尾矿坝化学淤堵机理与过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝的安全稳定性对周围生态环境和人民生命财产安全都具有非常重要的影响。淤堵的发生会导致尾矿坝的排水不畅,从而影响其稳定性与安全性。淤堵的形成机理与控制等的研究是解决这一问题的关键。
     本文在国家自然科学基金“变饱和介质中变形-渗流-化学过程耦合模型研究”(批准号:10572090)资助下,通过现场调查与观测、实验室ICP-AES、XRD和SEM-EDS分析、室内砂柱试验等方法,探讨了引起尾矿坝淤堵的主要物质、淤堵形成机理、淤堵过程与渗流之间的相互作用,取得了以下主要研究成果:
     (1)对金堆城钼业公司栗西尾矿坝进行的现场调查结果表明,尾矿坝库水及辐射井出水主要为SO_4~(2-)—Ca~(2+)和SO_4~(2-)-HCO_3~-—Ca~(2+)型水,pH值为6.8-7.5。淤堵物质中铁元素的含量最高,2个淤堵样品铁元素含量分别为54.35%和40.24%。淤堵物质主要是氢氧化铁及其转化产物组成的混合物质,结构松散,并呈团簇状分布。
     (2)亚铁氧化试验结果表明,亚铁的氧化服从一级动力学方程,氧化速率与pH值联系密切,pH值越高,氧化速率越快;亚铁初始浓度越大,氧化速率也越快。
     (3)以不同粒径石英砂(5#砂,粒径0.20-0.50 mm;6#砂,粒径0.10-0.20 mm;8#砂,粒径0.076-0.15 mm)为填充介质,通过上流式运行方式向试验柱内连续输入亚铁溶液,同时不断调节溶液层pH值在6.8-7.5间变动,在自然供氧条件下,溶液层中的亚铁不断发生氧化反应,逐渐生成淤堵物质,淤堵物质不断积累堵塞出水口是引起淤堵的主要原因。当输入的亚铁溶液浓度为100 mg/L时,5#石英砂柱、6#石英砂柱及8#石英砂柱分别经过20、23和26天运行,淤堵发生;当输入的亚铁溶液浓度为10 mg/L时,5#石英砂柱、6#石英砂柱及8#石英砂柱分别经过54、51和77天运行,淤堵发生。试验结果表明,淤堵的发生与亚铁输入浓度有关,浓度越高,淤堵发生的时间越短;同时淤堵的发生也与填充介质性能存在一定关系。各淤堵试验过程中,渗透系数只在最后阶段发生突变,显著降低。
     同时进行了尾矿砂柱淤堵试验,当输入的亚铁溶液浓度为100 mg/L和10 mg/L时,分别经过42和105天运行,淤堵发生。试验过程呈现两个变化阶段:第一阶段尾矿砂层缓冲能力不断饱和;第二阶段亚铁不断氧化生成淤堵物质,导致淤堵发生。渗透系数的变化类似于石英砂柱淤堵试验。
     各淤堵试验结束后对淤堵物质进行分析,淤堵物质铁元素含量均高于37%。分析结果表明淤堵物质呈松散的团簇状结构,氢氧化铁是其初始主要成分。
     (4)采用交替式输入溶液运行方法进行的淤堵试验中,弥散系数的变化可分为两个阶段。第一阶段随着淤堵的不断发生,淤堵物质的积累造成多孔介质系统异质性增强,引起弥散系数逐渐增大;第二阶段,淤堵物质在多孔介质中的积累逐渐达到相对稳定平衡的状态,孔隙分布又逐渐趋于均匀,导致弥散作用减弱,相应地弥散系数从最大逐渐减小。
     (5)假定亚铁离子已经氧化形成氢氧化铁淤堵物质,开展了一系列砂柱试验,获得了浓度与渗透系数、弥散系数等量之间的关系,建立了多孔介质淤堵过程的渗流和溶质运移耦合模型。
     (6)对6#石英砂柱淤堵试验出水的亚铁、总铁和可过滤性总铁的浓度变化尝试采用混沌理论和分形理论进行了模拟。
The safety and stability of the tailings dam are very critical for the ecosystem of the surroundings and the life and fortune of the people. However, clogging of the tailings dam will bring about difficulty for water drainage to have great influence on the stability and safety of the tailings dam. Therefore, the mechanism and control of the clogging are of important value in solving this problem. Financially supported by“A Model of Coupled
     Deformation-Seepage-Chemical Processes in Variably Saturated Media”(National Natural Science Foundation of China, Grant No. 10572090), this dissertation has studied the main clogging materials, the mechanism of the clogging, and the interaction between the clogging and seepage by carrying out the field investigation and laboratory sand column experiments and using analysis methods such as ICP-AES, XRD and SEM-EDS, and the main research results are as follows.
     (1) The results of field investigation on Lixi tailings dam of Jinduicheng Molybdenum Group Mining Corporation show the water types of the samples from the tailing pond and the effluent of the radial wells are SO_4~(2-)—Ca~(2+) and SO_4~(2-)-HCO_3~-—Ca~(2+). The pH of the samples ranges from 6.8 to 7.5. Iron is the dominant element in the clogging materials, and the contents of two clogging samples are 54.35% and 40.24%, respectively. The analysis results show that the clogging materials are a mixture of iron hydroxide and its converted products, and the clogging materials commonly exist in an amorphous form with a cluster microstructure when viewed under SEM.
     (2) The results of ferrous iron oxidation experiments show that the ferrous iron oxidation follows first order kinetics, and the oxidation process is strongly dependent on pH, a higher pH resulting in a higher oxidation rate. Moreover, results also indicate that a higher concentration of ferrous iron causes a higher oxidation rate.
     (3) Columns were packed with different clean quartz sands including 5# sand (particle size 0.20-0.50 mm), 6# sand (particle size 0.10-0.20 mm), and 8# sand (particle size 0.076-0.15 mm), respectively. The ferrous iron solution was continuously pumped using a peristaltic pump from the bottom to the top of the experimental column. The results of clogging experiments using quartz sand columns indicate that ferrous iron in the solution layer is oxidized and the clogging materials are gradually formed under the conditions of adjusting the pH of the solution layer as 6.8-7.5 and the natural oxygen supply. The clogging materials accumulated and clogged the outlet to cause the clogging according to the results of the experiments. When the inlet concentration of ferrous iron solution was 100 mg/L, clogging completely occurred for 5# sand column experiment, 6# sand column experiment, and 8# sand column experiment operated for 20, 23, and 26 days, respectively. When the inlet concentration of ferrous iron solution was 10 mg/L, clogging completely occurred for 5# sand column experiment, 6# sand column experiment, and 8# sand column experiment operated for 54, 51, and 77 days, respectively. The results show that the occurrence of clogging bears relation with the inlet concentration of ferrous iron solution, a higher concentration resulting in a shorter stage to occur clogging. Moreover, the occurrence of clogging is in connection with the properties of porous media. The change in the hydraulic conductivity of different clogging experiments has the similar trend that the hydraulic conductivity decreases significantly at the last stage.
     Furthermore, the clogging experiments of tailings sand column were carried out. When the inlet concentration of ferrous iron solution was 100 mg/L and 10 mg/L, clogging completely occurred for tailings sand column experiments operated for 42 and 105 days, respectively. Results have shown that there are two stages during the experiment, the buffer capacity of the tailings sand layer is gradually attenuated at the first stage, and then the ferrous iron is continuously oxidized into the clogging materials to cause the clogging at the second stage. The change in the hydraulic conductivity of tailings sand column experiments is similar to that of quartz sand column experiments.
     Clogging materials were analyzed after clogging experiments, and iron contents of clogging materials are higher than 37%. The clogging materials are found to exist in the loose cluster microstructure, and iron hydroxide may be the main initial compound according to the results of XRD and SEM.
     (4) The results of the tracer tests indicate that there are two stages for the change in the dispersion coefficient during the clogging experiment by alternately introducing the solution. The clogging materials accumulate in the porous media to result in stronger heterogeneity, so the dispersion coefficient increases at the first stage. When the accumulation of clogging materials is gradually relatively stable, and pore distribution becomes homogeneous, so the dispersion coefficient decreases at the second stage.
     (5) Based on the hypothesis that the ferrous iron has been oxidized into the iron hydroxide, a series of sand column experiments are carried out. The relationship between concentration and other parameters such as the hydraulic conductivity, the dispersion coefficient and so on is acquired. The flow and transport models during clogging process are coupled according to the sand column experiment results.
     (6) The chaos theory and fractal theory are applied to simulate the change in the concentrations of ferrous iron, total iron and filtered total iron of the effluent during the clogging experiments of 6# quartz sand column.
引文
[1] McLean I. Aberfan: Government and disasters. Welch Academic Press: Cardiff, 2000.
    [2] Van Niekerk HJ, Viljoen MJ. Causes and consequences of the merriespruit and other tailings-dam failures. Land degradation & development, 2005, 16: 201-212.
    [3] Sammarco O. A Tragic Disaster Caused by the Failure of Tailings Dams Leads to the Formation of the Stava 1985 Foundation. Mine Water and the Environment, 2004, 23(2): 91-95.
    [4] Fourie AB, Blight GE, Papageorgiou G. Static liquefaction as a possible expanation for the Merriespruit tailing dam failure. Canadian Geotechnical Journal, 2001, 38(4): 707-719.
    [5] Vick SG. Tailings dam failure at Omai in Guyana. Mining Engineering, 1996, 48(11): 34-37.
    [6] Ramessar CR. Water is More Important than Gold: Local Impacts and Perceptions of the 1995 Omai Cyanide Spill, Essequibo River, Guyana. M.S.Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 2003.
    [7] Madejón P, Murillo JM, Mara?ón T, et al. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcóllar mine spill (SW Spain). The Science of The Total Environment, 2002, 290(1-3): 105-120.
    [8] Fernández I, Olías M, Cerón JC, et al. Application of lead stable isotopes to the Guadiamar Aquifer study after the mine tailings spill in Aznalcóllar (SW Spain). Environmental Geology, 2005, 47: 197-204.
    [9] Strachan C. Tailings dam performance from USCOLD incident-survey data. Mining Engineering, 2001, 53(3): 49-53.
    [10] Rykaart M, Fredlund M, Stianson J. Modelling tailings dam flux boundary conditions with 3D seepage software. Ground Engineering, 2002, 35(7): 28-30.
    [11] 尹光志, 魏作安, 万玲. 龙都尾矿库地下渗流场的数值模拟分析. 岩土力学, 2003, 24(supp): 25-28.
    [12] 路美丽, 崔莉. 影响尾矿坝渗流场的因素分析. 中国安全科学学报, 2004, 14(6): 17-20.
    [13] 路美丽, 崔莉. 复杂地形尾矿坝的三维渗流分析. 岩土力学, 2006, 27(7): 1176-1180.
    [14] 柳厚祥, 李宁, 廖雪等. 考虑应力与渗流耦合的尾矿坝非稳定渗流分析. 岩石力学与工程学报, 2004, 23(17): 2870-2875.
    [15] 蔚平, 李广杰, 项宏海等. 尾矿坝非饱和带滞水曲线模型的建立及应用段. 吉林大学学报(地球科学版), 2004, 34: 95-98.
    [16] 柴军瑞, 李守义, 李康宏等. 米箭沟尾矿坝加高方案渗流场数值分析. 岩土力学, 2005, 26(6): 973-977.
    [17] Ghose MK, Sen PK. Investigation of soil engineering properties for safe design andconstruction of the iron ore tailing dam. Indian Journal of Engineering and Materials Sciences, 2001, 8 (6): 318-326.
    [18] Garga VK, de la Torre M. Emergency remediation of instability at Caudalosa tailings dam, Peru: a case history. Canadian Geotechnical Journal, 2002, 39 (5): 1193-1200.
    [19] 柳厚祥, 裘家葵. 变分法在尾矿坝稳定性分析中的应用研究. 工程设计与建设, 2003, 35(1): 19-23, 34.
    [20] 张超, 杨春和, 徐卫亚. 尾矿坝稳定性的可靠度分析. 岩土力学, 2004, 25(11): 1706-1711.
    [21] 罗晓辉, 白世伟, 万凯军等. 尾矿坝渗透静力稳定分析. 岩土力学, 2004, 25(4): 560-569.
    [22] Brzezinski LS. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure: Discussion. Canadian Geotechnical Journal, 2002, 39(6): 1439-1440.
    [23] Fourie AB, Blight GE, Papageorgiou G. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure: Reply. Canadian Geotechnical Journal, 2002, 39(6): 1441-1442.
    [24] Fourie AB, Tshabalala L. Initiation of static liquefaction and the role of K0 consolidation. Canadian Geotechnical Journal, 2005, 42 (3): 892-906.
    [25] Cazaux D, Alameda JG, Garcia TJ, et al. Geotechnical assessment of the Mejita tailing dam (Dom. Rep.) in karstic and seismic context. 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics - Proceedings of the ISSMGE 5th Int. Congress, v II, 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics-Proceedings of the ISSMGE 5th Int. Congress, 2006, 852-861.
    [26] 王文星, 曹平, 刘业科等. 地震条件下尾矿坝稳定性分析. 中国安全生产科学技术, 2006, 2(6): 58-61.
    [27] 李再光, 罗晓辉. 尾矿坝地震反应的拟静力稳定分析. 岩土力学, 2006, 27(7): 1138-114.
    [28] 潘建平, 孔宪京, 邹德高. 尾矿坝地震液化稳定的简化分析. 水利学报, 2006, 37(10): 1224-1229.
    [29] Liu H, Li N, Liao X, et al. Effective stress analysis method of seismic response for high tailings dam. Journal of Central South University of Technology, 2007, 14 (1): 129-134.
    [30] 张超, 杨春和. 尾矿坝液化判别简化方法研究. 岩石力学与工程学报, 2006, 25(supp.2): 3730-3736.
    [31] Hancock GR, Willgoose GR. An experimental and computer simulation study of erosion on a mine tailings dam wall. Earth Surface Processes and Landforms, 2004, 29(4): 457-475.
    [32] Sj?dahl P, Dahlin T, Johansson S. Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden. Environmental Geology, 2005, 49(2): 267-273.
    [33] Gallart F, Benito G, Martín-Vide JP, et al. Fluvial geomorphology and hydrology in the dispersal and fate of pyrite mud particles released by the Aznalcóllar mine tailings spill. TheScience of the Total Environment, 1999, 242: 13-26.
    [34] Manzano M, Ayora C, Domenech C, et al. The impact of the Aznalcóllar mine tailing spill on groundwater. The Science of the Total Environment, 1999, 242: 189-209.
    [35] Alzaga R, Mesas A, Ortiz L, et al. Characterization of organic compounds in soil and water affected by pyrite tailing spillage. The Science of the Total Environment, 1999, 242: 167-178.
    [36] Murillo JM, Mara?ón T, Cabrera F, et al. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. The Science of the Total Environment, 1999, 242: 281-292.
    [37] Sabater S. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. Journal of Applied Phycology, 2000, 12(2): 113-124.
    [38] Hudson-Edwards KA, Macklin MG, Jamieson HE, et al. The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Ríos Agrio–Guadiamar, Aznalcóllar, Spain. Applied Geochemistry, 2003, 18(2): 221-239.
    [39] Kemper T, Sommer S. Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy. Environmental Science & Technology, 2002, 36: 2742-2747.
    [40] Pain DJ, Meharg A, Sinclair G, et al. Levels of cadmium and zinc in soil and plants following the toxic spill from a pyrite mine, Aznalcollar, Spain. AMBIO, 2003, 32 (1): 52-57.
    [41] Su?er MA, Devesa V, Mu?oz O, et al. Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications. The Science of the Total Environment, 1999, 242: 261-270.
    [42] Bonilla-Valverde D, Ruiz-Laguna J, Mu?oz A, et al. Evolution of biological effects of Aznalcóllar mining spill in the Algerian mouse (Mus spretus) using biochemical biomarkers. Toxicology, 2004, 197: 123-138.
    [43] Morillo J, Usero J, Gracia I. Study of Fractionation and Potential Mobility of Metal from the Guadalquivir Estuary: Changes in Mobility with Time and Influence of the Aznalcollar Mining Spill. Environmental Management, 2005, 36(1): 162-173.
    [44] Riba I, DelValls TA, Reynoldson TB, et al. Sediment quality in Rio Guadiamar (SW, Spain) after a tailing dam collapse: Contamination, toxicity and bioavailability. Environment International, 2006, 32(7): 891-900.
    [45] Olías M, Cerón JC, Moral F, et al. Water quality of the Guadiamar River after the Aznalcóllar spill (SW Spain). Chemosphere, 2006, 62(2): 213-225.
    [46] Domènech C, Ayora C, de Pablo J. Sludge weathering and mobility of contaminants in soil affected by the Aznalcollar tailing dam spill (SW Spain). Chemical Geology, 2002, 190: 355-370.
    [47] Domènech C, de Pablo J, Ayora C. Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain). Chemical Geology, 2002, 190: 339-353.
    [48] Macklin MG, Brewer PA, Balteanu D, et al. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramure? County, upper Tisa Basin, Romania. Applied Geochemistry, 2003, 18(2): 241-257.
    [49] Osán J, T?r?k S, Alf?ldy B, et al. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation. Spectrochimica Acta Part B, 2004, 59: 701-708.
    [50] Kraft C, von Tumpling W, Zachmann DW. The effects of mining in Northern Romania on the heavy metal distribution in sediments of the rivers Szamos and Tisza (Hungary). Acta Hydrochimica et Hydrobiologica, 2006, 34 (3): 257-264.
    [51] Veinott G, Anderson MR, Sylvester PJ, et al. Metal Concentrations in Bivalves Living in and Around Copper Mine Tailings Released After a Tailings Dam Breach. Bulletin of Environmental Contamination and Toxicology, 2001, 67: 282-287.
    [52] Veinott G, Sylvester P, Hamoutene D, et al. State of the marine environment at Little Bay Arm, Newfoundland and Labrador, Canada, 10 years after a "do nothing" response to a mine tailings spill. Journal of Environmental Monitoring, 2003, 5: 626-634.
    [53] Hudson-Edwards KA, Macklin MG, Miller JR, et al. Sources, distribution and storage of heavy metals in the Río Pilcomayo, Bolivia. Journal of Geochemical Exploration, 2001, 72(3): 229-250.
    [54] Liao B, Guo Z, Probst A, et al. Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China. Geoderma, 2005, 127: 91-103.
    [55] Di Gregorio F, Massoli-Novelli R. Geological impact of some tailings dams in Sardinia, Italy. Environmental Geology, 1992, 19(3): 147-153.
    [56] Gao Y, Bradshaw AD. The containment of toxic wastes: II. Metal movement in leachate and drainage at Parc lead-zinc mine, North Wales. Environmental Pollution, 1995, 90(3): 379-382.
    [57] Langedal M. The influence of a large anthropogenic sediment source on the fluvial geomorphology of the Knabe?na-Kvina rivers, Norway. Geomorphology, 1997a, 19(1-2): 117-132.
    [58] Langedal M. Dispersion of tailings in the Knabe?na-Kvina drainage basin, Norway, 1: Evaluation of overbank sediments as sampling medium for regional geochemical mapping. Journal of Geochemical Exploration, 1997b, 58(2-3): 157-172.
    [59] Langedal M. Dispersion of tailings in the Knabe?na-Kvina drainage basin, Norway,2:mobility of Cu and Mo in tailings-derived fluvial sediments. Journal of Geochemical Exporation, 1997c, 58(2-3): 173-183.
    [60] Dauvalter V, Rognerud S. Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 2001, 42: 9-18.
    [61] Fernandes HM, Franklin MR, Veiga LHS, et al. Management of uranium mill tailing: geochemical processes and radiological risk assessment. Journal of Environmental Radioactivity, 1995, 30(1): 69-95.
    [62] Paulson AJ. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, Idaho, U.S.A. Applied Geochemistry,1997,12(4): 447-464.
    [63] Martin CJ, Al TA, Cabri LJ. Surface analysis of particles in mine tailings by time-of-flight laser-ionization mass spectrometry (TOF-LIMS). Environmental Geology, 1997, 32 (2): 107-113.
    [64] Ghomshei MM, Allen DM. Hydrochemical and stable isotope assessment of tailings pond leakage, Nickel Plate Mine, British Columbia. Environmental Geology, 2000, 39(8): 937-944.
    [65] Gulson BL, Mizon KJ, Korsch MJ, et al. Lead Isotopes as Seepage Indicators around a Uranium Tailings Dam. Environmental Science & Technology, 1989, 23: 290-294.
    [66] Martin P, Akber RA. Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. Journal of Environmental Radioactivity, 1999, 46: 271-286.
    [67] Buselli G, Lu K. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 2001, 48(1): 11-13.
    [68] Ashley PM, Craw D, Graham BP, et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 2003, 77: 1-14.
    [69] Gilbert SE, Cooke DR, Hollings P. The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environmental Geology, 2003, 44: 687-697.
    [70] Ashley PM, Lottermoser BG, Collins AJ, et al. Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environmental Geology, 2004, 46: 591-604.
    [71] Lottermoser BG, Ashley PM. Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. Journal of Geochemical Exploration, 2005, 85: 119-137.
    [72] Lei L, Watkins R. Acid drainage reassessment of mining tailings, Black Swan Nickel Mine, Kalgoorlie, Western Australia. Applied Geochemistry, 2005, 20: 661-667.
    [73] Lupankwa K, Love D, Mapani BS, et al. Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Physics and Chemistry of the Earth, 2004, 29: 1145–1151.
    [74] Lindsay R, de Meijer RJ, Joseph AD, et al. Measurement of radon exhalation from a gold-mine tailings dam by γ-ray mapping. Radiation Physics and Chemistry, 2004, 71(3-4):797-798.
    [75] Cukrowska EM, Govender K , Viljoen M. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation. Chemosphere, 2004, 56(1): 39-50.
    [76] Schippers A, Kock D, Schwartz M, et al. Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi-Phikwe in Botswana. Journal of Geochemical Exploration, 2007, 92: 151-158.
    [77] Sharma RS, Al-Busaidi TS. Groundwater pollution due to a tailings dam. Engineering Geology, 2001, 60(1-4): 235-244.
    [78] 孙庆业, 蓝崇钰, 杨林章. 铅锌尾矿废弃地的化学性质研究. 农村生态环境, 2000, 16(4): 36-39, 44.
    [79] Ye ZH, Shu WS, Zhang ZQ, et al. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, 2002, 47: 1103-1111.
    [80] 杨明理, Tokonami S, 蔡振民等. 某铀尾矿库周边地区氡调查. 核技术, 2002, 25(7): 545-550.
    [81] 滕应, 黄昌勇, 龙健等. 铜尾矿污染区土壤酶活性研究. 应用生态学报, 2003, 14(11): 1976-1980.
    [82] 龙健, 黄昌勇, 滕应等. 铜矿尾矿库土壤—海洲香薷(Elsholtzia harchowensis)植物体系的微生物特征研究. 土壤学报, 2004, 41(1): 120-125.
    [83] 王友保, 张丽琴, 刘登义. 铜尾矿区土壤与凤丹植株重金属富集研究. 应用生态学报, 2004, 15(12): 2351-2354.
    [84] 王友保, 张莉, 沈章军等. 铜尾矿库区土壤与植物中重金属形态分析. 应用生态学报, 2005, 16(12): 2418-2422.
    [85] 张晓军, 胡明安, 赵颖虹等. 大冶铁山地区重金属污染分析. 环境科学与技术, 2005, 28(1): 40-43.
    [86] 杨小强, 张轶男, 张澄博等. 矿山重金属污染土壤的磁化率特征及其意义——以广东大宝山多金属矿床为例. 中山大学学报(自然科学版), 2006, 45(4): 98-102.
    [87] 王友保, 张莉, 张凤美等. 大型铜尾矿库区节节草(Hippochaeteramosissimum)根际土壤重金属形态分布与影响因素研究. 环境科学学报, 2006, 26(1): 76-84.
    [88] 马腾, 王焰新. U(VI)在浅层地下水系统中迁移的反应-输运耦合模拟——以我国南方核工业某尾矿库为例. 地球科学——中国地质大学学报, 2000, 25(5): 456-461.
    [89] 谢水波, 刘奇, 张晓健等. 尾矿库区地下水中 U(VI)的反应-输运耦合模拟及其参数分析. 水科学进展, 2006, 17(6): 803-807.
    [90] 李合莲, 陈家军. 铀尾矿库中 238U 运移数值模拟. 安全与环境工程, 2007, 14(1): 36-38, 46.
    [91] Del Rio M, Ferchaud F, Font R, et al. Field trials of wild plant species growing in polluted soils of the Guadiamar river area for phytoremediation purposes. Fresenius Environmental Bulletin, 2004, 13 (11B): 1197-1203.
    [92] Van Rensburg L, Maboeta MS, Morgenthal TL. Rehabilitation of co-disposed diamond tailings: growth medium rectification procedures and indigenous grass establishment. Water, Air, and Soil Pollution, 2004, 154 (1-4): 101-113.
    [93] Weiersbye IM, Witkowski ETF, Reichardt M. Floristic composition of gold and uranium tailings dams, and adjacent polluted areas, on South Africa's deep-level mines. BOTHALIA, 2006, 36 (1): 101-127.
    [94] Straker CJ, Weiersbye IM, Witkowski ETF. Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa's deep level gold mines: I. Root colonization and spore levels. South African Journal of Botany, 2007, 73 (2): 218-225.
    [95] Yang ZY, Yuan JG, Xin GR, et al. Germination, Growth, and Nodulation of Sesbania rostrata Grown in Pb/Zn Mine Tailings. Environmental Management, 1997, 21(4): 617-622.
    [96] 杨修, 高林. 德兴铜矿矿山废弃地植被恢复与重建研究. 生态学报, 2001, 21(11): 1932-1940.
    [97] Li MS. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Science of the Total Environment, 2006, 357 (1-3): 38-53.
    [98] Cunningham AB, Characklis WG, Abedeen F, et al. Influence of biofilm accumulation on porous media hydrodynamics. Environmental Science & Technology, 1991, 25: 1305-1311.
    [99] Vandevivere P, Baveye P. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Science Society of America Journal, 1992, 56: 1-13.
    [100] Torbati HM, Raiders RA, Donaldson EC, et al. Effect of microbial growth on pore entrance size distribution in sandstone cores. Journal of Industrial Microbiology, 1986, 1: 227-234.
    [101] Vandevivere P, Baveye P. Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Appled and Environmental Microbiology, 1992, 58: 1690-1698.
    [102] Soares MIM, Belkin S, Abeliovich AZ. Clogging of microbial denitrification in sand columns: gas bubbles or biomass accumulation. Wasser und Abwasser Forschung, 1989, 22: 20-24.
    [103] Rittmann BE. The significance of biofilms in porous media. Water Resources Research, 1993, 29: 2195-2202.
    [104] Allison LE. Effect of microorganisms on permeability of soil under prolonged submergence. Soil Science, 1947, 63:439-450.
    [105] Sanchez de Lozada D,Vandevivere P, Baveye P, et al. Decrease of the hydraulic conductivity of sand columns by Methanosarcina barkeri. World Journal of Microbiology and Biotechnology, 1994, 10: 325-333.
    [106] Miyazaki T, Hasegawa S, Kasubuchi T. Effects of microbiological factors on water flow in soil. Marcel Dekker, New York, Water flow in soils, 1993, 197-220pp.
    [107] Seki K, Miyazaki T, Nakano M. Effects of microorganisms on hydraulic conductivitu decrease in infiltration. European journal of soil science, 1998, 49: 231-236.
    [108] Rijnaarts HHM, Norde W, Bouwer EJ, et al. Bacterial Deposition in Porous Media Related to the Clean Bed Collision Efficiency and to Substratum Blocking by Attached Cells. Environmental Science & Technology, 1996a, 30(10): 2869-2876.
    [109] Rijnaarts HHM, Norde W, Bouwer EJ, et al. Bacterial Deposition in Porous Media: Effects of Cell-Coating, Substratum Hydrophobicity, and Electrolyte Concentration. Environmental Science & Technology, 1996b, 30(10): 2877-2883.
    [110] Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Research, 2000, 34(7): 2110-2118.
    [111] VanGulck JF, Rowe RK, Rittmann BE, et al. Predicting biogeochemical calcium precipitation in landfill leachate collection systems. Biodegradation, 2003, 14: 331-346.
    [112] VanGulck JF. Biodegradation and clogging in gravel size material. PhD Thesis, Queen’s University, Kingston, Ontario, Canada, 2003.
    [113] VanGulck JF, Rowe RK. Evolution of clog formation with time in columns permeated with synthetic landfill leachate. Journal of Contaminant Hydrology, 2004, 75: 115-139.
    [114] Islam J, Singhal N. A laboratory of landfill-leachate transport in soils. Water Research, 2004, 38: 2035-2042.
    [115] Rowe RK, McIsaac R. Clogging of Tire Shreds and Gravel Permeated with Landfill Leachate. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 682-693.
    [116] Fuchs S, Hahn HH, Roddewig J, et al. Biodegaradation and bioclogging in the unsaturated porous soil beneath sewer leaks. Acta hydrochimica et hydrobiologica, 2004, 32(4-5): 277-286.
    [117] Kelm U, Helle S. Acid leaching of malachite in synthetic mixtures of clay and zeolite-rich gangue. An experimental approach to improve the understanding of problems in heap leaching operations. Applied Clay Science, 2005, 29: 187-198.
    [118] Mays DC, Hunt JR. Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media. Environmental Science & Technology, 2007, 41(16): 5666-5671.
    [119] Jones LA, Rutledge EM, Scott HD, et al. Effects of two earthworm species on movement of septic tank effluent through soil columns. Journal of environmental quality, 1993, 22: 52-57.
    [120] Kildsgaard J, Engesgaard P. Numerical analysis of biological clogging in two-dimensional sand box experiments. Journal of Contaminant Hydrology, 2001, 50: 261-285.
    [121] Thullner M, Mauclaire L, Schroth MH, et al. Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media. Journal of Contaminant Hydrology, 2002, 58(3-4): 169-189.
    [122] Suliman F, French HK, Haugen LE, et al. Change in flow and transport patterns in horizontal subsurface flow constructed wetlands as a result of biological growth. Ecological Engineering, 2006, 27(2): 124-133.
    [123] Kristiansen R. Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanism and soil physical environment. Journal of environmental quality, 1981, 10: 353-357.
    [124] Wu FC, Huang HT. Hydraulic resistance induced by deposition of sediment in porous medium. Journal of hydraulic engineering, 2000, 126(7): 547-550.
    [125] Van Cuyk S, Siegrist R, Logan A, et al. Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems. Water Research, 2001, 35(4): 953-964.
    [126] Tansel B, Vilar F. Enhancement of media filter performance with coagulant use for treatment of diesel oil contaminated surface water. Desalination, 2005, 173(1): 69-76.
    [127] Skolasińska K. Clogging microstructures in the vadose zone—laboratory and field studies. Hydrogeology Journal, 2006, 14(6): 1005-1017.
    [128] Wang Z, Banks C. An investigation into the microbial clogging potential of selected filter media as a result of biodegradation of a high-strength sulphate-rich alkaline leachate. Biodegradation, 2006, 17(5): 415-422.
    [129] Siriwardene NR, Deletic A, Fletcher TD. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 2007, 41(7): 1433-1440.
    [130] 童巍, 朱伟, 阮爱东. 垂直流人工湿地填料的淤堵机理初探. 湖泊科学, 2007, 19(1): 25-31.
    [131] Streese J, Stegmann R. Microbial oxidation of methane from old landfills in biofilters. Waste Management, 2003, 23: 573-580.
    [132] Delhoménie MC, Bibeau L, Gendron J, et al. A study of clogging in a biofilter treating toluene vapors. Chemical Engineering Journal, 2003, 94(3): 211-222.
    [133] Song CB, Park HS, Lee KW. Experimental study of filter clogging with monodisperse PSL particles. Powder Technology, 2006, 163(3): 152-159.
    [134] Corcoran BW, Bhatia SK. Evaluation of geotextile filter in a collection system at Fresh Kills landfill. In: Bhatia, S.S., Suits, L.D. (Eds.), Recent Developments in Geotextile Filters and Prefabricated Drainage Geocomposites. American Society for Testing and Materials, ASTM STP 1281, 1996, 182-195pp.
    [135] Palmeira EM, Gardoni MG. Drainage and filtration properties of non-woven geotextiles under confinement using different experimental techniques. Geotextiles and Geomembranes, 2002, 20: 97-115.
    [136] Mendonca MBd, Ehrlich M, Cammarota MC. Conditioning factors of iron ochre biofilm formation on geotextile filters. Canadian Geotechnical Journal, 2003, 40(6): 1225-1234.
    [137] Wu CS, Honga YS, Yanb YW, et al. Soil-nonwoven geotextile filtration behavior under contact with drainage materials. Geotextiles and Geomembranes, 2006, 24: 1-10.
    [138] 崔中兴, 王志刚. 土工织物滤层的P-K与淤堵试验研究. 西北水资源与水工程, 1995, 3: 36-39, 45.
    [139] 孔丽丽, 陈守义. 武山尾矿坝无纺土工织物滤层化学淤堵问题初探. 岩土工程学报, 1999, 21(4): 444-449.
    [140] 段祥宝, 毛昶熙, 吴文君. 江边电排站渠底滤层淤堵破坏及加固研究. 岩土工程学报, 2000, 22(1): 123-126.
    [141] 周荣, 刘逸新. 土工织物淤堵程度的量化方法探讨. 纺织学报, 2001, 22(2): 118-120.
    [142] 陈轮, 童朝霞. 拉应变对土工织物-非连续级配土淤堵特性的影响. 水力发电学报, 2003, 2: 97-102.
    [143] 巨娟丽. 土工无纺布工程特性试验研究. 水利与建筑工程学报, 2005, 2(3): 43-46.
    [144] 张爱军, 董为民, 骆亚生. 尾矿坝排水管的反滤、淤堵试验研究. 防渗技术, 2001, 7(1): 1-3, 17.
    [145] Dupin HJ, Mccarty PL. Mesoscale and Microscale Observations of Biological Growth in a Silicon Pore Imaging Element. Environmental Science & Technology, 1999, 33(8): 1230-1236.
    [146] Magesan GN, Williamson JC, Yeates GW, et al. Wastewater C: N ratio effects on soil hydraulic conductivity and potential mechanisms for recovery. Bioresource Technology, 2000, 71: 21-27.
    [147] Kaiser C. A Directed Percolation Model for Clogging in a Porous Medium with Small Inhomogeneities. Transport in Porous Media, 1997, 26(2): 133-146.
    [148] Stewart TL, Kim DS. Modeling of biomass-plug development and propagation in porous media. Biochemical Engineering Journal, 2004, 17(2): 107-119.
    [149] Thullner M, Zeyer J, Kinzelbach W. Influence of Microbial Growth on Hydraulic Properties of Pore Networks. Transport in Porous Media, 2002, 49: 99-122.
    [150] Nukunya T, Devinny JS, Tsotsis TT. Application of a pore network model to a biofilter treating ethanol vapor. Chemical Engineering Science, 2005, 60(3): 665-675.
    [151] Viotti P, Eramo B, Boni MR, et al. Development and calibration of a mathematical model for the simulation of the biofiltration process. Advances in Environmental Research, 2002, 7(1): 11-33.
    [152] Mays DC, Hunt JR. Hydrodynamic Aspects of Particle Clogging in Porous Media. Environmental Science & Technology, 2005, 39(2): 577-584.
    [153] Iliuta I, Larachi F. Modeling simultaneous biological clogging and physical plugging in trickle-bed bioreactors for wastewater treatment. Chemical Engineering Science, 2005, 60(5): 1477-1489.
    [154] Iliuta I, Larachi F. Dynamics of cells attachment, aggregation, growth and detachment intrickle-bed bioreactors. Chemical Engineering Science, 2006, 61(15): 4893-4908.
    [155] Li X, Wang X. Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 2006, 278(1-2): 151-161.
    [156] Iliuta I, Iliuta MC, Larachi F. Hydrodynamics Modeling of Bioclogging in Waste Gas Treating Trickle-Bed Bioreactors. Ind. Eng. Chem. Res., 2005, 44(14): 5044-5052.
    [157] Islam J, Singhal N, O’Sullivan M. Modeling Biogeochemical Processes in Leachate-Contaminated Soils: A Review. Transport in Porous Media, 2001, 43: 407-440.
    [158] 张爱军, 朱珍德, 程艳. 深圳卫生填埋淤堵排放的灰色预测模型. 河海大学学报, 2002, 30(3): 106-109.
    [159] 曹丽文, 姜振泉, 张静等. 垃圾填埋场排水层渗透性变化特征实验研究. 中国矿业大学学报, 2007, 36(4): 467-472.
    [160] Haselbach LM, Valavala S, Montes F. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems. Journal of Environmental Management, 2006, 81(1): 42-49.
    [161] Faure YH, Baudoin A, Pierson P, et al. A contribution for predicting geotextile clogging during filtration of suspended solids. Geotextiles and Geomembranes, 2006, 24: 11-20.
    [162] Vigneswaran S, Suazo RB. A detailed investigation of physical and biological clogging during artificial recharge. Water, Air, and Soil Pollution, 1987, 35(1-2): 119-140.
    [163] Magnico P. Impact of dynamic processes on the coupling between fluid transport and precipitate deposition. Chemical Engineering Science, 2000, 55: 4323-4338.
    [164] De Windt L, Pellegrini D, van der Lee J. Coupled modeling of cement/claystone interactions and radionuclide migration. Journal of Contaminant Hydrology, 2004, 68: 165-182.
    [165] Adler M. Interaction of claystone and hyperalkaline solutions at 30℃: a combined experimental and modelling study. PhD Thesis, Bern University. Switzerland, 2001.
    [166] Smellie JAT. Maqarin Natural Analogue Study: Phase III. SKB Technical Report TR-98-04. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1998.
    [167] Lagneau V. Influence des processus gochimiques sur le transport en milieu poreux. PhD Thesis, école des Mines de Paris. France, 2000.
    [168] Dechesne M, Barraud S, Bardin JP, Indicators for hydraulic and pollution retention assessment of stormwater infiltration basins. Journal of Environmental Management, 2004, 71: 371-380.
    [169] Wagner R, Kühn M, Meyn V, et al. Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(7-8): 1070-1081.
    [170] García J, Rousseau D, Caselles-Osorio A, et al. Impact of Prior Physico-Chemical Treatmenton the Clogging Process of Subsurface Flow Constructed Wetlands: Model-Based Evaluation. Water, Air, and Soil Pollution, in press, DOI 10.1007/s11270-007-9434-9.
    [171] Mansur CI, Postol G, Sally JR. Performance of Relief Well Systems along Mississippi River Levees. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126 (8): 727- 738.
    [172] 肖振舜, 汪在芹. 减压井灌淤堵机理的物理化学试验研究. 水利学报, 1994 ,3: 19-25.
    [173] 张家发, 吴志广, 许季军等. 安庆江堤现有减压井运行效果初步分析. 长江科学院院报, 2000, 17(4): 38-40, 44.
    [174] Belliard J, Berrebi dit Thomas R, Monnie D. Fish communities and river alteration in the Seine Basin and nearby coastal streams. Hydrobiologia, 1999, 400:155-166.
    [175] Berkman HE, Rabeni CF. Effect of siltation on stream fish communities. Environmental Biology of Fishes, 1987, 18: 285-294.
    [176] Raat AJP. Synopsis of biological data on the northern pike Esox lucius Lineaeus, 1758. FAO, Rome, 1988, 178 pp.
    [177] Rabeni CF, Smale MA. Effects of siltation on stream fishes and the potential mitigating role of the buffering riparian zone. Hydrobiologia, 1995, 303: 211-219.
    [178] Battin TJ, Sengschmitt D. Linking Sediment Biofilms, Hydrodynamics, and River Bed Clogging: Evidence from a Large River. Microbial Ecology, 1999, 37(3): 185-196.
    [179] Bo T, Fenoglio S, Malacarne G, et al. Effects of clogging on stream macroinvertebrates: An experimental approach. Limnologica - Ecology and Management of Inland Waters, 2007, 37(2): 186-192.
    [180] Schultz G, Ruppel C. Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interface. Journal of hydrology, 2002,260: 255-269.
    [181] Wett B, Jarosch H, Ingerle K. Flood induced infiltration affecting a bank filtrate well at the River Enns, Austria. Journal of Hydrology, 2002, 266: 222-234.
    [182] Martin-Rosales W, Leduc C. Dynamiques de vidange d’une mare temporaire au Sahel: l’exemple de Banizoumbou (Sud-Ouest du Niger). Comptes Rendus Geoscience, 2003, 335: 461-468.
    [183] Volkenborn N, Hedtkamp SIC, van Beusekom JEE, et al. Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuarine, Coastal and Shelf Science, 2007, 74(1-2): 331-343.
    [184] Schubert J. Hydraulic aspects of riverbank filtration—field studies. Journal of Hydrology, 2002, 266: 145-161.
    [185] Goldschneider AA, Haralampides KA , MacQuarrie KTB. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging.Journal of Hydrology, 2007, 344(1-2): 55-69.
    [186] Friedl G, Teodoru C, Wehrli B. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry, 2004, 68: 21-32.
    [187] Jennings DA, Petersen JN, Skeen RS, et al. Effects of slight variations in nutrient loadings on pore plugging in soil columns. Applied biochemistry and biotechnology, 1995, 51: 727-734.
    [188] Dyer M, van Heiningen E, Gerritse J. A field trial for in-situ bioremediation of 1, 2-DCA. Engineering Geology, 2003, 70: 315-320.
    [189] Castegnier F, Ross N, Chapuis RP, et al. Long-term persistence of a nutrient-starved biofilm in a limestone fracture. Water Research, 2006, 40(5): 925-934.
    [190] Borden RC, Goin RT, Kao CM. Control of BTEX migration using a biologically enhanced permeable barrier. Ground Water Monitoring and Remediation, 1997, 17 (1): 70-80.
    [191] Kamolpornwijit W, Liangb L, West OR, et al. Preferential flow path development and its influence on long-term PRB performance: column study. Journal of Contaminant Hydrology, 2003, 66: 161-178.
    [192] Wantanaphong J, Mooney SJ, Bailey EH. Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis. Journal of Contaminant Hydrology, 2006, 86(3-4): 299-320.
    [193] Elliott DW, Zhang WX. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922-4926.
    [194] Claret C, Marmonier P, Dole-Olivier MJ, et al. Effects of management works on the interstitial fauna of floodplain aquatic systems (River Rh?ne, France). Biodiversity and Conservation, 1999, 8: 1179-1204.
    [195] Nivala J, Hoos MB, Cross C, et al. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Science of The Total Environment, 2007, 380(1-3): 19-27.
    [196] Nguyen LM. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecological Engineering, 2000, 16: 199-221.
    [197] Matamoros V, Bayona JM. Elimination of Pharmaceuticals and Personal Care Products in Subsurface Flow Constructed Wetlands. Environmental Science & Technology, 2006, 40(18): 5811-5816.
    [198] Mu?oz P, Drizo A, Hession WC. Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Research, 2006, 40(17): 3209-3218.
    [199] Caselles-Osorio A, Garcia J. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands. Environmental Pollution,2007, 146(1): 55-63.
    [200] Caselles-Osorio A, Puigagut J, Segú E, et al. Solids accumulation in six full-scale subsurface flow constructed wetlands. Water Research, 2007, 41(6): 1388-1398.
    [201] Sun G, Zhao YQ, Allen SJ. An Alternative Arrangement of Gravel Media in Tidal Flow Reed Beds Treating Pig Farm Wastewater. Water, Air, and Soil Pollution, 2007, 182(1-4):13-19.
    [202] Dillon PJ, Pavelic P, Sibenaler X, et al. Aquifer storage and recovery of stormwater runoff. AWWA Journal of Water, 1997, 24(4): 7-11.
    [203] Sniegocki RT, Brown RF. Artificial Groundwater Recharge Conference, Water Research Association, Reading, UK, 1970:337-352.
    [204] Olsthoom TN. The clogging of recharge wells, main subjects. KIWA Communications 72, Rijswijk, 1982, 150pp.
    [205] Osei-Bonsu K. Clogging by sediments in injected fluid flowing radially in a confined aquifer. PhD Thesis, Flinders University of South Australia.1996.
    [206] Pérez-Paricio A. Clogging and artificial recharge of groundwater: fundamental aspects. M.S. Thesis, Universitat Politecnica de Catalunya, Barcelona, Spain, 1998.
    [207] Dillon P, Pavelic P, Massmann G, et al. Enhancement of the membrane filtration index (MFI) method for determining the clogging potential of turbid urban stormwater and reclaimed water used for aquifer storage and recovery. Desalination, 2001, 140: 153-165.
    [208] Pavelic P, Dillon PJ, Barry KE, et al. Hydraulic evaluation of aquifer storage and recovery (ASR) with urban stormwater in a brackish limestone aquifer. Hydrogeology Journal, 2006, 14(8): 1544-1555.
    [209] Pavelic P, Dillon PJ, Barry KE, et al. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer. Journal of Hydrology, 2007, 334(1-2): 1-16.
    [210] Juanico M, Azov Y, Teltsch B, et al. Effect of effluent addition to a freshwater reservoir on the filter clogging capacity of irrigation water. Water Research, 1995, 29(7): 1695-1702.
    [211] Konno H, Sato A, MagaraY. Characteristics of deposits of diatoms in filters and effective factors to filter clogging. Water Supply, 1995, 13(3-4): 205-210.
    [212] Liu Q, Mancl K, Tuovinen OH. Biomass accumulation and carbon utilization in layered sand filter biofilm systems receiving milk fat and detergent mixtures. Bioresource Technology, 2003, 89: 275-279.
    [213] Stevik TK, Aa K, Ausland G, et al. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Research, 2004, 38: 1355-1367.
    [214] Alavi Moghaddam MR, Guan Y, Satoh H, et al. Filter clogging in coarse pore filtration activated sludge process under high MLSS concentration. Water Science and Technology, 2006, 54(10): 55-66.
    [215] Mauclaire L, Schürmann A, Mermillod-Blondin F. Influence of hydraulic conductivity on communities of microorganisms and invertebrates in porous media: a case study in drinking water slow sand filters. Aquatic Sciences - Research Across Boundarie, 2006, 68(1): 100-108.
    [216] Agranovski IE, Shapiro M. Clogging of wet filters by dust particles. Aerosol Science, 2001, 32: 1009-1020.
    [217] Kennes C, Veiga MC. Inert filter media for the biofiltration of waste gases – characteristics and biomass control. Re/Views in Environmental Science & Bio/Technology, 2002, 1: 201-214.
    [218] Schroeder ED. Trends in application of gas-phase bioreactors. Re/Views in Environmental Science & Bio/Technology, 2002, 1: 65-74.
    [219] Thomas D, Penicot P, Contal P, et al. Clogging of fibrous filters by solid aerosol particles Experimental and modelling study. Chemical Engineering Science, 2001, 56:3549-3561.
    [220] Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study. Chemical Engineering Science, 2005, 60: 2751-2762.
    [221] Japuntich DA, Stenhouse JIT, Liu BYH. Experimental results of solid monodisperse particle clogging of fibrous filters. Journal of Aerosol Science, 1994, 25: 385-393.
    [222] Silva CRN, Negrini VS, Aguiar ML, et al. Influence of gas velocity on cake formation and detachment. Powder Technology, 1999, 10: 165-172.
    [223] Thomas D, Penicot P, Contal P, et al. Clogging of fibrous filters by solid aerosol particles. Experimental and modelling study. Chemical Engineering Science, 2001, 11: 3549-3561.
    [224] Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. Aerosol Science, 2004, 35: 263-278.
    [225] Cerdà J, Pou MN, Gállego L, et al. Economic importance of mirror carp (Cyprinus carpio var. specularis) release in agricultural irrigation ponds on the island of Majorca, Spain. Aquaculture, 1995, 129: 475-478.
    [226] De Kreij C, van der Burg AMM, Runia WT. Drip irrigation emitter clogging in Dutch greenhouses as affected by methane and organic acids. Agricultural Water Management, 2003, 60: 73-85.
    [227] Capra A, Scicolone B. Emitter and filter tests for wastewater reuse by drip irrigation. Agricultural Water Management, 2004, 68: 135-149.
    [228] Puig-Bargués J, Arbat G, Barragán J, et al. Hydraulic performance of drip irrigation subunits using WWTP effluents. Agricultural Water Management, 2005, 77(1-3): 249-262.
    [229] Capra A, Scicolone B. Recycling of poor quality urban wastewater by drip irrigation systems. Journal of Cleaner Production, 2007, 15(16): 1529-1534.
    [230] Kahlown MA, Kemper WD. Factors affecting success and failure of trickle irrigation systems inBalochistan, Pakistan. Irrigation Science, in press, DOI 10.1007/s00271-007-0073-0.
    [231] Sahin ü, Anapal? ?, D?nmez MF, et al. Biological treatment of clogged emitters in a drip irrigation system. Journal of Environmental Management, 2005, 76(4): 338-341.
    [232] 西北有色地质勘探公司. 陕西省华县金堆城钼矿露天矿水文地质及工程地质勘探报告.1986.
    [233] 王新. 金堆城钼矿区两类斑岩的识别. 硕士学位论文, 西安: 西北大学, 2001.
    [234] 刘寒鹏. 金堆城排废场人工填土高边坡动力稳定性研究. 硕士学位论文, 西安: 长安大学, 2003.
    [235] 陈庆发. 岩质深凹边坡松动岩体工程特性研究. 硕士学位论文, 武汉: 武汉理工大学, 2005.
    [236] 张紫昭. 金堆城东川河引水隧洞围岩稳定性研究. 硕士学位论文, 西安: 长安大学, 2006.
    [237] 张培安. 降低金堆城栗西尾矿库坝体浸润线的技术. 中国钼业, 2002, 26(3): 48-50.
    [238] 张培安. 栗西尾矿库挖潜改造延长服务期探讨. 矿业快报, 2004, 416: 36-37.
    [239] 张培安. 栗西尾矿库扩容方案研究. 矿业快报, 2005, 427: 48-50.
    [240] 郭振世,贺金刚. 栗西尾矿坝漏砂治理技术研究与实践. 中国钼业, 2007, 31(2): 6-10.
    [241] Rao SR, Finch JA, Kuyucak N. Ferrous-ferric oxidation in acidic mineral process effluents: comparison of methods. Minerals Engineering, 1995, 8(8): 905-911.
    [242] Tüfekci N, Sarikaya HZ. Catalytic effects of high Fe(III) concentrations on Fe(II) oxidation. Wat. Sci. Tech. 1996, 34(7-8): 389-396.
    [243] Tufekci N, Sarikaya HZ. Influence of ageing on the catalytic activity of ferric sludge for oxidation of Fe(II). Wat. Sci. Tech. 1998, 38(6): 129-137.
    [244] Lin R, Spicer RL, Tungate FL, et al. A study of the oxidation of ferrous hydroxide in slightly basic solution to produce γ-FeOOH. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996, 113: 79-96.
    [245] Das T, Panchanadikar VV, Chaudhury GR. Short communication: Bio-oxidation of iron using Thiobacillus ferrooxidans. World Journal of Microbiology & Biotechnology, 1998, 14: 297-298.
    [246] Hauck S, Benz M, Brune A, et al. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiology Ecology, 2001, 37: 127-134.
    [247] Meruane G, Vargas T. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0. Hydrometallury, 2003, 71: 149-158.
    [248] Park B, Dempsey BA. Heterogeneous Oxidation of Fe(II) on Ferric Oxide at Neutral pH and a Low Partial Pressure of O2. Environmental Science & Technology, 2005, 39: 6494-6500.
    [249] Willey JD, Whitehead RF, Kieber RJ, et al. Oxidation of Fe(II) in Rainwater. Enviro. Sci. Technol. 2005, 39: 2579-2585.
    [250] ASTM D2434-68. Standard test method for permeability of granular soils (constant head). American Society for Testing and Materials, West Conshohocken, PA., USA, 2000.
    [251] ASTM D2937. Standard Test Method for Density of Soil in Place by the Drive-CylinderMethod. American Society for Testing and Materials, West Conshohocken, PA., USA, 1994.
    [252] 李学垣. 土壤化学. 北京: 高等教育出版社, 2001.
    [253] 李韵珠, 李保国. 土壤溶质运移. 北京: 科学出版社, 1998.
    [254] Bear J. 李竞生, 陈崇希译. 多孔介质流体动力学. 北京: 中国建筑工业出版社, 1983.
    [255] 薛禹群. 地下水动力学原理. 北京: 地质出版社, 1986.
    [256] 仵彦卿. 多孔介质污染物迁移动力学. 上海: 上海交通大学出版社, 2007.
    [257] McWhorter D, Sunada D. Groud-Water Hydrology and Hydraulics. Water Resources Publications. Littleton, Colorado, USA, 1977.
    [258] Freeze RA, Cherry J. Groudwater. Prentice-Hall, Inc. Englewood Cliffs,New Jersy, 1979.
    [259] Wang CY, Wang CH, Kuo CH. Temporal change in groundwater level following the 1999(MW=7.5) Chi-Chi earthquake, Taiwan. Geofluids, 2004, 4: 210-220.
    [260] Engard BR, McElwee CD, Devlin R, Wachter B, Ramaker B. Hydraulic tomography and high-resolution slug testing to determine hydraulic conductivity distributions-Year 2 (Annual Report, SERDP-Strategic Environmental Research and Development Program Project # ER1367). The University of Kansas Department of Geology, 2006.
    [261] Chen BM, Kojouharov HV. Accurate numerical simulation of biobarrier formation in porous media. Proceedings of the 1998 Conference on Hazardous Waster Research, 1998, 224-240.
    [262] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用. 武汉: 武汉大学出版社, 2002.
    [263] 蒋传文. 电力负荷预报理论及新方法的研究——混沌理论及应用. 博士学位论文, 武汉: 华中理工大学, 2000.
    [264] Takens F. Determing strange attractors in turbulence. Lecture notes in Math, 1981, 898: 361-381.
    [265] 丁晶, 王文圣, 赵永龙. 长江日流量混沌变化特性研究——Ⅰ相空间嵌入滞时的确定. 水科学进展, 2003, 14(4): 407-411.
    [266] Edgar EP. Chaos and order in the capital markets. New York:John Wiley &Sons, Inc.1996.
    [267] 向小东, 郭耀煌. 基于混沌吸引子的时间序列预测方法及其应用. 西南交通大学学报, 2001, 36(5): 472-475.
    [268] 付昱华. 平移分形分析和预测月平均海面水温. 海洋预报, 1996, 13(2): 63-68.
    [269] 付昱华, 付安捷. 用分形方法预测石油股票价格和指数. 中国海洋平台, 2002, 17(6): 41-45.
    [270] Barnsley M F. Fractal functions and interpolation. Const. Approx, 1986(2): 303-329.
    [271] 申富饶, 王嘉松. 股票价格的一种线性分形预测方法. 南京大学学报(自然科学), 1999, 35(4): 396-401.
    [272] 高振会, 杨建强, 费立淑. 分形分析方法在海冰预测趋势中的应用. 海洋通报. 2003, 22(4): 66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700