S, etc. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4[J]. Drug metabolism and disposition: the biological fate of chemicals, 2000, 28, (11): 1361-8.
    45.Wrighton SA, Stevens JC, Becker GW, etc. Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4'-hydroxylation[J]. Archives of biochemistry and biophysics, 1993, 306, (1): 240-5.
    46.Goldstein JA, Faletto MB, Romkes-Sparks M. Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroyxlase in humans[J]. Biochemistry, 1994, 33, (7): 1743-52.
    47.Wilkinson GR, Guengerich FP, Branch RA. Genetic polymorphism of S-mephenytoin hydroxylation[J]. Pharmacology&Therapeutics, 1989, 43, (1): 53-76.
    48.Daniel HI, Edeki TI. Genetic polymorphism of S-mephenytoin 4'-hydroxylation[J]. Psychopharmacol Bulletin, 1997, 32, (2): 219-230.
    49.Daly AK, Brockmoller J, Broly F, etc. Nomenclature for human CYP2D6 alleles[J]. Pharmacogenetics, 1996, 6, (3): 193-201.
    50.de Morais SMF, Wilkinson GR, Blaisdell J, etc. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans[J]. The Journal of biological chemistry, 1994, 269, (22): 15419-15422.
    51.de Morais SMF, Wilkinson GR, Blaisdell J, etc. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese[J]. Molecular Pharmacology, 1994, 46, (4): 594-8.
    52.Xiao ZS, Goldstein JA, Xie HG, etc. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele[J]. The Journal of pharmacology and experimental therapeutics, 1997, 281, (1): 604-9.
    53.Ferguson RJ, de Morais SMF, Benhamou S, etc. A new genetic defect in human CYP2C19: Mutation in the initiation codon is responsible for poor metabolism of S-mephenytoin[J]. The Journal of pharmacology and experimental therapeutics, 1998, 284, (1): 356-61.
    54.Chang M, Dahl ML, Tybring G, etc. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype[J]. Pharmacogenetics, 1995, 5, (6): 358-63.
    55.Balian JD, Sukhova N, Harris JW, etc. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: A population study[J]. Clinical pharmacology and therapeutics, 1995, 57, (6): 662-9.
    56.Brockm?ller J, Rost KL, Gross D, etc. Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S-mephenytoin and comparison with the intron4/exon5 G→A-splice site mutation[J]. Pharmacogenetics, 1995, 5, (2): 80-8.
    57.Mamiya K, Hadama A, Yukawa E, etc. CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics[J]. Eur J Clin Pharmacol, 2000, 55, (11-12): 821-5.
    58.Balian JD, Sukhova N, Harris JW, etc. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study[J]. Clin Pharmacol Ther, 1995, 57, (6): 662-9.
    59.Gaedigk A, Blum M, Gaedigk R, etc. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism[J]. American journal of human genetics, 1991, 48, (5): 943-50.
    60.Gonzalez FJ, Meyer UA. Molecular genetics of the debrisoquin-sparteine polymorphism[J]. Clinical pharmacology and therapeutics, 1991, 50, (3): 233-8.
    61.Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19[J]. Clinical pharmacokinetics, 1995, 29, (3): 192-209.
    62.严奉祥,廖端芳. CYP2D6 PCR基因型与DXT表型和基因芯片检测的比较[J].中国临床药理学与治疗学, 2002, 7, (2): 100-5.
    63.Lee EJ, Jeyaseelan K. Frequency of human CYP2D6 mutant alleles in a normal Chinese population[J]. British journal of clinical pharmacology, 1994, 37, (6): 605-7.
    64.Evans WE, Relling MV. Concordance of P450 2D6 (debrisoquine hydroxylase) phenotype and genotype: inability of dextromethorphan metabolic ratio to discriminate reliably heterozygous and homozygous extensive metabolizers[J]. Pharmacogenetics, 1991, 1, (3): 143-8.
    65.Chen SQ, Wedlund PJ. Correlation between cytochrome P-450 CYP2D6 (CYP2D6) genotype and phenotype[J]. Acta pharmacologica Sinica, 1999, 20, (7): 585-8.
    66.Wang SL, Huang JD, Lai MD, etc. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6[J]. Clinical Pharmacology and Therapeutics, 1993, 53, (4): 410-8.
    67.Johansson I, Oscarson M, Yue QY, etc. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation[J]. Molecular Pharmacology, 1994, 46, (3): 452-9.
    68.Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics[J]. Clinical pharmacokinetics, 1988, 14, (6): 325-46.
    69.Yokota H, Tamura S, Furuya H, etc. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism[J]. Pharmacogenetics, 1993, 3, (5): 256-63.
    70.Shimada T, Tsumura F, Yamazaki H, etc. Characterization of (+/-)-bufuralol hydroxylation activities in liver microsomes of Japanese and Caucasian subjects genotyped for CYP2D6[J]. Pharmacogenetics, 2001, 11, (2): 143-56.
    71.纪玲,潘世秀,吴健民.中国大陆人群CYP2D6基因多态性的检测[J].中华医学杂志(英文版), 2002, 115, (12): 1780-4.
    72.Gough AC, Miles JS, Spurr NK. Identification of the primary gene defect at the cytochrome P450 CYP2D locus[J]. Nature, 1990, 347, (6295): 773-776.
    73.Kagimoto M, Heim M, Kagimoto K, etc. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes[J]. The Journal of Biological Chemistry, 1990, 265, (28): 17209-14.
    74.Evert B, Griese EU, Eichelbaum M. Cloning and sequencing of a new non-functional CYP2D6 allele: deletion of T1795 in exon 3 generates a premature stop codon[J]. Pharmacogenetics, 1994, 4, (5): 271-4.
    75.诸葛坚,余应年.人细胞色素P450前mRNA的可变剪接研究进展[J].中国病理生理杂志, 2005, 21, (2): 403-7.
    76.Raimundo S, Fischer J, Eichelbaum M, etc. Elucidation of the genetic basis of the common 'intermediate metabolizer' phenotype for drug oxidation by CYP2D6[J]. Pharmacogenetics, 2000, 10, (7): 577-81.
    77.Tyndale R, Aoyama T, Broly F, etc. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype[J]. Pharmacogenetics, 1991, 1, (1): 26-32.
    78.Nakamura K, Ariyoshi N, Yokoi T, etc. CYP2D6.10 present in human liver microsomes shows low catalytic activity and thermal stability[J]. Biochemical and biophysical researchcommunications, 2002, 293, (3): 969-73.
    79.Masimirembwa C, Persson I, Bertilsson L, etc. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity[J]. British journal of clinical pharmacology, 1996, 42, (6): 713-9.
    80.Dahl ML, Johansson I, Bertilsson L, etc. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis[J]. The Journal of pharmacology and experimental therapeutics, 1995, 274, (1): 516-20.
    81.Johansson I, Lundqvist E, Bertilsson L, etc. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, (24): 11825-9.
    82.Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry[J]. Naunyn-Schmiedeberg's archives of pharmacology, 2004, 369, (1): 23-37.
    83.Dalen P, Dahl ML, Bernal Ruiz ML, etc. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes[J]. Clin Pharmacol Ther, 1998, 63, (4): 444-52.
    84.Reuther LO, Vainer B, Sonne J, etc. Thiopurine methyltransferase (TPMT) genotype distribution in azathioprine-tolerant and -intolerant patients with various disorders. The impact of TPMT genotyping in predicting toxicity[J]. European journal of clinical pharmacology, 2004, 59, (11): 797-801.
    85.Yates CR, Krynetski EY, Loennechen T, etc. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance[J]. Annals of internal medicine, 1997, 126, (8): 608-14.
    86.Otterness DM, Szumlanski CL, Wood TC, etc. Human thiopurine methyltransferase pharmacogenetics. Kindred with a terminal exon splice junction mutation that results in loss of activity[J]. The Journal of Clinical Investigation, 1998, 101, (5): 1036-44.
    87.黄民,姜文奇,刘宇隆,等.中国人与白种人硫唑嘌呤甲基转移酶活性与分布的种族差异[J].癌症, 2000, 19, (10): 858,861.
    88.Zhang JP, Guan YY, Xu AL, etc. Gene mutation of thiopurine S-methyltransferase in Uygur Chinese[J]. European journal of clinical pharmacology, 2004, 60, (1): 1-3.
    89.Krynetski EY, Tai HL, Yates CR, etc. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms[J]. Pharmacogenetics, 1996, 6, (4): 279-90.
    90.Bastida G, Nos P, Aguas M, etc. Incidence, risk factors and clinical course of thiopurine-induced liver injury in patients with inflammatory bowel disease[J]. Alimentary pharmacology & therapeutics, 2005, 22, (9): 775-82.
    91.Szumlanski C, Otterness D, Her C, etc. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism[J]. DNA and cell biology, 1996, 15, (1): 17-30.
    92.Krynetski EY, Fessing MY, Yates CR, etc. Promoter and intronic sequences of the human thiopurine S-methyltransferase (TPMT) gene isolated from a human PAC1 genomic library[J]. Pharmaceutical research, 1997, 14, (2): 1672-8.
    93.Fessing MY, Krynetski EY, Zambetti GP, etc. Functional characterization of the human thiopurine S-methyltransferase (TPMT) gene promoter[J]. European journal of biochemistry, 1998, 256, (3): 510-7.
    94.Krynetski EY, Schuetz JD, Galpin AJ, etc. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, (4): 949-53.
    95.Tai HL, Krynetski EY, Schuetz EG, etc. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, (12): 6444-9.
    96.Chen J, Giovannucci E, Kelsey K, etc. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer[J]. Cancer Res, 1996, 56, (21): 4862-4.
    97.Tran P, Leclerc D, Chan M, etc. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms[J]. MammGenome, 2002, 13, (9): 483-92.
    98.Ma J, Stampfer MJ, Giovannucci E, etc. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer[J]. Cancer Res, 1997, 57, (6): 1098-102.
    99.Langevin SM, Lin D, Matsuo K, etc. Review and pooled analysis of studies on MTHFR C677T polymorphism and esophageal cancer[J]. Toxicol Lett, 2009, 184, (2): 73-80.
    100.Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview[J]. American journal of epidemiology, 2003, 157, (7): 571-82.
    101.Sohn KJ, Croxford R, Yates Z, etc. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate[J]. Journal of the National Cancer Institute, 2004, 96, (2): 134-44.
    102.Frosst P, Blom HJ, Milos R, etc. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase[J]. Nature genetics, 1995, 10, (1): 111-3.
    103.杨旭燕,许东航.亚甲基四氢叶酸还原酶基因多态性对甲氨蝶呤不良反应的影响[J].中国药学杂志, 2007, 42, (1): 69-72.
    104.van Ede AE, Laan RF, Blom HJ, etc. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients[J]. Arthritis Rheum, 2001, 44, (11): 2525-30.
    105.Kobilka BK, Frielle T, Collins S, etc. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins[J]. Nature, 1987, 329, (6134): 75-9.
    106.Kobilka BK, Matsui H, Kobilka TS, etc. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor[J]. Science, 1987, 238, (4827): 650-6.
    107.Reihsaus E, Innis M, MacIntyre N, etc. Mutations in the gene encoding for the beta2-adrenergic receptor in normal and asthmatic subjects[J]. American journal of respiratory cell and molecular biology, 1993, 8, (3): 334-9.
    108.Lipworth B, Koppelman GH, Wheatley AP, etc. Beta2 adrenoceptor promoter polymorphisms: extended haplotypes and functional effects in peripheral blood mononuclear cells[J]. Thorax, 2002, 57, (1): 61-6.
    109.Dewar JC, Wheatley AP, Venn A, etc. Beta2-adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population[J]. Clin Exp Allergy, 1998, 28, (4): 442-8.
    110.Landau R, Xie HG, Dishy V, etc. beta2-Adrenergic receptor genotype and preterm delivery[J]. Am J Obstet Gynecol, 2002, 187, (5): 1294-8.
    111.Xie HG, Stein CM, Kim RB, etc. Human beta2-adrenergic receptor polymorphisms: no association with essential hypertension in black or white Americans[J]. Clin Pharmacol Ther, 2000, 67, (6): 670-5.
    112.Kaye DM, Smirk B, Williams C, etc. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure[J]. Pharmacogenetics, 2003, 13, (7): 379-82.
    113.Turnes J, Hernandez-Guerra M, Abraldes JG, etc. Influence of beta-2 adrenergic receptor gene polymorphism on the hemodynamic response to propranolol in patients with cirrhosis[J]. Hepatology, 2006, 43, (1): 34-41.
    114.Lanfear DE, Jones PG, Marsh S, etc. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome[J]. JAMA, 2005, 294, (12): 1526-33.
    115.Chen K, Yang W, Grimsby J, etc. The human 5-HT2 receptor is encoded by a multiple intron-exon gene[J]. Brain Res Mol Brain Res, 1992, 14, (1-2): 20-6.
    116.Arranz M, Collier D, Sodhi M, etc. Association between clozapine response and allelic variation in 5-HT2A receptor gene[J]. Lancet, 1995, 346, (8970): 281-2.
    117.Nothen MM, Rietschel M, Erdmann J, etc. Genetic variation of the 5-HT2A receptor and response to clozapine[J]. Lancet, 1995, 346, (8979): 908-9.
    118.Malhotra AK, Goldman D, Ozaki N, etc. Lack of association between polymorphisms inthe 5-HT2A receptor gene and the antipsychotic response to clozapine[J]. Am J Psychiatry, 1996, 153, (8): 1092-4.
    119.Erdmann J, Shimron-Abarbanell D, Rietschel M, etc. Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia[J]. Hum Genet, 1996, 97, (5): 614-9.
    120.Spurlock G, Heils A, Holmans P, etc. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter[J]. Mol Psychiatry, 1998, 3, (1): 42-9.
    121.Arranz MJ, Munro J, Owen MJ, etc. Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine[J]. Mol Psychiatry, 1998, 3, (1): 61-6.
    122.Enoch MA, Kaye WH, Rotondo A, etc. 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder[J]. Lancet, 1998, 351, (9118): 1785-6.
    123.Bonnier B, Gorwood P, Hamon M, etc. Association of 5-HT(2A) receptor gene polymorphism with major affective disorders: the case of a subgroup of bipolar disorder with low suicide risk[J]. Biol Psychiatry, 2002, 51, (9): 762-5.
    124.Enoch MA, Goldman D, Barnett R, etc. Association between seasonal affective disorder and the 5-HT2A promoter polymorphism, -1438G/A[J]. Mol Psychiatry, 1999, 4, (1): 89-92.
    125.Chee IS, Lee SW, Kim JL, etc. 5-HT2A receptor gene promoter polymorphism -1438A/G and bipolar disorder[J]. Psychiatr Genet, 2001, 11, (3): 111-4.
    126.Skrebuhhova T, Allikmets L, Matto V. 5-HT2A receptors mediate the effect of antidepressants in the elevated plus-maze test but have a partial role in the forced swimming test[J]. Med Sci Res, 1999, 27, (4): 277-80.
    127.Meyer JH, Kapur S, Eisfeld B, etc. The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study[J]. Am J Psychiatry, 2001, 158, (1): 78-85.
    128.Yatham LN, Liddle PF, Dennie J, etc. Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: a positron emission tomography study with fluorine-18-labeled setoperone[J]. Arch Gen Psychiatry, 1999, 56, (8): 705-11.
    129.Du L, Bakish D, Lapierre YD, etc. Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder[J]. Am J Med Genet, 2000, 96, (1): 56-60.
    130.Arora RC, Meltzer HY. Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in the frontal cortex of suicide victims and control subjects[J]. Am J Psychiatry, 1989, 146, (6): 730-6.
    131.Yates M, Leake A, Candy JM, etc. 5HT2 receptor changes in major depression[J]. Biol Psychiatry, 1990, 27, (5): 489-96.
    132.Maj J, Bijak M, Dziedzicka-Wasylewska M, etc. The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain[J]. Psychopharmacology (Berl), 1996, 127, (1): 73-82.
    133.罗星光,江开达,顾牛范.氯氮平对慢性难治性精神分裂症的疗效与5-羟色胺2A受体基因的关系[J].中华精神科杂志, 2000, 33, (3): 141-3.
    134.Ingelman-Sundberg M. Pharmacogenomic biomarkers for prediction of severe adverse drug reactions[J]. N Engl J Med, 2008, 358, (6): 637-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700