太阳光球磁场特性与耀斑相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们以观测的光球磁场为基础,对磁场结构和演化进行了深入的研究。尤其是对和太阳耀斑等活动相关的光球磁场特性进行了比较细致的研究工作。如对太阳光球磁场非势性描述,包括磁场梯度,剪切,电流,磁场无力因子α,电流螺度,磁螺度等;或者构造磁荷或磁偶极等光球下磁源,研究光球上的磁拓扑结构;或者探索磁通量管的浮现和对消现象等。作者在第二章中对此作了较详细的介绍。
     太阳活动对地球环境有重大的影响。太阳上有各种各样的活动现象,如黑子、耀斑、日珥和日冕物质抛射等。太阳耀斑是日地空间环境的主要扰动源之一。对太阳耀斑现象的认识,物理机制的研究,以及耀斑的预报不仅是理解磁能储存和释放机制的必要手段,也是人们实现空间探索的现实需要。在第三章中,作者对太阳耀斑现象,耀斑模型,耀斑的动力学,耀斑预报等问题作了较细致的概述。
     太阳耀斑的能量来源于磁场。一般认为,活动区磁场的复杂性和非势性越强,耀斑出现的越频繁。在前人工作的基础上,作者进一步研究和探讨了描述磁场复杂性和非势性的物理量与太阳耀斑的相关性,具体工作如下(详见第四章和第五章):
     (1)采用1996年4月—2004年1月内MDI/SOHO的全日面纵向磁场数据,选取了包含870个活动区的23990张磁图,耀斑数据是在相应时段内的GOES观测资料。通过对大样本的统计分析,我们得到太阳耀斑产率与纵向磁场最大水平梯度,中性线长度,孤立奇点数目有密切正相关性。同级别的耀斑,产率随时间尺度增加而增大;同一时间尺度内,耀斑级别越低,产率越高。
     (2)通过分析怀柔1996年1月—2001年8月期间的对应554个活动区的1353张矢量磁图和在相应时段内GOES的耀斑观测资料,采用相同的统计分析方法,我们得到太阳耀斑产率同中性线上的强梯度长度Lg,强剪切长度Ls,强梯度强剪切长度Lgs,和总电流Itot,总电流螺度Htot存在正相关关系。
     (3)通过分析怀柔的矢量磁图我们还得到,相对Lg与Ls,太阳耀斑产率对Lgs的变化更为敏感。
     (4)太阳耀斑产率同这几个物理量的正相关关系均可以被Sigmoid函数很好的进行拟合,从而定量的描述了太阳耀斑产率随活动区磁场的非势性和复杂性的增加而增大。
     (5)纵向磁场最大水平梯度,中性线长度,孤立奇点之间有着较密切的相关关系,有可能有着同样的磁流体力学过程;强梯度和强剪切在中性线上的出现具有很强时间相关性,空间相关性很差。
     这些研究结果进一步确定了太阳光球磁场与太阳耀斑之间的密切关系。对于利用光球磁场特性进行耀斑预报提供了很好的参考。根据太阳耀斑产率同描述磁场非势性和复杂性的物理特征量间的相关性和Sigmoid拟合函数,我们能够利用这些物理量估计活动区在未来一定时间内的耀斑发生情况。
Based on the observations of solar photospheric magnetic fields, much studieshave been made on the magnetic structures and evolvements, especially on pho-tospheric magnetic properties related to solar eruptive activities such as promi-nences, flares, etc. In Chapter 2, the author focused on introducing these photo-spheric magnetic properties which include magnetic non-potentialities (magneticgradient, shear, current, free factorα, current helicity, magnetic helicity), mag-netic topological structures, and magnetic flux emergence and cancelation.Solar activities have important eflects on the solar-terrestrial space envi-ronment. Solar flares are one of the main disturbing sources. Learning theflare phenomena, studying the flare physical mechanism, and forecasting flaresare necessary not only to understand the magnetic energy storing and releasingmechanism in solar atmosphere but also to carry out space exploration missionsof humanity. In Chapter 3, the author made a detailed introduction on the flarephenomena, the flare models, the dynamics mechanism of flares, and the flareforecasting.
     It is widely believed that the releasing energy of solar flares comes from themagnetic fields. On the basis of the previous studies, the author made furthereflorts on the correlation between solar photospheric magnetic properties andflares. The main results are as follows:
     (1) during the time period from April 1996 to January 2004, the 23990 MDI/SOHOfull disk longitudinal magnetograms involving 870 active regions and theflare data observed by the GOES spacecraft are employed. Through astatistical analysis on the relationship of flare productivities with the max-imum horizontal gradient, the length of neutral line, and the number of singular points, several results are obtained: the flare productivity is posi-tively correlated with these three measures; the flare productivity becomeslarger in a longer time window; the higher X-ray class flare productivity isoften smaller than the lower X-ray class flare productivity.
     (2) during the time period from January 1996 to August 2001, 1353 vectormagnetograms observed at Huairou Solar Observing Station and the flaresdata from GOES spacecraft are used. By the same statistical method,we found that the flare productivity is also correlated with the length ofneutral lines with the strong gradient length Lg, the length of neutral lineswith the strong shear Ls, and the length of neutral lines with the stronggradient and shear Lgs, the total current Itot, and the total current helicityHtot.
     (3) solar flare productivity is more sensitive to Lgs than to Lg and Ls.
     (4) the correlation between these magnetic measures (mentioned above) and thesolar flare productivity can be well fitted by the sigmoid function, whichcan quantitatively describes the relationship between solar flares and themagnetic complexities and non-potentialities in active regions.
     (5) additionally, there are intimate relationships between the maximum horizon-tal gradient, the length of neutral line, and the number of singular points,which may be because they are the same MHD process. In the vicinities ofneutral lines, high gradient and strong shear are roughly coincident in timebut hardly in positions.
     These results further confirmed that solar flares have intimate relationshipwith magnetic fields, which suggest how to employ solar photospheric magneticfields to forecast flares. Based on the correlation between solar flare produc- tivity and these magnetic measures and the sigmoid fitting functions, the ?areproductivities in active regions can be estimated in the future period of time.
引文
[1] 王家龙,太阳活动及其影响―日地关系,90年代天体物理学(李启斌,李宗伟,汲培文编),北京:高等教育出版社,1996, 58.
    [2] Hale, G.E., Solar vortices and the zeeman e?ect, PASP, 1908, 20, 220-224.
    [3] Hale, G.E., Solar vortices (contributions from the mt. wilson solar observa-tory, no. 26), Astrophys. J., 1908, 28, 100-116.
    [4] Wang, J. and Shi, Z., The ?are-associated magnetic changes in an activeregion. II - Flux emergence and cancellation, Sol. Phys., 1993, 143, 119-139.
    [5] Nitta, N., van Driel-Gesztelyi, L., Leka, K.D., and Shibata, K., Emerging?ux and ?ares in NOAA 7260, Adv. Space Res., 1996, 17, 201-204.
    [6] Hagyard, M.J. and Rabin, D.M., Measurement and interpretation of mag-netic shear in solar active regions, Adv. Space Res., 1986, 6, 7-16.
    [7] Hagyard, M.J., Observed nonpotential magnetic fields and the inferred ?owof electric currents at a location of repeated ?aring 1988, Sol. Phys., 115,107-124.
    [8] Sakurai, T., Shibata, K., Ichimoto, K., Tsuneta, S., and Acton, L.W.,Flare-related relaxation of magnetic shear as observed with the Soft X-rayTelescope of YOHKOH and with vector magnetographs, Publ. Astron. Soc.Japan, 1992, 44, L123-L127.
    [9] Wang, H., Ewell, M.W., Zirin, H., et al., Vector magnetic field changesassociated with X-class ?ares, Astrophys. J., 1994, 424, 436-443.
    [10] Fontenla, J., Ambasta, A., Kalman, B., and Csepura, G., The magneticevolution of ar 6555 which led to two impulsive, relatively compact, X-type?ares, Astrophys. J., 1995, 440, 894-905.
    [11] Wang, T., Qiu, J., and Zhang, H., The study of magnetic field configurationof a 1N/M1.1 ?are in AR7321, Astron. Astrophys., 1998, 336, 359-366.
    [12] Shi, Z. and Wang, J., Delta-sunspots and X-class ?ares, Sol. Phys., 1994,149, 105-118.
    [13] Wang, H., Spirock, T.J., Qiu, J., Ji, H., Yurchyshyn, V., Moon, Y.-J., et al.,Rapid changes of magnetic fields associated with six X-class ?ares, Astro-phys. J., 2002, 576, 497-504.
    [14] Tian, L. and Liu, Y., Relationship between decrease of net magnetic ?uxand solar major events, Astron. Astrophys., 2003, 406, 337-344.
    [15] McIntosh, P.S., The classification of sunspot groups, Sol. Phys., 1990, 125,251-267.
    [16] Gallagher, P.T., Moon, Y.-J. and Wang, H., Active-region monitoring and?are forecasting I. data processing and first results, Sol. Phys., 2002, 209,171-183.
    [17] Sten?o, J.O., Solar magnetic fields: polarized radiation diagnostics, Boston:Kluwer Academic Publishers, 1994, p2.
    [18] Hale, G.E., The zeeman e?ect in the sun, PASP, 1908, 20, 287-288.
    [19] Hale, G.E., On the probable existence of a magnetic field in sun-spot, As-trophys. J., 1908, 28: 315-343.
    [20] 艾国祥,胡岳风,太阳磁场望远镜的工作原理,天文学报,1986,26,173―180.
    [21] 苏江涛,博士论文:太阳矢量磁场测量,2004,中国科学院国家天文台.
    [22] Sakurai, T., Ichimoto, K., Nishino, Y., et al., Solar ?are telescope at Mitaka.PASJ, 1995, 47, 81-92.
    [23] Mosher, J., BBSO, preprint, 1976, 0159.
    [24] Zirin, H., Evolution of weak solar magnetic fields, Austalian J. Phys., 1985,38, 961-969.
    [25] Hagyard, M.J., Cumings, N.P., West, E.A., et al., The MSFC vector mag-netograph, Sol. Phys., 1982, 80, 33-51.
    [26] Mickey, D., The Haleakala stokes polarimeter, Sol. Phys., 1985, 97, 223-238.
    [27] Grigoryev, V.M., Osak, B.F., Kobanov, N.I., et al., A solar telescope foroperative predictions/stop, Issled. Geo. Aero. fiz. Solnsta, 1981, 56, 129.
    [28] 林元章,太阳物理导论,北京:科学出版社,2000.
    [29] Krall, K.R., Smith, J.B., Hagyard, M.J., West, E.A, Cumings, N.P., Vec-tor magnetic field evolution, energy storage, and associated photosphericvelocity shear within a ?are-productive active region, Sol. Phys., 1982, 79,59-75.
    [30] Tanaka, K., Studies on a very ?are-active delta group - Peculiar delta SPOTevolution and inferred subsurface magnetic rope structure, Sol. Phys., 1991,136, 133-149.
    [31] Low, B.C, Nakagawa, Y., Dynamics of solar magnetic fields. VI, Astrophys.J., 1975, 199, 237-246.
    [32] Sakurai, T., Magnetic field structures and ?ares, Adv. Space Res., 1993,13(9), 109-117.
    [33] Zirin, H. and Tanaka, K., The ?ares of august 1972, Sol. Phys., 1973, 32,173-207.
    [34] Hagyard, M.J., Smith, J.B.Jr., Teuber, D., West, E.A., A quantitative studyrelating observed shear in photospheric magnetic fields to repeated ?aring,Sol. Phys., 1984, 91, 115-126.
    [35] Hagyard, M.J., The significance of vector magnetic field measurements,Mem. Soc. Astron. Italiana, 1990, 61(2), 337-357.
    [36] Wang, H., Evolution of vector magnetic fields and the August 27 1990 X-3?are, Sol. Phys., 1992, 140, 85-98.
    [37] Lu, Y.P., Wang, J.X., and Wang, H.N., Shear angle of magnetic fields, Sol.Phys., 1993, 148, 119-132.
    [38] Chen, J., Wang, H., Zirin, H., et al., Observations of vector magnetic fieldsin ?aring active regions, Sol. Phys., 1994, 154, 261-273.
    [39] Wang, J., Development of magnetic shear, Sol. Phys., 1994, 155, 285-300.
    [40] Zhang, H.Q., Ai, G., Yan, X., Li, W., and Liu, Y., Evolution of vectormagnetic field and white-light ?ares in a solar active region (noaa 6659) in1991 june, Astrophys. J., 1994, 423, 828-846.
    [41] Zhang, H., Magnetic shear of a large delta sunspot group (NOAA 6659) inJune 1991, Astron. Astrophys., 1995, 297, 869-880.
    [42] Wang, J., Shi, Z., Wang, H., and Lu¨, Y., Flares and the magnetic nonpo-tentiality, Astrophys. J., 1996, 456, 861-878.
    [43] Gary, G.A., Rendering three-dimensional solar coronal structures, Sol.Phys., 1997, 174, 241-263.
    [44] Severny, A. B., Bumba, V., On the penetration of solar magnetic fields intothe chromosphere, The Observatory, 1958, 78, 33-35.
    [45] Moreten, G.E., Severny, A.B., Magnetic fields and ?ares in the region cmp20 september 1963, Sol. Phys., 1968, 3, 282-297.
    [46] Lin,Y.Z., Gaizauskas, V., Coincidence between H-alpha ?are kernels andpeaks of observed longitudinal electric current densities, Sol. Phys., 1987,109, 81-90.
    [47] Romanov, V A., Tsap, T. T., Magnetic fields and ?are activity, Soviet As-tron., 1990, 34, 656-660.
    [48] Canfield, R.C., de La Beaujardiere, J.-F., Fan, Y.H., et al., The morphologyof ?are phenomena, magnetic fields, and electric currents in active regions.I. Introduction and methods, Astrophys. J., 1993, 411, 362-369.
    [49] van Driel-Gesztelyi, L., Hofmann, A., Demoulin, P., Schmieder, B., andCsepura, G., Relationship between electric currents, photospheric motions,chromospheric activity, and magnetic field topology, Sol. Phys., 1994, 149,309-330.
    [50] Wang, T.J., Xu, A., and Zhang, H.Q., Evolution of vector magnetic fieldsand vertical currents and their relationship with solar ?ares in AR 5747, Sol.Phys., 1994, 155, 99-112.
    [51] Zhang, H.Q., Spatial configuration of highly sheared magnetic structures inactive region (noaa 6659) in 1991 June, Astrophys. J., 1996, 471, 1049-1057.
    [52] Wang, H.M., Tang, F., Zirin, H., et al., The velocities of intranetwork andnetwork magnetic fields, Sol. Phys., 1996, 165, 223-235.
    [53] Li, W., Chik-Yin, Lee., Chae, J., et al., Magnetic fields and solar processes,ed. A. Wilson, ESA SP Series, 1999, 448, p169.
    [54] Zhang, H.Q., Electric current and magnetic shear in solar active regions,Astrophys. J., 2001, 557, L71-L74.
    [55] Falconer, D.A., A prospective method for predicting coronal mass ejectionsfrom vector magnetograms, J. Geophys. Res., 2001, 106, 25, 185-25, 190.
    [56] Falconer, D.A., Moore, R.L., and Gary, G.A., Correlation of the coronalmass ejection productivity of solar active regions with measures of theirglobal nonpotentiality from vector magnetograms: baseline results, Astro-phys. J., 2002, 569, 1016-1025.
    [57] Falconer, D.A., Moore, R.L., and Gary, G.A., A measure from line-of-sightmagnetograms for prediction of coronal mass ejections, J. Geophys. Res.,2003, 108(A10), 1380-1385.
    [58] Wang, H., Song, H., Jing, j., Yurchyshyn, V., Deng, Y., Zhang, H., Fal-coner, D., and Li, J., Population synthesis for the symbiotic stars withmain-sequence accretors, Chin. J. Astron. Astrophys., 2006, 6, 477-454.
    [59] Berger, M.A. and Field, C.B., The topological properties of magnetic helic-ity, J. Fluid Mech., 1984, 147, 133-148.
    [60] Wolijer, J., Theorem on force-free magnetic fields, Proc. Nat. Acad. Sci.USA, 1958, 44, 489-491.
    [61] Ji, H., Prager, S.C., and SarfL J.S., Conservation of magnetic helicity duringplasma relaxation, Phys. Rev. Let., 1995, 74, 2945-2948.
    [62] Taylor, J.B., Relaxation of toroidal plasma and generation of reverse mag-netic fields, Phys. Rev. Let., 1974, 33, 1139-1141.
    [63] Taylor, J.B., Relaxation and magnetic reconnection in plasmas, Rev. Mod.Phys., 1986, 58, 741-763.
    [64] Zhang, M. and Low, B.C., The hydromagnetic nature of solar coronal massejections, Annu. Rev. Astron. Astrophys., 2005, 43(1), 103-137.
    [65] Low, B.C., Solar activity and the corona, Sol. Phys., 1996, 167, 217-265.
    [66] Carbone, V., Bruno, R., Sign singularity of the magnetic helicity from insitu solar wind observations, Astrophys. J., 1997, 488, 482-487.
    [67] Seehafer, N., Electric current helicity in the solar atmosphere, Sol. Phys.,1990, 125, 219-232.
    [68] Pevtsov, A.A., Canfield, R.C., Metcalf, T.R., Latitudinal variation of helic-ity of photospheric magnetic fields, Astrophys. J. Let., 1995, 440, 109-112.
    [69] Abramenko, V. I., Wang, T. J., Yurchishin, V. B., Analysis of Electric Cur-rent Helicity in Active Regions on the Basis of Vector Magnetograms, Sol.Phys., 1996, 168, 75-89.
    [70] Bao, S.D., Zhang, H.Q., Patterns of current helicity for the twenty-secondsolar cycle, Astrophys. J. Let., 1998, 496, L43-L46.
    [71] Longcope, D.W., Fisher, G.H., and Pevtsov, A.A., Flux-tube twist resultingfrom helical turbulence: the sigma-e?ect, Astrophys. J., 1998, 507, 417-432.
    [72] Devore, C.R., Magnetic helicity generation by solar di?erential rotation,Astrophys. J., 2000, 539, 944-953.
    [73] Demoulin, P., Mandrini, C. H., Driel-Gesztelyi, L., et al., What is the sourceof the magnetic helicity shed by CMEs? The long-term helicity budget ofAR 7978, Astron. Astrophys., 2002, 382, 650-665.
    [74] Jongchul, C., Observational determination of the rate of magnetic helicitytransport through the solar surface via the horizontal motion of field linefootpoints, Astrophys. J., 2001, 560, L95-L98.
    [75] Zhang, H.Q., Bao, S.D., Latitudinal distribution of photospheric currenthelicity and solar activities, Astron. Astrophys., 1998, 339, 880-886.
    [76] Zhang, H.Q., Bao, S.D., Distribution of photospheric electric current helicityand solar activities, Astrophys. J., 1999, 519, 876-883.
    [77] Bao, S.D., Zhang, H.Q., Ai, G.X., Zhang, M., A survey of ?ares and currenthelicity in active regions, Astron. Astrophys. Suppl. Ser., 1999, 139, 311-320.
    [78] Sweet, P.A., Mechanisms of solar ?ares, Arastron. Astrophys., 1969, 7, 149-176.
    [79] Seehafer, N., On the magnetic field line topology in solar active regions, Sol.Phys., 1986, 105, 223-235.
    [80] Baum, P.J., Bratenahl, A., Flux linkages of bipolar sunspot groups - Acomputer study, Sol. Phys., 1980, 67, 245-258.
    [81] Gorbachev, V.S., Somov, B.V. Photospheric vortex ?ows as a cause for two-ribbon ?ares - a topological model, Sol. Phys., 1988, 117, 77-88.
    [82] Demoulin, P., Henoux, J.C., Mandrini, C.H., Development of a topologicalmodel for solar ?ares, Sol. Phys., 1992, 139, 105-123.
    [83] Mandrini, C.H., et al., Constraints on ?are models set by the active regionmagnetic topology magnetic topology of AR 6233, Astron. Astrophys., 1995,303, 927-939.
    [84] Priest,E.R., Demoulin, P., Three-dimensional magnetic reconnection with-out null points. 1. Basic theory of magnetic ?ipping, J. Geophys. Res., 1995,100(A12), 23443-23464.
    [85] Demoulin, P., Henoux, J. C., Priest, E. R., et at., Quasi-separatrix layers insolar ?ares. I. method, Astron. Astrophys., 1996, 308, 643-655.
    [86] Mandrini, C. H., et at., Evidence of magnetic reconnection from Hα, softX-ray and photospheric magnetic field observations, Sol. Phys., 1997, 174,229-240.
    [87] Wang, H.N. and Wang, J., Two-dimensional magnetic singular points and?ares in solar active regions, Astron. Astrophys., 1996, 313, 285-296.
    [88] Wang, H.N., Distribution of 2-D magnetic saddle points and morphology of?are kernels in solar active regions, Sol. Phys., 1997, 174, 265-279.
    [89] Wang, T.J., Wang, H.N., Qiu, J., Two-dimensional singular points in anobserved transverse field in solar active region NOAA 7321, Astron. Astro-phys., 1999, 342, 854-862.
    [90] Rust, D.M., Nakagawa, Y., and Neupert, W.M., EUV emission, filamentactivation and magnetic fields in a slow-rise ?are, Sol. Phys., 1975, 41, 397-414.
    [91] Parker, E.N., Hydromagnetic dynamo models, Astophys. J., 1955, 122, 293-314.
    [92] Babcock, H.W., The topology of the sun’s magnetic field and the 22-yearcycle, Astrophys. J., 1961, 133, 572-587.
    [93] Leighton, R.B., ON the absorption spectrum of ton 1530, Astophys. J., 1969,156, 1-5.
    [94] Parker, E.N., Cosmical magnetic fields: their origin and their activity, NewYork: Oxford, 1979.
    [95] Rosner, R., Stellar coronae-interpretation and modeling of stellar activity,in A.K. Dupree(ed), Cool stars, stellar systems, and the sun, 1980, p79.
    [96] Spiegel, E.A. and Weiss, N.O., Magnetic activity and variations in solarluminosity, Nature, 1980, 287, 616-617.
    [97] Golub, L., Rosner, R., Valanna, G.S., and Weiss, N.O., Solar magneticfields-the generation of emerging ?ux, Astrophys. J., 1981, 243, 309-316.
    [98] Gilman, P.A., Morrow, C.A., and Deluca, E.E., Angular momentum trans-port and dynamo action in the sun-Implications of recent oscillation mea-surements, Astrophys. J., 1989, 338, 528-537.
    [99] Parker, E.N., Magnetic monopole plasma oscillations and the survival ofgalactic magnetic fields, Astophys. J., 1987, 321, 349-354.
    [100] Parker, E.N., The dynamical oscillation and propulsion of magnetic fieldsin the convective zone of a star. II. Thermal shadows, Astophys. J., 1987,321, 984-1008.
    [101] Parker, E.N., The dynamical oscillation and propulsion of magnetic fieldsin the convective zone of a star. III. Accumulation of heat and the onset ofthe reyleigh-taylor instability, Astophys. J., 1987, 321, 1009-1030.
    [102] Chou, D.Y. and Fisher, G.H., Dynamics of anchored ?ux tubes in theconvection zone. I. Details of the model, Astrophys, J., 1989, 341, 533-548.
    [103] Vorpahl, J.A., Flares associated with EFRs (energing ?ux regions), Sol.Phys., 1973, 28, 115-122.
    [104] Priest, E.R., Forbes, T.G., New models for fast steady state magnetic re-connection, J. Geophys. Res, 1986, 91, 5579-5588.
    [105] Bumba, V., Magnetic field and photospheric development of a particularsunspot group from June 1963, Bull. Astron. Inst. Czechosl. 1986, 37, 281-291.
    [106] Heyvaerts, J., et al., Azimuthal brightness variations of Saturn’s rings. II.Observations at an intermediate tilt angle, Astrophys. J., 1977, 216, 123-126.
    [107] Rust, D.M. and Kumar, A., Helical magnetic fields in filaments, Sol. Phys.,1994, 155, 69-97.
    [108] Lites, B.W. and Low, B.C., Flux emergence and prominences: a new sce-nario for 3-D field geometry based on observations with the advanced stokespolarimeter, Sol. Phys., 1997, 174, 91-98.
    [109] Martin, S.F., Dynamic signatures of quiet sun magnetic fields, Prodeed-ings of the symposium on small-scale dynamical processes in quiet stelleratmosphere, in S.L., keil (ed.), sunspot, New, Mexico, USA, 1984, p30.
    [110] Livi, S.H.B., Wang J.X., Marin S.F., The cancellation of magnetic ?ux. I.On the quiet sun, Sol. Phys., 1985, 38, 855-873.
    [111] Wang, J.X., Zirin, H., Shi, Z.X., The smallest observable elements of mag-netic ?ux, Sol. Phys., 1985, 98, 241-253.
    [112] Martin, S.F., Livi, S.H.B, Wang, J.X., The cancellation of magnetic ?ux.II - In a decaying active region, Australian J. Phys. 1985, 38, 929-959.
    [113] Wang, J.X, Shi Z.X., Marin S.F., and Livi, S.H.B., The cancellation ofmagnetic ?ux on the quiet sun, Vista in Astronomy, 1988, 31, 79-83.
    [114] Livi, S.H.B, Martin, S.F., Wang, H., Ai, G.X., The association of ?ares tocancelling magnetic features on the sun, Sol. Phys., 1989, 121, 197-214.
    [115] Wang, J.X. and Shi, Z.X, Presented at the first China-Japan seminar onsolar physics, Yunnan, China, 1991.
    [116] Wang, J.X. and Zirin, H., Flows around sunspots and pores, Sol. Phys.,1992, 140, 41-54.
    [117] Demoulin, P., Henoux, J.C., Mandrini, C.H., et al., Can we extrapolate amagnetic field when its topology is complex? Sol. Phys., 1997, 174, 73-89.
    [118] McClymont, A.N., Jiao, L.M., Mikic, Z., Problems and progress in comput-ing three-dimensional coronal active region magnetic fields from boundarydata, Sol. Phys., 1997, 174, 191-218.
    [119] Sakurai, T., Calculation of force-free magnetic field with non constant al-pha, Sol. Phys., 1981, 69, 343-359.
    [120] Amari, T., Aly, J.J., Luciani, J.J., et al., Reconstructing the solar coronalmagnetic field as a force-free magnetic field, Sol. Phys., 1997, 174, 129-149.
    [121] Wu S.T., Sun, M.T., Chang, H.M., et al., On the numerical computationof nonlinear force-free magnetic fields, Astrophys. J., 1990, 362, 698-708.
    [122] Mikic, Z., McClymont, A.N., Deducing coronal magnetic fields from vectormagnetograms, Astron. Soc. Pac. Conf. Ser., 1994, 68, 225-232.
    [123] Roumeliotis G., The “stress-and-relax” method for reconstructing the coro-nal magnetic field from vector magnetograph data, Astrophys. J., 1996, 473,1095-1103.
    [124] Yan, Y.H., Sakurai. T., Analysis of it YOHKOH SXT coronal loops andcalculated force-free magnetic field lines from vector magnetograms, Sol.Phys., 1997, 174, 65-71.
    [125] Brebbia, C.A., Telles, J.C.F., Wrobel, L.C., Boundary element techniques:Theory and applications in engineering, Berlin and New York, Springer-Verlag, 1984, p478.
    [126] Yan, Y.H., Yu, Q., Shi, H., In:Kane J.H. et al., eds.Advances in boundaryelement techniques, Berlin: Springer-Verlag, 1993, 447.
    [127] Waldmeier, M., Publ. Zurich Obs., 1947, 9, 1.
    [128] Kiepenheuer, K.O., Solar activity, Chicago: The University of ChicagoPress, 1953, p322.
    [129] Mannder, E.W., The sun and sun-spots, 1820-1920, Mon. Not. Roy. Astron.Soc., 1922, 82, 534-543.
    [130] Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H., The magnetic polarityof sun-spots, Astrophys. J., 1919, 49, 153-178.
    [131] Wang, Y.M. and Sheeley, N.R.Jr., Average properties of bipolar magneticregions during sunspot cycle 21, Sol. Phys., 1989, 124, 81-100.
    [132] 刘伟,硕士论文:磁对消、磁浮现与日珥动力学的研究,2000,中国科学技术大学.
    [133] Kippenhahn, R. and Schlu¨ter, A., Eine theorie der solaren filamente. Mit7 Textabbildungen, Z. Astrophys., 1957, 43, 36-62.  
    [134] Kuperus, M. and Raadu, M.A., The support of prominences formed inneutral sheets, Astron. Astrophys., 1974, 31, 189-193.
    [135] 王水,李波,赵寄昆,日冕物质抛射,天文学进展,2000,18,192.
    [136] 宋 丽 敏,张 军,杨 志 良 等,对 地 日 冕 物 质 抛 射 研 究,天 文 学 进展,2002,20(1),33-44.
    [137] Hundhausen, A.J., Sizes and locations of coronal mass ejections - SMM ob-servations from 1980 and 1984-1989, J. Geophys. Res., 1993, 98(17), 13,177-13,200.
    [138] Munro, R.H., Gosling, J.T., Hiltner, E., et al., The association of coronalmass ejection transients with other forms of solar activity. Sol. Phys., 1979,61, 201-215.
    [139] Webb, D.F., Hundhausen, A.J., Activity associated with the solar origin ofcoronal mass ejections, Sol. Phys., 1987, 108, 383-401.
    [140] Sheeley, N.R.Jr., Howard, R.A., Koomen, M.J., et al., Associations betweencoronal mass ejections and soft X-ray events, Astrophys. J., 1983, 272, 349-354.
    [141] Zhou, G.P., Wang, J.X., Cao, Z.L., Correlation between halo coronal massejection and solar surface activity, Astron. Astrophys., 2003, 397, 1057-1067.
    [142] 王家龙,太阳耀斑的观测性质,天文学进展,1992,10(1), 3-10.
    [143] Hasegawa, A., Plasma instabilities and nonlinear e?ect, Physics and Chem-istry in Space, Berlin: Springer, 1975, p134.
    [144] Wang, J.L., Relaxation of twisted magnetic field in solar ?are prominece,Scientia Sinica (Scice in China), 1985, Series A, XXVIII(12),1308-1316.
    [145] Gold, T. and Hoyle, F., On the origin of solar ?ares. Mon. Not. Roy. Astron.Sec., 1960, 120, 89-105.
    [146] Sakai, J.I. and Ohsawa, Y., High-energy ?are explosions driven by 3-dimensional X-type current loop coalescence, Space Sci. Rev., 1987, 46,113-198.
    [147] Sakai, J.I. and de Jager, C., High-energy ?are explosions driven by 3-dimensional X-type current loop coalescence, Sol. Phys., 1991, 134, 329-352.
    [148] Inda-Koide, M., Sakai, J.I., Koide, S., et al., YOHKOH SXT/HXT ob-servations of a two-loop interaction solar ?are on 1992 December 9, Publ.Astro. Soc. Japan, 1992, 47, 323-330.
    [149] De Jager, C., Inda-Koide, M., Koide, S., et al., Ongoing partial reconnec-tion in a limb ?are, Sol. Phys., 1995, 158, 391-394.
    [150] Chargeishvili, B., Zhao, J., Sakai, J.I., Dynamics of the physical state dur-ing two-current-loop collisions, Sol. Phys., 1993, 145, 297-315.
    [151] Shimizu, T., Tsuneta, S., Acton, L.W., et al. Morphology of active regiontransient brightenings with the YOHKOH soft X-ray telescope, Astrophys.J., 1994, 422, 906-911.
    [152] Carmichael, H., in WN. Hess, ed., A Process for Flares, AAS-NASA sym-posium on physics of solar ?ares, NASA SP-50, Washington D.C., 1964,p451.
    [153] Sturrock, P.A., Model of the high-energy phase of solar ?ares, Nature, 1966,211, 695-697.
    [154] Sturrock, P.A., A model of solar ?ares, Structure and Development of SolarActive Regions, IAU Symp. no. 35 held in Budapest, Hungary, 4-8 September1967, 1968, p471.
    [155] Hirayama, T., Theoretical Model of ?ares and prominences. I. Evaporating?are model, Sol. Phys., 1974, 34, 323-338.
    [156] Kopp, R.A. and Pneuman, G.W., Magnetic reconnection in the corona andthe loop prominence phenomenon, Sol. Phys., 1976, 50, 85-98.
    [157] Heyvaerts, J., Priest, E.R., Rust, D.M., Azimuthal brightness variations ofSaturn’s rings. II. Observations at an intermediate tilt angle, Astrophys. J.,1977, 216, 123-126.
    [158] Velusamy, T., Kundu, M.R., VLA observations of the evolution of a solarburst source structure at 6 centimeter wavelength, Astrophys. J., 1982, 258,388-392.
    [159] 丁明德,太阳耀斑研究进展和展望,天文学进展,2001,19(2),141.
    [160] Gan, W.Q., Cheng, C.C., Fang, C., On thermal hydrodynamical modelsof solar ?ares with a high initial coronal density, Astrophys. J., 1995, 452,445-450.
    [161] Fisher, G.H., Dynamics of ?are-driven chromospheric condensations., As-trophys. J., 1989, 346, 1019-1029.
    [162] Hori, K., Yokoyama, T., Kosugi, T., et al., Pseudo-two-dimensional hydro-dynamic modeling of solar ?are loops, Astrophys. J., 1997, 489, 426-441.
    [163] Hori, K., Yokoyama, T., Kosugi, T., et al., Single and multiple solar ?areloops: hydrodynamics and Ca XIX resonance line emission, Astrophys. J.,1998, 500, 492-506.
    [164] Abbett, W.P., Hawley, S.L., Dynamic models of optical emission in impul-sive solar ?ares, Astrophys. J., 1999, 521, 906-919.
    [165] Emslie, A. G., Mariska, J.T., Montgomery, M.M., et al., Hydrodynamicmodeling of the response of the solar atmosphere to bombardment by abeam of nonthermal protons, Astrophys. J., 1998, 498, 441-447.
    [166] Yokoyama, T., Shibata, K., Magnetic reconnection coupled with heat con-duction, Astrophys. J., 1997, 474, 61-64.
    [167] Yokoyama, T., Shibata, K., A two-dimensional magnetohydrodynamic sim-ulation of chromospheric evaporation in a solar ?are based on a magneticreconnection model, Astrophys. J., 1998, 494, 113-116.
    [168] Chen, P.F., Fang, C., Tang, Y.H., et al., Simulation of magnetic reconnec-tion with heat conduction, Astrophys. J., 1999, 513, 516-523.
    [169] Chen, P.F., Fang, C., Ding, M.D., et al., Flaring loop motion and a unifiedmodel for solar ?ares, Astrophys. J., 1999, 520, 853-858.
    [170] Magara, T., Shibata, K., Yokoyama, T., Evolution of eruptive ?ares. I.Plasmoid dynamics in eruptive ?ares, Astrophys. J., 1997, 487, 437-446.
    [171] Magara, T., Shibata, K., Evolution of eruptive ?ares. II. The occurrence oflocally enhanced resistivity, Astrophys. J., 1999, 514, 456-471.
    [172] 焦维新,空间天气学,北京:气象出版社,2003,247-248.
    [173] Jakimiec M., Kovacs, A., Problem of short-term prediction of solar ?areactivity V. spatial consistence between hard X-ray enhancement and strongX-ray appearance, Acta Astronomica, 1990, 40, 305-311.
    [174] Giovanelli, R.G., The relations between eruptions and sunspots, Astrophys.J., 1939, 89, 555-567.
    [175] 张桂清,王家龙,李德清,短期X射线耀斑预报方案的详细介绍,地球物理学进展,1994,9,48-53.
    [176] Leka, K.D. and Barnes, G., Photospheric magnetic field properties of ?ar-ing versus ?are-quiet active regions. I. Data, general approach, and sampleresults, Astrophys. J., 2003a, 595, 1277-1295.
    [177] Leka, K.D. and Barnes, G., Photospheric magnetic field properties of ?ar-ing versus ?are-quiet active regions. II. Discriminant analysis, Astophys. J.,2003b, 585, 1296-1306.
    [178] Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G.,Schou, J., et al., The solar oscillations investigation - Michelson dopplerimager, Sol. Phys., 1995, 162, 129-188.
    [179] Zirin, H. and Wang, H., Strong transverse fields in delta-spots, Sol. Phys.,1993, 144, 37-43.
    [180] Tian, L., Wang, J., and Wu, D., Non-potentiality of the magnetic fieldbeneath the eruptive filament in the Bastille event, Sol. Phys., 2002, 209,375-389.
    [181] Zirin, H. and Liggett, M.A., Delta spots and great ?ares, Sol. Phys., 1987,113, 267-281.
    [182] Zirin, H., Astrophysics of the sun, Cambridge Unive. Press., 1988.
    [183] Gary, G.A. and Hagyard, M.J., Transformation of vector magnetiogramsand the problems associated with the e?ects of perspective and the azimuthalambigity, Sol. Phys., 1990, 126, 21-36.
    [184] Sweet, P.A., Nuovo Cimento Suppl., 1958, 8(X), 188.
    [185] Baum, P.J., Bratenahl, A., Crockett, G., and Kamin, G., Magnetic ?ux ofcolinear bipolar SPOT pairs, Sol. Phys., 1979, 62, 53-67.
    [186] Gorbachev, V.S. and Somov, B.B., Solar ?ares of 1980NOV5 as the resultof magnetic reconnection at a separator, Soviet Astron., 1989, 33(1), 57-60.
    [187] Mandrini, C.H., D′emoulin, P., H′enoux, J.C., and Machado, M.E., Evidencefor the interaction of large scale magnetic structures in solar ?ares, Astron.Astrophys., 1991, 250, 541-547.
    [188] Mandrini, C.H., Rovira, M.G., D′emoulin, P., H′enoux, J.C., Machado,M.E., and Wilkinson, L.K., Evidence for magnetic reconnection in large-scale magnetic structures in solar ?ares, Astron. Astrophys., 1993, 272, 609-620.
    [189] Demoulin, P., van Driel-Gesztelyi, L., Schmieder, B., H′enoux, J.C.,Csepura, G., and Hagyard, M.J., Evidence for magnetic reconnection insolar ?ares, Astron. Astrophys., 1993, 271, 292-307.
    [190] Demoulin, P., Henoux, J.C. , and Mandrini, C.H., Are magnetic null pointsimportant in solar ?ares ? Astron. Astrophys., 1994, 285, 1023-1037.
    [191] Demoulin, P., Mandrini, C.H., Henoux, J.C., and Machado, M.E., Inter-pretation of multiwavelength observations of November 5, 1980 solar ?aresby the magnetic topology of AR 2766, Sol. Phys., 1994, 150, 221-243.
    [192] Zhang, C.X. and Wang, J., Active magnetic interfaces and ?ares inNoaa7469, Sol. Phys., 2002, 205, 303-323.
    [193] Arnold, V.I., Ordinary di?erential equations, MIT: Cambridge, Mas-sachusetts, 1973.
    [194] Berger, T.E. and Lites, B.W., Weak-field magnetogram calibration usingadvanced stokes polarimeter ?ux density maps. II. SOHO/MDI full-diskmode calibration, Sol. Phys., 2003, 213, 213-229.
    [195] Marko, L., Curve fitting made easy, The Industrial Physicist, 2003, 9(2),24.
    [196] Schmieder, B., Hagyard, M. J., Ai, G.X., Zhang, H.Q., Kalman, B., Gyori,L., Rompolt, B., Demoulin, P., Machado, M.E., Relationship between mag-netic field evolution and ?aring sites in AR 6659 in June 1991, Sol. Phys.,1994, 150, 199-219.
    [197] Lin, Y.Z., Wei, X.L., and Zhang H.Q., Variations of magnetic fields andelectric currents associated with a solar ?are, Sol. Phys., 1993, 148, 133-138.
    [198] Ai, G.X., Li, W., Zhang, H.Q., Formation of the Fe I 5324.19 line in thesun and theoretical calibration of solar magnetic telescope, Chin. Astron.Astrophys., 1982, 6(2), 129-136.
    [199] Zhang, H.Q., Analysis of the transverse magnetic field in solar active regionsby the Huairou vector magnetograph, Sol. Phys., 2000, 197(2), 235-251.
    [200] Su, J.T. and Zhang, H.Q., Calibration of vector magnetogram with the non-linear least-squares fitting technique, Chin. J. Astron. Astrophys., 2004, 4,365-375.
    [201] Wang, H.N., Yan Y., and Sakurai, T., Topology of magnetic field andcoronal heating in solar active regions, Sol. Phys., 2001, 201, 323-336.
    [202] Michard, R., Solar magnetic fields in association with ?ares, IAU Symp,1971, 43, 359-366.
    [203] Moore, R. and Rabin, D., Sunspots, Ann. Rev. Astron. Astrophys., 1985,23, 239-266.
    [204] Zhang, H.Q., Magnetic field, helicity and the 2000 July 14 ?are in solaractive region 9077, Mon. Not. Roy. Astron. Soc., 2002, 332, 500-512.
    [205] Abramenko, V. I. Relationship between magnetic power spectrum and ?areproductivity in solar active regions, Astrophys. J., 2005, 629, 1141-1149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700