无序介质的中红外光子局域化和Z-扫描技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对中红外材料的特点,建立了三类无序介质的中红外光子局域化理论;针对测量材料三阶光学非线性系数的Z-扫描技术的应用实际,研究了具有大的非线性吸收材料的Z-扫描透过率曲线特征;系统地研究了光阑孔径对Z-扫描透过率曲线轮廓的定量影响。本论文在科学与专门技术方面都取得了一些有创造性的成果,现摘要如下:
     首先,选取了几种高折射率的中红外材料和中红外透明基质材料,并建议使用它们和其它一些从未使用过的材料来进行光子局域化研究,突破了“锗(Ge)是进行光子局域化实验的最佳材料”的传统观念:对中红外无序光学介质进行了探索性地科学分类,并避开了高浓度散射体情况下使用的众多复杂且不成熟的理论模型,基于精确的米氏(Mie)散射理论和低浓度散射体近似,探讨了更有实际意义的低浓度散射体的无序光学介质的光子局域化问题。
     其次,在建立第一类无序介质(散射体为无损耗的高折射率电介质球)的中红外光子局域化理论中,发现在散射体与基质的折射率比大于3.1时,单粒子各向异性散射因子在米氏散射共振峰附近出现有利于光子局域化的负值区,突破了米氏共振散射均为前向散射的传统物理观念。计算发现,当散射体浓度为10%,相对折射率大于3.8时开始出现理想的光子局域化。继而,又提出了散射体平均等效散射截面饱和的假设,研究了此假设导致的实现理想光子局域化的困难性。
     第三,在建立第二类无序光学介质(散射体为反常色散电介质球)的中红外光子局域化理论中,通过数值法研究发现,在某些反常色散电介质球做散射体的无序介质中可以实现一定意义下(有一定的吸收)的光子局域化,且频率位于各自的剩余射线带内。研究还发现,基质的折射率效应在第二类无序介质中和在第一类无序介质中的作用完全不同。
     第四,在建立第三类无序介质(散射体为良导体—金属球)的中红外光子局域化理论中,作者发现,各种金属在中红外区的各个频率点上的散射行为均极为相近,是一种在中红外区反照率高但散射效率较低的散射体;在浓度为10%时,该类介质的局域化参量最小只能达到6.6,几乎不可能实现真正的中红外光子局域化。数值法与解析法研究还揭示了这种金属散射体系统与低吸收、高折射率散射体系统(第一类无序光学介质)间的内在联系,而且基质的折射率效应与第一、第二类无序介质均不同,即体系局域化参量与体系的常用基质材料无关。
     第五,在研究大的非线性吸收材料的Z-扫描实验曲线特征时,作者发现,常见的峰-谷或谷-峰结构特征取决于材料的三阶非线性极化率的虚部与实部的比值ρ,并且提出了“决定峰-谷或谷-峰结构存在与否的临界值ρ_c”的概念。作者求得了高斯
    
    光束情况下的精确临界值,以及曲线的某些特征参量与上述比值的关系和理论的适
    用范围,所做的CS。的乙扫描实验与理论符合得很好。同时,本文还对“逐点相除
    法”求非线性折射相移的合理性进行了论证。
     第六,在研究光阑的大小S对Z.扫描实验曲线轮廓的定量影响时,提出了对于
    给定材料“决定峰-谷或谷-峰结构存在与否的临界孔径值y”的概念,并且用数值
    方法给出了高斯光束下S与尸以及pC与S的定量关系。作者用CS。所做的不同孔
    径时的乙扫描实验很好地验证了这些定量关系。
     另外,在用红外光谱仪进行以a-SIC为散射体、以KBr为基质的无序介质的光
    子局域化实验时,意外地发现了一个与Christiansen效应有关的新物理现象。本文用
    LorentZ色散模型对此现象给出了精确的解释,并对该现象在制造新型的带通滤波器
    和测定某些材料的折射率等方面的应用做了很深入的探讨,这是在研究过程中发现
    并开辟了的一个新的研究方向。
The dissertation, for the first time to our knowledge, establishes a systematic theory of mid-infrared photon localization for three kinds of random media in view of the properties of the mid-infrared materials, explains an interesting phenomenon newly found by the author, studies comprehensively the characteristics of Z-scan transmittance curves for the materials with a large nonlinear absorption in connection with the practical applications of Z-scan technique, researches numerically into the quantitative influence of the aperture size and nonlinear absorption on the profile of the Z-scan transmittance curves. Several creative achievements in respect of science and technique are contained in this dissertation, and summarized as follows:
    First, the author points out, for the first time to our knowledge, that several mid-infrared materials with large refractive index and low absorption and some transparent matrices in the mid-infrared can be used for the investigations on the mid-infrared photon localization, and breaks the idea that only Germanium (Ge) is the best material for experiments searching the photon localization.
    Second, in the theory of mid-infrared photon localization in the random media with high-refractive-index and lossless scatterers, which is called the first kind of random media, the author finds out that a negative-value region of the asymmetric scattering factor appears in the vicinity of Mie-resonant scattering peaks when the relative refractive index of the scatterer to the matrix is larger than 3.1, and breaks the conventional physical concept that Mie scattering is predominant in the forward direction. The study indicates that ideal photon localization establishes when the relative refractive index of the scatterer is larger than 3.8 and the concentration of the scatterers is as low as 10% using the Mie scattering theory and the low concentration approximation. In the meanwhile, a new concept called effective scattering cross section saturation is put forward, and the difficulty of perfect localization of mid-infrared radiation is discussed if effective scattering cross section may become saturate.
    Third, in the theory of mid-infrared photon localization hi the random media with anomalous dispersive dielectric scatterers, which is called the second kind of random media by our group, the author finds numerically out that mid-infrared photon localization hi a sense may establish in this kind of random medium, and the localization frequencies are in the reststrahlen band of the anomalous dispersive scatterer. For the first time, it is found that the influence of the refractive index of the background matrix on the photon localization in the first kind of random medium is very different from the one in the second kind of random medium.
    
    
    
    Forth, in the theory of mid-infrared photon localization in the random media using metal particles as random scatterers, which is called the third kind of random media, the author finds out that the scattering behavior of every metal in mid-infrared region is similar to each other, and all types of metal particles are low-efficiency scatterers but with high extinction albedo. When the concentration of the metal particles is 10%, 6.6 is the smallest value of the localization parameter, therefore photon localization can not be attained in this kind of random medium although the scattering is also strong and low-absorptive. It is revealed that this system has an intrinsic relationship with the one with high-refractive-index and low-absorptive scatterers, and influence of the refractive index of the matrix on the photon localization in this kind is very different from the other two, that is, the localization parameter be independent of the refractive index of the lossless matrix used commonly.
    Fifth, when studying closed-aperture Z-scan experimental transmittance curve of the materials with relatively large third-order nonlinear absorption, the author finds out that the well-known peak-valley or valley-peak structure is dependent on the relative value p
引文
1 Y. Matsuura and J. A. Harrington. Infrared Hollow Glass Waveguides Fabricated by Chemical Vapor Deposition. Opt. Lett. 1995, 2020: 2078-2080
    2 A. Hongo. Fabrication of Dielectric-coated Silver Hollow Glass Waveguides for the Infrared by Liquid-How Coating Method. SPIE 1996, 2677: 55-63
    3 Y. Matsuura and J. A. Harrington. Hollow Glass Waveguides with CVD-deposited Metal and Dielectric-coatings. SPIE. 1996, 2677: 64-70
    4 M. Miyagi. Transmission Properties of Fluorocarbon Polymer-coated Silver Hollow Glass Waveguide with Tapered Section for Er: YAG Laser Light. SPIE. 1996, 2928: 58-56
    5 A. Inberg, M. Oksman and N. Croitoru. Novel Copper Hollow Waveguides for IR Laser Radiations. SPIE. 1996, 2928: 28-38
    6 R. K. Nubling and J. A. Harrington. Single-Crystal Laser-heated Pedestal-growth Sapphire Fibers for Er:YAG Laser Power Delivery. Appl. Opt. 1998,3721: 4777-4781
    7 M. Miyaji. Thickness and Uniformity of Fluorocarbon Polymer Film Dynamically Coated Inside Silver Hollow Glass Waveguides. 1997, 3613: 2886-2892
    8 Shi Yiwei, Wang You, Y. Abe, Y. Matsuura, M. Miyagi, and H. Uyama. Fabrication of Cyclic Olefin Polymer COP-coated Silver Hollow Glass Waveguides for the Infrared. SPIE. 1998, 3262: 96-101
    9 M. Miyagi. Cyclic Olefin Polymer-coated Silver Hollow Glass Waveguides for the Infrared. Appl. Opt. 1998, 3733: 7758-7762
    10 Y. Matsuura and M. Miyagi. Aluminum-coated Hollow Glass Fibers for ArF-excimer Laser Light Fabricated by Metallorganic Chemical-vapor Deposition. Appl. Opt. 1999,3812:2458-2462
    11 J. A. Harrington and C. C. Gregory. Hollow Sapphire Fibers for the Delivery of CO, Laser Energy. Opt. Lett.1990,15: 541-543
    12 C. Gergory and J. A. Harrington. Hollow Cored A12O3 Waveguides for CO2 Laser Surgery. SPIE.1991, 1420: 169-174
    13 R. Dahan, J. Dror and N. Crotoru. Characterization of Chemically Formed Silver Iodide Layers for Hollow Infrared Guides. Mater. Res. Ball. 1992, 27: 761-766
    14 吕平,侯蓝田,等.第四届中日光纤维科学及电磁场理论双边会议OFSET’93 1993年10月
    15 T. Abel, J. Hirsch and J. A. Harrington. Hollow Glass Waveguides for Broadband
    
    Infrared Transmission. Opt. Lett. 1994,19: 1034-1036
    16 Y. Matsuura, T. Abel and J. A. Harrington. Optical Hollow Glass Waveguides Fabricated by Chemical Vapor Deposition. Opt. Lett. 1995, 20: 2078-2080
    17 R. K Nubling and J. A. Harrington. Hollow-Waveguide Delivery Systems for High-Power Industrial Laser. Appl. Opt. 1996, 343: 372-380
    18 J. Dai and J. A. Harrington. High-Peak-Power, Pulsed C02 Laser Light Delivery by Hollow Glass Waveguides. Appl. Opt. 1997, 3621: 5072-5077
    19 Y. Matsuura, Daisuke and M. Miyagi. Fabrication of Hollow Fibers for C02 Laser by Using MOCVD Method. SPIE. 1998, 3262: 119-124
    20 Y. Matsuura, D. Miura and M. Miyagi. Fabrication of Copper Oxide-coated Hollow Waveguides for CO2 Laser Radiation. Appl. Opt. 1999, 389: 1700-1703
    21 Tong Limin, Shen Yonghang, Chen Fangmin and Ye Linhua. Plastic Banding of Sapphire Fibers for Infrared Sensing and Power-delivery Applications. Appl. Opt. 2000, 39A: 494-501
    22 Hou Lantian, Fu Lianfu, Lu Ping and Han Yuhua. PolyCrystalline Germanium Dioxide Hollow-core Fibers and Its Performances. Infrared Physics and Technology. 1997,38: 193-199
    23 J. H. Shen, K. M. Joos, J. A. Harrington, D. M. Oday and G. S. Edwards. Hollow Waveguide Delivered Infrared Free Electron Laser for Microsurgical Applications. SPIE. 1998,3262: 130-134
    24 R. W. Waynant, I. K. Ilev and I. Gannot. Infrared Optical Fibers and their applications. SPIE. 1999, 3849: 2-6
    25 R. Hilton. As-Se-Te-Based Glass Fibers. SPIE. 1990, 1228: 84-96
    26 M. Miyagi. Fabrication of Dielectric-coated Silver Hollow Nickel Waveguide with Multiple Inner Dielectric Layers for Er:YAG Laser Light Transmission. SPIE. 1996, 2928: 19-21
    27 M. Miyagi, A. Hongo, Y. Aizawa and S. Kawakami. Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission. Appl. Phys. Lett. 1983, 43:430-432
    28 J. Haan and J. A. Harrington. Hollow Waveguides for Gas Sensing and Near-IR Applications. In Specialty Fiber Optics for Medical Applications, ed. A. Katzir and J. A. Harrington, Proc. SPIE. 1999, 3596: 43-49
    29 Hou Lantian, Fu Lianfu, Lu Ping and Han Yuhua. Pure Germanium Dioxide Hollow-
    
    Core Fiber Transmitting CO2 Laser. Science in China Series A, 1995, 386: 749-956
    30 Hou Lantian, Sun Yingzhi, Zhao Bin. Study on the Mode Losses and Bending Losses of Hollow-core Optical Fiber of GeO2 and Si02 Base for transmitting CO2 Laser Energy. Chinese Journal of Laser, 1996, B51: 27-32
    31 Hou Lantian, et al. Transmission Characteristic of GeO2 Hollow-core Fiber. SPIE, 1996,Vol2893:509
    32 Lantian Hou. Transmitting CO2 Laser Energy Hollow-core Fibers. High Technology Lett. 1997,32:70-75
    33 Hou Lantian, Zhou Guiyao, Hou Zhiyun, Han Shumin, and Li Kuiyeng. Transmitting High Power Double-layer Dielectric Hollow Optical Fibers. San Jose, USA. 2001, 4271:222-228
    34 解思深.纳米材料体系物理.现代科学仪器 . 1998, 1-2: 5-7
    35 冯端.面向21世纪的物质科学.科技导报 , 1999, 4: 3-7
    36 W. Kohn. An Essay on Condensed Matter Physics in the Twentieth Century. Rev. Mod. Phys. 1999, 71: s59-77
    37 P. Chaudhari and M. S. Dresselhays. Material Physics. Rev. Mod. Phys. 1999, 71: S331-335
    38 N. Blombergen. From Nanosecond to Femtosecond Science. Rev. Mod. Phys. 1999, 71:s331-335
    39 M. Durrani and P. Rodgers. Physics: Past, Present, and Future. Physics Today. 1999, 12: 7-13
    40 R. S. Williams. Industrial Revolutions in the 21st Century. Physics Today. 1999, 12: 49-51
    41 S. John, H. Sompolinsky, and M. J. Stephen. Localization in a Disordered Elastic Medium near Two Dimensions. Phys. Rev. B1983,27: 5592-5603
    42 S. John, M. J. Stephen. Wave Propagation and Localization in a Long-Rang-Correlated Random Potential. Phys. Rev. B1983,28: 6358-6368
    43 S. John. Electromagnetic Absorption in a Disordered Medium Near a Photon Mobility Edge. Phys. Rev. Lett. 1984, 53: 2169-2172
    44 S. John. Localization and Absorption of Waves in a Weakly Dissipative Disordered Medium. Phys. Rev. B 1985, 31: 304-309
    45 P. W. Anderson. The Question of Classical Localization, a Theory of White Paint? Pilos. Mag. B 1985, 52: 505-509
    
    
    46 E. Akkermans and R. Maynard. Weak Localization of Waves. J. De Physique Lett. 1985,46:L1045-1053
    47 P. E. Wolf, and G. Maret. Weak Localization and Coherent Backscattering of Photon in Disordered Media. Phys. Rev. Lett. 1985, 55: 2696-2699
    48 E. Akkermans, P. E. Wolf, and R. Maynard. Coherent Backscattering of Light by Disordered Media: Analysis of the Peak Line Shape. Phys. Rev. Lett. 1986, 56: 1471-1474
    49 M. J. Stephen and G. Cwilich. Rayleigh Scattering and Weak Localization: Effects of Polarization. Phys. Rev. B1986, 34: 7564-7572
    50 Shen Ping and Zhang Zhao Qing. Scale-Wave Localization in a Two-Component Composite. Phys. Rev. Lett. 1986, 57: 1879-1882
    51 Ad Lagendijk, M. P. van Albada, and M. B. Van der Mark. Localization of Light: the Quest for the White Hole. Physica A 1986, 140: 183-190
    52 K. Arya, Z. B. Su, and J. L. Birman. Anderson Localization of Electromagnetic Waves in a Dielectric Medium of Randomly Distributed Metal Particles. Phys. Rev. Lett. 1986, 57:2725-2728
    53 M. Kaveh. Localization of Photons in Disordered System. Phil. Mag. B 1987, 56: 693-703
    54 H. De Raedt, A. Lagendijk, and P. de Vries. Transverse Localization of Light. Phys. Rev. Lett. 1989. 62:47-50
    55 C. M. Soukoulis, E. N. Economou, G. S. Grest, and M. H. Cohen. Existence of Anderson Localization of Classical Waves in a Random Two-Component Medium. Phys. Rev. Lett. 1989, 62: 575-578
    56 I. Edrei and M. J. Stephen. Optical Coherent Backscattering and Transmission in a Disordered Medium near the Mobility Edge. Phys. Rev. B 1990, 42: 110-117
    57 S. John. Localization of Light. Physics Today. 1991, 34: 32-40
    58 C. M. Soukoulis (ed.). Photonic Band Gaps and Localization. Vol 308 of NATO Advanced Study Institute, Series B: Physics (Plenum Press, New York, 1993)
    59 P. Shen. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena. (Academic Press, San diego, 1995)
    60 C. M. Soukoulis (ed.). Photonic Band Gap Materials. Vol 305 of NATO Advanced Study Institute, Series E: Applied Science (Kluwer, Dordrecht, 1996)
    61 S. Datta, C. T. Can, K. M. Ho and C. M. Soukoulis. Effective Dielectric Constant of
    
    Periodic Composite Structure. Phys. Rev. B 1993, 48: 14936-14943
    62 C. M. Soukoulis, S. Datta and E. N. Economou. Propagation of Classical Waves in Random Media. Phys. Rev. B 1994, 49: 3800-3810
    63 K. Busch, C. M. Soukoulis and E. N. Economou. Transport and Scattering Mean Free Paths of Classical Waves. Phys. Rev. B 1994, 50: 93-98
    64 K. Busch and C. M. Soukoulis. Transport Properties of Random Media: A New Effective Medium Theory. Phys. Rev. Lett. 1995, 75: 3442-3445
    65 A. Kirchner, K. Busch, and C. M. Soukoulis. Transport Properties of Random Arrays Dielectric Cylinders. Phys. Rev. B 1998, 57: 277-288
    66 Comment on "Energy Velocity of Diffusing Waves in Strongly Scattering Media?". Phys. Rev. Lett. 1999, 82: 2000-2001
    67 J. X. Zhu, D. J. Pine and D. A. Weitz. Internal Reflection of Diffusive Light in Random Media. Phys. Rev. A 1991, 44: 3948-3959
    68 R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall. Microwave Localization by Two-Dimension Random Scattering. Nature. 1991, 354: 53-55
    69 S. John. Electron-Photon Analogy Analyzed. Phys. Today. 1992, 121-122
    70 D. J. Durian. Influence of Boundary Reflection and Refraction on Diffusive Photon Transport. Phys. Rev. E 1994, 50: 857-866
    71 B. A. van Tiggelen, D. A. Wiersma, Ad Lagendijk. Self-Consistent Theory for the Enhancement Factor in Coherent Backscattering. Europhys. Lett. 1995, 30: 1-6
    72 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishan. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Gimensions. Phys. Rev. Lett. 1979,42:673-676
    73 A. Z. Genack. Optical Transmission in Disordered Media. Phys. Rev. Lett. 1987, 58: 2043-2046
    74 M. B. Van der Mark, M. P. van Albada and Ad Lagendijk. Light Scattering in Strongly Scattering Media: Multiple Scattering and Weak Localization. Phys. Rev. B 1988, 37: 3575-3592
    75 N. Garcia, and A. Z. Genack. Anomalous Photon Diffusion at the Threshold of the Anderson Localization. Phys. Rev. Lett. 1991, 66: 1850-1853
    76 N. Garcia, J. H. Li, W. Polkosnik, T. D. Cheng, P. H. Tsang, A. A. Lisyansky and A. Z. Genack. Influencing the Approach to the Localization Threshold. Physica B 1991,
    
    175:9-16
    77 A. Z. Genack and N. Garcia. Electromagnetic Localization and Photonics. J. Opt. Soc. Am. B 1993, 10:408-413
    78 Th. M. Nieuwenhulzen and J. M. Luck. Skin Layers of Diffusive Media. Phys. Rev. E 1993, 48: 569-588
    79 N. M. Lawandy, R. M. Balachandran, A. S. Gomes and E. Sauvaln. Laser Action in Stongly Scattering Media. Nature. 1994, 368: 436-438
    80 A. Z. Genack and J. M. Drake. Scattering for Super-Radiation. Nature. 1994, 368: 400-401
    81 Ad Lagendijk and B. A. van Tiggelen. Resonant Multiple Scattering of Light. Phys. Rep. 1996,270: 143-215
    82 M. Rusek, A. Orlowski, J. Mostowski. Band of Localized Electromagnetic Waves in Random Arrays of Dielectric Cylinders. Phys. Rev. E 1997, 56: 4892-4895
    83 M. Rusek and A. Orlowski. Example of Self-Averaging in 3D: Anderson Localization of Electromagnetic Waves in Random Distribution of Pointlike Scattering. Phys. Rev. E 1997, 56: 6090-6094
    84 C. J. Walden. Multiple Scattering of Classical Waves in Systems with Liquidlike Correlations: Analytical and Numerical Results for Isotropic Scatterers. Phys. Rev. E 1998,57:2377-2385
    85 M. C. W. van Rossum and Th. M. Nieuwenhuizen. Multiple Scattering of Classical Waves: Microscopy, Mesoscopy and Diffusion. Rev. Mod. Phys. 1999, 171: 313-372
    86 C. W. J. Beenakker, K. J. H. van Bemmel, and P. W. Brouwer. High-Frequency Dynamics of Wave Localization. Phys. Rev. E 1999, 60: R6313-6315
    87 N. L. Swanson and D. B. Billard. Multiple Scattering Efficiency and Optical Extinction. Phys. Rev. E 2000, 61: 4518-4522
    88 R. L. Weaver. Anomalous Diffusivity and Localization of Classical Waves in Disordered Media: the Effect of Dissipation. Phys. Rev. B 1993, 47: 1077-1080
    89 M. Yosefm. Localization in absorbing Media. Europhys. Lett. 25, 675-680 (1994. 9)
    90 D. Somette, B. Souillard. Strong Localization of Waves by Internal Resonances. Europhys. Lett. 1988, 7: 269-274
    91 B. A. van Tiggelen, Ad Lagendijk, A. Tip, G. F. Reiter. Effect of Resonant Scattering on Localization of Waves. Europhys. Lett. 1991, 15: 535-540
    92 T. M. Nieuwenhuizen, Ad Lagendijk, B. A. Van Tiggelen. Resonant Point Scatterers
    
    in Multiple Scattering of Classical Waves. Phys. Lett. A 1992, 169: 191-194
    93 A. Figotin, A. Klein. Localization of light in Lossless Inhomogeneous Dielectrics. J. Opt. Soc. Am. A 1998,15: 1423-1435
    94 F. A. Pinheiro, A. S. Martinez and L. C. Sampaio. Vanishing of Energy Transport Velocity and Diffusion Constant of Electromagnetic Waves in Disordered Magnetic Media. Phys. Rev. Lett. 2000, 85: 5563-5566
    95 Ad Lagendijk, M. P. van Albada, and M. B. Van der Mark, Localization of Light: the Quest for the White Hole. Physica A 1986, 140: 183-190
    96 S. John, Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett. 1987, 58: 2486-2489
    97 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett. 1987, 58: 2059-2062
    98 E. Yablonovitch, T. J. Gmitter. Photonic Bands Structure: the Face-Centered-Cubic Case. Phys. Rev. Lett. 1989, 63: 1950-1953
    99 S. Satpathy, Ze Zhang, M. R. Salehpour. Theory of Photon Bands in 3-D Periodic Dielectric Structures. Phys. Rev. Lett. 1990, 64:1239-1242
    100 S. John, J. Wang, QED near a Photonic Band Gap: Photonic Bound States and Dressed Atoms Phys. Rev. Lett. 1990, 64: 2418-2421
    101 Ze Zhang, S. Satpathy. EM Wave Propagation in Periodic Structures: Bloch Wave Solution of Maxwell's Equations. Phys. Rev. Lett. 1990, 65: 2650-2653
    102 K. M. Leung, Y. F. Liu. Full Vector Wave Calculation of Photonic Bands Structures in fcc Dielectric Media. Phys. Rev. Lett. 1990, 65: 2646-2649
    103 K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a Photonic Gap hi Periodic Dielectric Structures. Phys. Rev. Lett. 1990, 65: 3152-3155
    104 M. Bowden, J. P. Downling. (ed.) Development and Applications of Materials Exhibiting PEG. J. Opt. Soc. Am. B 1993,10: 280-407
    105 S. Sozuer, J. P. Downling. Photonic Band Calculations for Woodpile Structures. J. Mod. Opt. 1994,41:231-239
    106 K. M. Ho, Chan C. T. Photonic Band Gaps Structures in the 3D: New Layer-by-Layers Periodic Structure. Solid States Comm. 1994. 89: 413-416
    107 E. Ozbay, et al. Measurement of a 3-D PBG in a Crystal Structure Made of Dielectric Rods. Phys.Rev.B 1994, 50:1945-1948
    108 S. Y. Lin, G. Arjavalingam. Photonic Bound States in 2-D PCs Probed by Coherent-
    
    Microwave Transient Spectroscopy. J.Opt.Soc.Am.B 1994, 11: 2124-2127
    109 P. R. Villeneuve, et al. Air-Bridge Microcavities. Appl. Phys. Lett. 1995, 67: 167-169
    110 R. Brown, O. B. Mcmahon. Large Electromagnetic Stop Bands in Metallo-Dielectric Photonic Crystals. Appl. Phys. Lett. 1995, 67: 2138-2140
    111 T. F. Krauss, et al. 2-D PEG Structures operating at Near-Infrared Wavelengths. Nature. 1996,383:699-702
    112 S. H. Fan. et al. Large Omni-Directional Band Gaps in Metallo-Dielectric Photonic Crystals Phys.Rev.B 1996, 54: 11245-11251
    113 J. S. Foresi, et al. Photonic-Band Gap Microcavities in Optical Waveguides. Nature. 1997,390: 143-145
    114 J. D. Joannopoulos, et al. Photonic Crystals: Putting a New Twist on Light. Nature. 1997,386: 143-149
    115 A. Zakhidov, et al. Carbon Structures with 3-D Periodicity at Optical Wavelengths. Science. 1998, 282: 897-901
    116 N. Yamamoto. Development of One-Dimension Photonic Crystal in the 5-10μm Wavelength Region by Wafer Fusion and Laser Beam Diffract Pattern Observation Techniques. Jnp. Appl. Phys. 1998, 37: L1052-1054
    117 K. Busch, S. John. Photonic Band Gap Formation in Certain Self-Organizing Systems Phys. Rev. E 1998, 58: 3896-3908
    118 Z. Y. Li, J. Wang, B. Y. Gu. Creation of Partial Band Gap in Anisotropic PBG Structure. Phys. Rev. B 1998, 58: 3721-3729
    119 K. Busch, S. John. Liquid Crystal PBG Structure: the Tunable Electromagnetic Vacuum. Phys. Rev. Lett. 1999, .83: 967-970
    120 H. Kosaka, et al. Photonic Crystals for Micro Light-Wave Circuits Using Wavelength-Dependent Angular Beam Steering. Appl. Phys. Lett. 1999, 74: 1370-1372
    121 J. Kim, et al. A Single-Photon Turnstile Device. Nature. 1999, 397: 550-553
    122 S. S. M. Cheng, C. T. Chan, Z. Q. Zhang. Defect and Transmission Properties of Two-Dimensional Quasi-Periodic Photonic Band-Gap Systems. Phys. Rev. B 1999, 59: 4091-4099
    123 S. E. Barkou, et al. Silica-Air PC Fiber Design That Permits Waveguiding by a True PBG Effect. Opt. Lett. 1999, 24: 46-48
    124 J. G. Fleming, Shawn-Yu Lin 3-D Photonic Crystal with a Stop Band from 1. 35 to
    
    tics Letters 1999, 24: 49-51
    125 S. Lin, et al. A Three-Dimensional Photonic Crystals Operating at Infrared Wavelengths. Nature. 1998, 394: 251-253
    126 万钧,张淳,王灵俊,资剑.光子晶体及其应用.物理 . 1999,128(7) : 393-398
    127 S. W. Leonard,et al Tunable Two-Dimensional Photonic Crystals Using Liquid-Crystal Infiltration. Phys. Rev. B 2000, 61: R2389-2392
    128 欧阳征标,李景镇.光子晶体的研究进展.激光杂志 .2000, 21 (2) : 4-6
    129 Zhang X. D, Zhang. Z. Q, et al. Enlarging a Photonic Band Gap by Using Insertion Phys. Rev. B 2000, 61: 1892-1897
    130 N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, I. Khayrullin, I. Udod, R. H. Baughman. Optical Studies of Metal-Infiltrated Opal Photonic Crystals. Synthetic Metals. 2001, 116:501-504
    131 J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett. 1996, 21: 1547-1549
    132 T. A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly Single-Mode Photonic Crystal Fiber. Opt. Lett. 1997, 22: 961-963
    133 J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell. Photonic Band Gap Guidance in Optical Fibers. Science. 1998,282: 1476-1478
    134 R. F. Cregan. B. J. Mangan, J. C. Knight, T. A. Birks. P. St. J. Russell, P. J. Roberts, and D. C. Allan. Single-Mode Photonic Band Gap Guidance of Light in Air. Science. 1999,285: 1537-1539
    135 J. C. Knight. T. A. Birks, B. J. Mangan, W. J. Wadsworth, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell. Progress in Photonic Crystal Fiber Waveguides. PECS 2000. 3. 8
    136 Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, Different Regimes of Light Localization in a Disordered Photonic Crystals. Phys. Rev. 1999, B60: 1555-1562
    137 Wei Jiang and Changde Gong, Two Mechanisms, Three Stages of the Localization of Light in a Disordered Dielectric Structure with Photonic Band Gaps. Phys. Rev. 1999, B60: 12015-12021
    138 G. Samelsohn, S. A. Gredeskul, and R. Mazar. Resonances and Localization of Classic Waves in Random Systems with Correlated Disorder. Phys. Rev. 1999, E60, 6081-6890
    139 M. Rusek and A. Orlowski. Example of Self-averaging in Three Dimensions:
    
    Anderson Localization of Electromagnetic Waves in Random Distributions of Pointlike Scatterers. Phys. Rev. E 1997, 56: 6090-6094
    140 M. Rusek, J. Mostowski, A. Orlowski. Random Green Matrices: from Proximity Resonances to Anderson Localization. Phys. Rev. A 2000, 61: 22704. 1-6
    141 M. P. van Albada, A. Lagendijk, Observation of Weak Localization of Light in a Random Medium. Phys. Rev. Lett. 1985, 55: 2692-2695
    142 G. H. Waston, Jr., P. A.Fleury, and S. L. McCall, Search for Photon Localization in the Time Domain. Phys. Rev. Lett. 1987, 58: 945-948
    143 I. Freund, M. Rosenbluh, S. C. Feng. Memory Effects Propagation of Optical Waves through Disordered Media. Phys. Rev. Lett. 1988, 61: 2328-2331
    144 J. M. Drake and A. Z. Genack, Observation of Nonclassical Optical Diffusion. Phys. Rev. Lett. 1989, 63:259-262
    145 K. M. Yoo and R. R. Alfano. Time-Resolved Coherent and Incoherent Components of Forward Light Scattering in Random Media. Opt. Lett. 1990, 15: 322-322
    146 K. M. Yoo, Feng Liu and R. R. Alfano. When does the Diffusion Approximation Fail to Describe Photon Transport in Random Media? Phys. Rev. Lett. 1990, 64: 2647-2670
    147 M. P. van Albada, B. A. van Tiggelen, Ad Lagendijk, and A. Tip, Speed of Propagation of Classical Waves in Strongly Scattering Media. Phys. Rev. Lett. 1991, 66:3132-3135
    148 R. H. J. Kop, P. de Vries, R. Sprik and Ad Lagendijk. Observation of Anomalous Transport of Strongly Multiple Scattered Light in Thin Disordered Slabs. Phys. Rev. Lett. 1997,79:4369-4372
    149 D. S. Wiersma, A. Muzzi, M. Colocci, and R. Righini. Time-Resolved Anisotropic Multiple Light Scattering in Nematic Liquid Crystal. Phys. Rev. Lett. 1999, 83: 4321-4324
    150 A. Z. Genack and N. Garcia, Observation of Photon Localization in a Three-Dimensional Disordered System. Phys. Rev. Lett. 1991, 66: 2064-2067
    151 D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and Ad Lagendijk. Experimental Evidence for Recurrent Multiple Scattering Events of Light in Disordered Media. Phys. Rev. Lett. 1995, 74: 4193-4196
    152 D. S. Wiersma, P. Bartolinl, Ad Lagendijk, and R. Righini. Localization of Light in a Disordered Medium. Nature. 1997, 390: 671-673
    
    
    153 Comment: "Localization or Diffusion of Light". Nature. 1999, 398: 206-207
    154 F. J. P. Schuurmans, D. Vanmaekelbergh, J. Van de Lagemaat, and Ad Lagendijk. Strongly Photonic Macroporous GaP Networks. Science. 1999, 284: 141-143
    155 F. J. P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk. Light Scattering near the Localization Transition in Macroporous GaP Networks. Phys. Rev. Lett. 1999, 83: 2183-2186
    156 M. P. van Albada, J. F. de Boer, A. Lagendijk. Observation of Long-Range Intensity Correlation in the Transport of Coherent Light through a Random Medium. Phys. Rev. Lett. 1990, 64: 2787-2790
    157 M. Stoytchev and A. Z. Genack. Microwave Transmission through a Periodic Three-Dimensional Metal-Wire Network Containing Random Scatterers. Phys. Rev. B 1997,55:8617-8621
    158 M. Stoytchev and A. Z. Genack. Measurement of the Probability Distribution of Total Transmission in Random Waveguides. Phys. Rev. Lett. 1997, 79: 309-312
    159 M. Stoytchev and A. Z. Genack. Observations of Non-Rayleigh Statistics in the Approach to Photon Localization. Opt. Lett. 1999, 24: 262-264
    160 J. G. Rivas, R. Sprik, C. M. Soukoulis, et al. Optical Transmission Through Strong Scattering and Highly Polydisperse Media. Europhys Lett, 1999,48:22-28
    161 J. G. Rivas, R. Sprik, A Lagendijk. Mid-Infrared Scattering and Absorption in Ge powder Close to the Anderson Localization Transition. Phys. Rev. E 2000, 62: R4540-4543
    162 J. G. Rivas, R Sprik, A, Lagendijk. Static and Dynamic Transport of Light Close to the Anderson Localization Transition. Phys. Rev. E 2001, 6304: 6613. 1-12
    163 M. Bass. Handbook of Optics, Volume Ⅱ (New York: McGraw-Hill, 1995) , Chap. 36
    164 I. G. Austin. The Optical Properties of Bismuth Telluride. Proc. Phys. Soc, 1958, 72: 545-552.
    165 R. Sehr and L. R. Testardi. The Optical Properties of p-Typed Bi2Te3-Sb2Te3 Alloys between 2-15 Microns. J. Phys. Chem. Solids. 1962,23: 1219-1224.
    166 C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles. (New York: John Wiley, 1983) , Chap. 5
    167 W. G. Spitzer, D. A. Kleinman, D. Wolsh. Infrared Properties of Hexagonal Silicon Carbide. Phys. Rev. 1959, 113: 127-132
    168 W. G. Spitzer, D. A. Kleinman, C. J. Frosch. Infrared Properties of Cubic Silicon
    
    Carbide. Phys. Rev. 1959, 113:133-136
    169 Y. X. Fan, R. C. Eckardt, R. L. Byer. AgGaS_2 Infrared Parametric Oscillator. Appl. Phys. Lett. 1984, 45: 313-315
    170 崔大复,张杰.中红外超短脉冲的产生及其研究的最新进展.物理.1995,23(3):173-178
    171 崔大复,张杰,陈正豪,周岳亮,吕惠宾,邓道群.参量自注入放大产生皮秒中红外脉冲.物理.1996,25(3):178-180
    172 A. Harasaki and K. Kato. New Data on the Nonlinear Optical Constant, Phase-Matching, and Optical Damage of AgGaS_2. Jpn. J. Appl. Phys. 1997, 36:700-703
    173 A. Delbarre, C. Przygodski, W. Chen, D. Boucher. Determination of Dispersion Characteristics in Anistropic Materials Using Ultra-short Pulses. Appl. Phys. B 1998, 66:169-173
    174 K. J. McEwan. High-Power Synchronously Pumped AgGaS_2 Optical Parametric Oscillator. Opt. Lett. 1998, 23:667-669
    175 S. Haidar, K. Nakamura, E. Niwa, K. Masumoto, and H. Ito. Mid-Infrared (5-12 μm) and Limited (5.5-8.5μm) Single-Knob Tuning Generated by Difference-Frequency Mixing in Single-Crystal AgGaS_2. Appl. Opt. 1999, 38:1798-1801
    176 F. Rotermund and V. Petrov. Mid-Infrared Femtoscecond Optical Parametric Generator Pumped by a Cr: forsterte Regenerative Amplifier at 1.25 μm. Appl. Phys. B 2000, 70:731-732
    177 K. S. Abedin, S. Haidar, Y. Konno, C. Takyu, and H. Ito. Difference Frequency Generation of 5-18 μm in an AgGaSe_2 Crystal. Appl. Opt. 1998, 37:1642-1646
    178 K. L. Vodopyanov and P. G. Schunemann. Efficient Difference-Frequency Generation of 7-20μm Radiation in CdGeAs_2. Opt. Lett. 1998, 23: 1096-1098
    179 F. Rotermund and V. Petrov. Mercury Thiogallate Mid-Infrared Femtoscecond Optical Parametric Generator Pumped at 1.25 μm by a Cr: forsterte Regenerative Amplifier. Opt. Lett. 2000, 25:746-748
    180 程干超,杨琳,吴海信,程宁.AgGaS_2晶体的参量上转换在红外辐射探测中的应用.激光与红外.1994.24:51-53、60
    181 杨立书,鲁士平,程干超,杨琳,史保森,杜立人.在AgGaSe_2晶体中 TEA CO_2激光倍频产生.光学学报,1995,15:374-376
    182 Dai Jiwang and J. A. Harrington. High peak power, Pulsed CO_2 Laser Light Delivery by Hollow Glass Waveguides. Appl. Opt. 1997, 36:5072-5077
    
    
    183 何晓东,于荣金.光通信物理导论.北京:科学出版社,2000:191-220
    184 余大斌,孙晓泉,王自荣.光限幅材料的研究现状及其在激光防护中的应用.激光技术.1999,23(3):262-266
    185 M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland. High-Sensitivity, Single-Beam n_2 Measurements. Opt. Lett. 1989, 14:955-957
    186 M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE. J. 1990, QE-26:760-769
    187 费浩生.非线性折射率测量的Z扫描方法.物理.1994,23(3):178-183
    188 贾振红,李劬,陈益新,陈英礼,周骏.Z扫描测量中的热致非线性效应.光学学报,1996,16(5):635-639
    189 余保龙,朱从善,干福熹,陈红兵,黄亚彬.纳米SnO_2微粒非线性光学特性的扫描技术研究.光学学报,1997,17(4):423-429
    190 夏海平,武四新,余保龙,朱从善,干福熹.用Z扫描方法测量有机改良介质的非线性折射率.光学学报,1998,18(2):204-207
    191 余力,陈谋智,黄美纯,黄文达,朱梓忠.测量光学非线性的Z扫描方法.量子电子学报.1998,15(5):433-440
    192 杨恢东,丁瑞钦,王浩.激光Z扫描技术的理论与实践.光电子·激光.1999,10(1):90-94
    193 W. Zhao and P. Palffy-Muhoray. Z-Scan Technique Using Top-Hat Beams. Appl. Phys. Lett. 1993, 63:1613-1615
    194 W. Zhao and P. Palffy-Muhoray. Z-Scan Measurement of x~(3) Using Top-Hat Beams. Appl. Phys. Lett. 1994, 65:673-675
    195 D. Weaire, B. S. Wherret, D. A. B. Miller, and S. D. Smith. Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb. Opt. Lett. 1979, 4: 331-333
    196 M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland. Dispersion of Bound Electronic Nonlinear Refraction in Solids. IEEE. J. 1991, QE-27: 1296-1309
    197 H. Ma, A. S. L. Gomes, and Cid B. de Araujo. Measurement of Nondegenerate Optical Nonlinearity Using a Two-Color Single Beam Method. Appl. Phys. Lett. 1991, 59:2666-2668
    198 M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. Van Stryland.
    
    Measurement of Non-degenerate Nonlinearities Using a Two-Color Z Scan. Opt. Lett. 1992,17:258-260
    199 L. Yang, R. Dorsinville, Q. Z. Wang, P. X. Ye, R. R. Alfano, R. Zambomiand, C. Taliani. Excited-State Nonlinearity in Polythiophene Thin Films Investigated by the Z-Scan Technique. Opt. Lett. 1992, 17: 323-325
    200 J. A. Herman. Self-focal Effects and Application Using Thin Nonlinear Media. Int. J. Nonlin. Phys. 1992, 1: 541-561
    201 J. A. Hermann and P. J. Wilson. Factors Affecting Optical Limitting and Scanning with Thin Nonlinear Samples. Int. J. Nonlin. Opt. Phys. 1993, 2: 613-629
    202 T. Xia. D. J. Hagan. M. Sheik-Bahae, and E. W. Van Stryland. Eclipsing Z-Scan Measurement of λ/104 Wave-Front Distortion. Opt. Lett. 1994, 19: 317-319
    203 F. Vega, J. C. G. de Sande, C. N. Afonso, C. Ortega, and Siejka. Optical Properties of GeOx Films Obtained by Laser Deposition and Sputtering in a Reactive Atmosphere. Appl. Opt. 1994,33: 1203-1208
    204 P. B. Chappie, J. Staromlynska, R. G. McDuff. Z-Scan Studies in the Thin-and the Thick-Sample Limits. J. Opt. Soc. Am. B. 1994, 11: 975-982
    205 V. O. Kozich, A. Marcano 0. , F. E. Hernandez, and J. A. Castillo. Dual-Beam Time-Resolved Z-Scan in Liquids to Study Heating Due to Linear and Nonolinear Light Absorption. Appl. Spec. 1994, 48: 1506-1512
    206 R. E. Bridges, G. L. Fischer, and Robert W. Boyd. Z-Scan Measurement Technique for Non-Gaussian Beams and Arbitrary Sample Thicknesses. Opt. Lett. 1995, 20: 1821-1823
    207 S. Hughes, J. M. Burzler, G. Spruce, and B. S. Wherrett. Fast Fourier Transform Techniques for Efficient Simulation of Z-Scan Measurements. J. Opt. Soc. Am. B. 1995, 12: 1888-1892
    208 A. Marcano O., H. Maillotte, D. Gindre, and D. Metin. Picosecond Nonlinear Refraction Measurement in Single-Beam Open Z-Scan by Charged-Coupled Device Image Processing. Opt. Lett. 1996, 21: 101-102
    209 P. B. Chappie and P. J. Wilson. Z-Scan with Near-Gaussian Laser Beams. J. Nonlin. Opt. Phys. Mat. 1996, 5: 419-436
    210 J. M. Burzler, S. Hughes, B. S. Wherrett. Split-Step Fourier Methods Applied to Model Nonlinear Refraction Effects in Optically Thick Media. Appl. Phys. B 1996, 62: 389-397
    
    
    211 S. M. Mian, B. Taheri, and J. P. Wicksted. Effects of Beam Ellipticity on Z-Scan Measurements. J. Opt. Soc. Am. B 1996, 13: 856-863
    212 Q. Zhao, Y. Liu, W. Shi, W. Ren, L. Zhang, and X. Yao. Nonlinear Optical Properties of Lanthanum Doped Lead Titanate Thin Film Using Z-Scan Technique. Appl. Phys. Lett. 1996, 69: 458-459
    213 B. K. Rhee, J. S. Byun, E. W. Van Stryland. Z-Scan Using Circularly Symmetric Beams. J. Opt. Soc. Am. B. 1996, 13: 2720-2723
    214 P. B. Chappie, J. Staromlynska, J. A. Hermann, T. J. Mckay, R. G. Mcduff. Single-Beam Z-Scan: Measurement Techniques and Analysis. J. Nonlin. Opt. Phys. Mat. 1997,6:251-293
    215 K. Kandasamy, K. D. Rao, R. Deshpande, P. N. Puntambekar, Bhanu P. Singh, Shankar J. Shetty, T. S. Srivastava2. Z-Scan Studies on Porphyrin Derivative. Appl. Phys B, 1997,64:479-484
    216 L. Demenicis, A. S. L. Gomes, D. V. Petrov, Cid B. de Araujo, Celso P. de Melo, and C. G. dos Santos, R. Souto-Maior. Saturation Effects in the Nonlinear-Optical susceptibility of Poly(3-Hexadecylthiophene). J. Opt. Soc. Am. B. 1997,14: 609-613
    217 S. Bian, J. Frejlich, and K. H. Ringhofer. Photo-refractives Saturable Kerr-Type Nonlinearity in Photovoltaic Crystals. Phys. Rev. Lett. 1997, 78: 4035-4039
    218 A. Marrcano O., F. E. Hernandez, A. D. Sene. Two-Color Near-Field Eclipsing Z-Scan Technique for the Determination of Nonlinear Refraction. J. Opt. Soc. Am. B. 1997, 14:3363-3367
    219 A. Ericksson, M. Lindgren, S. Svensson and P. Arntzen. Numerical Analysis of Z-Scan Experiments by Use of a Mode Expansion. J. Opt. Soc. Am. B 1998, 15: 810-815
    220 Y. Watanabe, J. Nishii, H. Moriwaki, G. Furuhashi, H. Hosono, H. Kawazoe. Permanent Refractive Index Changes in GeO2 Glass Slabs Included by Irradiation with Sub Band Gap Light. J. Non-Crys. Solid. 1998, 239: 104-107
    221 B. M. Patterson, W. Roc White, T. A. Robbins, and R. J. Knize. Linear Optical Effects in Z-Scan Measurement of Thin Films. Appl. Opt. 1998, 37: 1854-1857
    222 Q. Wang Song and X. Wang, Robert R. Birge, J. D. Downie, D. Timucian, and C. Gary. Propagation of a Gaussian Beam in a Bacteriorhodopsin Film. J. Opt. Soc. Am. B 1998, 15: 1602-1608
    223 D. Monzon-Hernandez, A. N. Starodumov, Yu. 0. Barmenkov, I Torres-Gomez, F.
    
    Mendoza-Santoyo. Continuous-Wave Measurement of the Fiber Nonlinear Refractive Index. Opt. Lett. 1998, 23: 1274-1276
    224 J. A. Hermann, T. McKay, R.G. McDuff. Z-Scan with Arbitrary Aperture Transmittance: the Strongly Nonlinear Regime. Opt. Comm. 1998, 154: 225-233
    225 S. V. Rao, D. N. Rao. J. A. Akkara, B. S. DeCristofano, D. V. G. L. Rao. Dispersion Studies of Non-linear Absorption in C60 Using Z-Scan. Chem. Phys. Lett. 1998, 297: 491-498
    226 G. Furuhashi, Y. Watanaabe, K. Nisio, T. Tsuchiya. Two-Photon Absorption and Non-Linear Refraction in Binary Alkali Germanate Glasses at 355 nm. J. Non-Crys. Solid. 1999,259: 127-131
    227 J. G. Breitzer, D. D. Dlott, L. K. Iwaki, S. M. Kirkpatrick, and T. B. Rauchfuss. Third-Order Nonlinear Optical Properties of Sulfur-Rich Compounds. J. Phys. Chem. A 1999, 103:6930-6937
    228 P. Chen, D. A. Outlianov, I. V. Tomov, and P. M. Rentzepis. Two-Dimensional Z-Scan for Arbitrary Beam Shape and Sample Thickness. J. Appl. Phys. 1999, 85: 7043-7050
    229 W. F. Zhang, M. S. Zhang, and Z.yin. Large Third-Order Optical Nonlinearity in SrBi2Ta2O9 Thin Films by Pulsed Laser Deposition. Appl. Phys. Lett. 1999, 75: 902-904
    230 E. V. Keuren, T. Wakebe, R.Andreaus, H. Mohwald, W. Schrof, H. Matsuda, R. Rangel-Roji. Wavelength Dependence of the Third-Order Nonlinear Optical Properties of a Polythiophene/ Selenopene Derivative Film. Appl. Phys. Lett. 1999, 75:3312-3314
    231 X. Q. Wang, D. Xu, D. R. Yuan, Y. P. Tian, W. T. Yu, S. Y. Sun, Z. H. Yang, Q. Fang, M. K. Lu, Y. X. Yan, F. Q. Meng, S. Y. Guo, G. H. Zhang, and M. H. Jiang. Synthesis Structure and Properties of a New Nonlinear Optical Material: Zinc Cadmium Tetrathiocyanate. Mat. Res. Bull. 1999, 34: 2003-2011
    232 D. D. Smith, J. K. Campbell, L. A. Baker, R. M. Crooks, M. George. Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film. J. Appl. Phys. 1999, 86: 6200-6205
    233 S. Bian, M. Martinelli, R. J. Horowicz. Z-Scan Formula for Saturable Kerr Media. Opt. Comm. 1999, 172: 347-353
    234 M. Yin, H. P. Li, S. H. Tang, W. Ji. Determination of Nonlinear Absorption and
    
    Refraction by Single Z-Scan Method. Appl. Phys. B. 2000, 70:587-591
    235 T. Lange, W. Njoroge, H. Weis, M. Beckers, M. Wutting. Physical Properties of Thin GeO_2 Film Produced by Reactive DC Magnetron Sputtering. Thin Solid Film. 2000,365:82-89
    236 F. Liu, L. Zhang, P. Cheng, P. Wang, W. J. Zhang. Enhancement of Third-Order Nonlinearity of Nanocrystalline GaSb Embedded in Silica Film. Mat. Sci. and Eng.. B 2000, 76:161-164
    237 W. Tan, H. Zheng, Q. Jin, G. Jin, W. Ji, D. Long, X. Xin. Synthesis, Crystal Structure and Third-Order Optical Nonlinearity of a 'Flywheel'-Shaped Cluster, [MoS_4Cu_3(dppm)_3][BF_4]·2H_2O Polydron. 2000, 19:1545-1549
    238 H. Zheng, W. Tan, G. Jin, W. Ji, Q. Jin, X. Huang, X. Xin. Syntheses, Crystal Structures and Nonlinear Optical Properties of MS_4Pd (dppm) (M=Mo, W). Inor. Chem. Acta. 2000, 305:14-18
    239 T. Wei, T. Huang, T. Wu, P. Tsai, M. Lin. Studies of Nonlinear Absorption and Refraction in C_(60)/toluene Solution. Chem. Phys. Lett. 2000, 318:53-57
    240 毛艳丽,邢前,顾玉宗,高卫东,符瑞生,余保龙.单光束Z-扫描技术.河南大学学报(自然科学版) 2000,30(1):10-13
    241 R. Mendonca, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, O. N, Oliverira Jr., S. C. Zilio. Characterization of Dynamic Optical Nonlinearities in Ytterbium Bis-phthalocyanine Solution. Chem. Phys. Lett. 2000, 323:300-304
    242 C. R. Kityk, M. Makowska-Janusik, A. Kassiba, K. J. Plucinski. SiC Nanocrystals Embedded in Oligotheracrylate Photopolymer Matrices; New Promising Nonlinear Optical Material. Opt. Mate. 2000, 13:449-453
    243 S. V. Rao, N. K. M. Naga Srinivas, D. N. Rao, L. Giribabu, Bhaskar G. Maiya, Reji Philip, G. Ravindra Kunmar. Studies of Third-Order Optical Nonlinearity and Nonlinear Absorption in Tetra Tolyl Porphyrins Using Degenerate Four Wave Mixing and Z-Scan. Opt. Comm. 2000, 182:255-264
    244 方光宇,宋瑛林,王玉晓,张学如,曲士良,李淳飞.富勒烯衍生物中的自散焦、自聚焦及其相互转化.物理学报,2000,49(8):1499-1502
    245 G. Fang, Y. Song, Y. Wang, X. Zhang, C. Li, C. Zhang, X. Xin. Nonlinear Optical and Optical Limiting Properties of a Novel Cluster [WS_4Cu_4I_2 (py)_6]. Opt. Comm. 2000, 181: 97-100
    246 G. Fang, Y. Song, Y. Wang, X. Zhang, C. Li, L. Song, P. Liu. Z-Scan of Excited-State Nonlinear Materials with Reverse Saturable Absorption. Opt. Comm. 2000, 183:523-527
    
    
    247 Y. Song, C. Zhang, Y. Wang, G. Fang, G. Jin, X. Zhang, S. Liu, L. Chen, X. Xin. Excited State Optical Nonlinearity of Cubane-Like Shaped Clusters. Opt. Comm. 2000, 186:105-110
    248 R. E. de Araujo, A. S. L. Gomes, Cid B. de Araújo. Measurements of pκ_a of Organic Molecules Using Third-Order Nonlinear Optics. Chem. Phys. Lett. 2000, 330: 347-353
    249 H. P. Li, C. H. Kam, Y. L. Lam, W. Ji. Optical Nonlinearties and Photo-excited Carrier Lifetime in CdS at 532 nm. Opt. Comm. 2001, 190:351-356
    250 Jun Zhou, Edwin Y. B. Pun, Po S. Chung, Xiao Hong Zhang. Z-scan Measurement of a Novel Amorphous Molecular Material. Opt. Comm. 191: 427-433
    251 D. V. Petrov, A. S. L. Gomes, and Cid B. de Araújo. Reflection A-Scan Technique for Measurements of Optical Properties of Surfaces. Appl. Phys. Lett. 1994, 65:1067-1069
    252 D. V. Petrov, A. S. L. Gomes, cid B. de Araújo. Reflection of a Gaussian Beam from a Saturable Absorber. Opt. Comm. 1996, 123:637-641
    253 D. V. Petrov. Refection Z-Scan Technique for the Study of Nonlinear Refraction and Absorption of a Single Interface and Thin Film. J. Opt. Soc. Am. B 1996, 13: 1491-1497
    254 M. Martineli, S. Bian, J. R. Leite, and R. J. Horowicz. Sensitivity-Enhanced Reflection Z-Scan by Oblique Incidence of a Polarized Beam. Appl. Phys. Lett. 1998, 72:1427-1429
    255 M. Martineli, M. Gugliotti, and R. J. Horowicz. Measurement of Refractive-Index Change at a Liquid-Solid Interface Close to the Critical Angle. Appl. Opt. 2000, 39:2733-2737
    256 黄昆.固体物理学.北京:人民教育出版社,1979
    257 李正中.固体理论.南京:南京大学出版社,1984
    258 P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958:109:1492-1505
    259 冯端,金国钧.凝聚态物理新论.上海:上海科学技术出版社,1992
    260 J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)
    261 B. Shapiro. Large Intensity Fluctuation for Wave Propagation in Random Media.
    
    Phys. Rev. Lett. 1986, 57: 2168-2171
    262 M. J. Stephen and G. Cwilich. Intensity Correlation Fluctuation in Light Scattered from a Random Medium. Phys. Rev. Lett. 1987, 59; 285-287
    263 S. C. Feng, C. Kane, P. A. Lee, A. D. Stone. Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media. Phys. Rev. Lett. 1988, 61: 834-837
    264 N. Garcia and A. Z. Genack. Crossover to Strong Intensity Correlation for Microwave Radiation in Random Media. Phys. Rev. Lett. 1989, 63: 1678-1681
    265 A. Z. Genack and J. M. Drake. Relationship between Optical Intensity, Fluctuations and Pulse Propagation in Random Media. Europhys. Lett. 1990, 11: 331-336
    266 A. Z. Genack, N. Garcia, and W. Polkosnik. Long-range Intensity Correlation in Random Media. Phys. Rev. Lett. 1990, 65: 2129-2132
    267 R. Berkovits and S. C. Feng. Correlation in Coherent Multiple Scattering. Phys. Rep. 1994,238: 135-172
    268 E. Kogan and M. Kaveh. Random-matrix-theory Approach to the Intensity Distributions of Waves Propagating in a Random Medium. Phys. Rev. B 1995, 52, R3813-3815
    269 G. Samelsohn and R. Mazar. Asymptotic analysis of Classical Wave Localization in Multiple-Scattering Random Media. Phys. Rev. E 1997, 56: 6095-6103
    270 A. Z. Genack, P. Sebbah, M. Stoytchev, and B. A. van Tiggelen. Statistics of Wave Dynamics in Random Media. Phys. Rev. Lett. 1999, 82: 715-718
    271 G. Samelsohn, S. A. Gredeskul, and R. Mazar. Resonances and Localization of Classic Waves in Random Systems with Correlated Disorder. Phys. Rev. E 1999, 60: 6081-6090
    272 A. Chabanov, M. Stoytchev and A. Z. Genack. Statistical Signatures of Photon Localization. Nature. 404, 850-3 (2000. 4. 20)
    273 B. A. van Tiggelen, Ad Lagendijk and D. S. Wiersma. Reflection and Transmission of Waves near the Localization Threshold. Phys. Rev. Lett. 2000, 84: 4333-4336
    274 M. Saltzer and H. A. Weidenmuller. Localization of the Light in Disordered Dielectrics: an Approach Based on Spectral Statistics. Phys. Rev. E 2000, 61: 5918-5923
    275 S. K. Joshi, D. Sahoo, A. M. Jayannavar. Modeling of Stochastic Absorption in a Random Medium. Phys. Rev. B 2000, 62: 880-885
    
    
    276 D. S. Wiersma, M. P. van Albada, Ad Lagendijk. Coherent Backscattering of Light from Amplifying Random Media. Phys. Rev. Lett. 1995, 75: 1739-1742
    277 D. S. Wiersma and Ad Lagendijk. Light Diffusion with Gain and Random Lasers. Phys. Rev. E 1996, 54: 4256-4265
    278 Xunya Jiang and C. M. Soukoulis. Transmission and Reflection Studies of Periodic and Random Systems with Gain. Phys. Rev. B 1999, 59: 6159-6166
    279 Xunya Jiang, Qiming Li, and C. M. Soukoulis. Symmetry between Absorption and Amplification in Disordered Media. Phys. Rev. B 1999, R9007-9010
    280 A. Hellemans. Laser Light from a Handful of Dust. Science. 1999, 284: 24
    281 S. A. Ramakrishna, E. Krishna Das, G. V. V.ijayagovindan. Reflection of Light from Amplifying Medium with Disorder in the Complex Refractive Index: Statistics of Fluctuations. Phys. Rev. B 2000, 62: 256-261
    282 张景全,张杰.粉末随机激光辐射.物理 , 2000, 8:488-490
    283 in Light Scattering in Disordered Media and Coherent Backscattering Cone: Systems of Magnetic Particles. Phys. Rev. Lett. 2000, 84: 1435-1438
    284 L. J. A. Rikken and B. A. van Tiggelen. Observation of Magnetically Induced Transverse Diffusion of Light. Nature. 1996, 381: 54-55
    285 A. Sparenberg, G. L. J. A. Rikken, and B. A. van Tiggelen. Observation of Photonic Magnetic Resistance. Phys. Rev. Lett. 1997, 79: 757-760
    286 D. Lacoste and B. A. van Tiggelen. Coherent Backscattering of Light in a Magnetic Field. Phys. Rev. E 2000, 61: 4556-4565
    287 J. Jackie. On Phonon Localization in Nearly One-dimensional Solids. Solid State Comm. 1981,39: 1261-1263
    288 T. R. Kirkpatrick. Localization of Acoustic Waves. Phys. Rev. B1985, 31: 5746-5755
    289 S. M. Cohen and J. Machta. Localization of Third Sound by a Disordered Substrate. Phys. Rev. Lett. 1985, 54: 2242-2245
    290 C. A. Condat and T. R. Kirkpatrick. Observability of Acoustical and Optical Localization. Phys. Rev. Lett. 1987, 58: 226-229
    291 C. A. Condat, T. R. Kirkpatrick, and S. M. Cohen, Acoustic Localization in One Dimension in the Presence of a Flow Field. Phys. Rev. B 1987, 35: 4653-4661
    292 H. P. Schriemer, M. L. Cowan, J. H. Page, Ping Shen, Zhengyou Liu, and D. A. Weitz. Energy Velocity of Diffusion Waves in Strongly Scattering Media. Phys. Rev. Lett. 1997,79:3166-3169
    
    
    293 M. L. Cowan, K. Beaty, J. H. Page, Zhenyou Liu, and Ping Shen. Group Velocity of Acoustic Waves hi Strongly Scattering Media: Dependence on the Volume Fraction of Scatterers. Phys. Rev. E 1998, 58: 6626-6636
    294 Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and Ping Shen. Wave Transport in Random Media: the Ballistic to Diffusive transition. Phys. Rev. E 1999, 60: 4843-4850
    295 王宗明,何欣翔,孙殿卿 编.实用红外光谱学.北京:石油工业出版社 , 1990.
    296 S. Kang, D. E. Day, J. O. Stoffer. Measurement of the Refractive Index of Glass Fibers by the Christiansen-Shelyubskii Method. J. Non-crystal Solid. 1997, 220: 299-308
    297 A. Janke, G. H. Frischat. Determination of the Critical Cooling Rate of Heavy Metal Fluoride Glasses Containing Nucleating Agents. J. Non-Crystal Solid. 1997, 213 : 369
    298 H. J. Hoffmann, Theory for the Spectral Transmittance of Christiansen Filters Made of Glass Beads. Appl. Phys. B. 2000, 70 : 853
    299 L. J. Wang, A. Kuzmich and A. Dogariu. Gain-assisted Superluminal Light Propagation. Nature. 2000, 406: 277-279
    300 Jon Marangos. Faster than a Speeding Photon. Nature. 2000, 406: 243-244
    301 C. G. B. Garrett and D. E. McCumber. Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium. Phys. Rev. Al, 1970, 305-313
    302 M. D. Crisp. Propagation of Small-Area Pulse of Coherent Light through a Resonant Medium. Phys. Rev. Al, 1970, 1604-1611
    303 M. D. Crisp. Concept of Group Velocity in Resonant Pulse Propagation. Phys. Rev. A1971, 4: 2104-2108
    304 G. C. Sherman. Description of Pulse Dynamics in Lorentz Media in Terns of the Energy Velocity and Attenuation of Tune-Harmonic Waves. Phys. Rev. Lett. 1981, 47: 1451-1454
    305 A. Puri and J. L. Birman. Energy-Transport, Group, and Signal Velocities near Resonance hi Spatially dispersive Media. Phys. Rev. Lett. 1981, 47: 173-177
    306 S. Chu and S. Wong. Linear Pulse Propagation hi an Absorbing Medium. Phys. Rev. Lett. 1982,48:738-741
    307 S. Chu and S. Wong. Pulse Propagation in an Absorbing Medium. Phys. Rev. Lett. 1982,49:1292-1293
    
    
    308 E. H. Hauge and J. A. Stovneng. Tunneling Times: a Critical Review. Rev. Mod. Phys. 1989,61:917-936
    309 R. Y. Chiao, P. G. Kwiat and A. M. Steinberg. Analogies between Electron and Photon Tunneling. Physica B 1991, 175: 257-262
    310 A. Ranfagni, D. Mugnai and A. Agresti. The Role the Forerunner in the Tunneling Time Determination. Phys. Lett. A 1991, 158: 161-166
    311 Th. Martin and R. Landauer. Time Delay of Evanescent Electromagnetic Waves and the Analogy to Particle Tunneling. Phys. Rev. A 1992, 45: 2611-2617
    312 R. Y. Chiao. Superluminal (but Causal) Propagation of Wave Packets in Transparent Media with Inverted Atomic Populations. Phys. Rev. A1993, 48: R34-37
    313 R. Landauer. Light Faster than Light? Nature. 1993, 365: 695-696
    314 E. L. Bolda, R. Y. Chiao, J. C. Garrson. Two Theorems for the Group Velocity in Dispersive Media. Phys. Rev. A1993, 48: 3890-3894
    315 A. M. Steinberg and R. Y. Chiao. Dispersionless, Highly Superluminal Propagation in a Medium with a Gain Doublet. Phys. Rev. A 1994,49: 2071-2075
    316 E. L. Bolda, J. C. Garrson, R. Y. Chiao. Optical Pulse Propagation at Negative Due to a Nearby Gain Line. Phys. Rev. A 1994, 49: 2938-2947
    317 A. M. Steinberg and R. Y. Chiao. Tunneling Delay Times in One and Two Dimensions. Phys. Rev. A1994, 49: 3283-3295
    318 W. Heitmann and G. Nimtz. On Causality Proofs of Superluminal Barrier Traversal of Frequency Band Limited Wave Packets. Phys. Lett. A 1994, 196: 154-158
    319 胡三珍.全内反射和倏逝波.华中师范大学学报(自然科学版) 1996,30(2) :169-173
    320 G. Diener. Superluminal Group Velocities and Information Transfer. Phys. Lett. A 1996,223:327-331
    321 K. E. Oughstun and Hong Xiao. Failure of the Quasi-monochromatic Approximation for Ultrashort Pulse Propagation in a Dispersive, Attenuative Medium. Phys. Rev. Lett. 1997, 78: 642-645
    322 黄志洵.超光速微波与波导的量子效应.自然杂志 , 1997,19 (4) : 202-208
    323 S. Esposito. Classical ugrf44c Solutions of Maxwell's Equations and the Photon Tunneling Effect. Phys. Lett. A 1997,225: 203-209
    324 M. W. Mitchell and R. Y. Chiao. Causality and Negative Group Delays in a Simple Bandpass Amplifier. Am. J. Phys. 1998, 66:13-19
    
    
    325 黄志洵.波导量子隧道效应与超光速微波的研究.微波学报, 1998, 14 (3) :250-253
    326 Hong Xiao and K. T. Oughstun. Failure of the Group-Velocity Description for Ultrawideband Pulse Propagation in a Causally Dispersive, Absorptive Dielectric. J. Opt. Soc. Am. B 1999,16: 1773-1785
    327 A. Ranfagni, D. Mugnai and A. Agresti. How to Employ Microwaves for Simulating Quantum Tunneling. Phys. Lett. A 1993,175: 334-340
    328 A. M. Steinberg, P. G. Kwiat and R. Y. Chiao. Measurement of the Single-Photon Tunneling. Phys. Rev. Lett. 1993, 71: 708-711
    329 D. Mugnai, A. Ranfagni, R. Ruggeri, A. Agresti and E. Recami. Superluminal Processes and Signal Velocity in Tunneling Simulation. Phys. Lett. A 1995, 209: 227-234
    330 Ph. Balcou and L. Dutriaux. Dual Optical Tunneling Times in Frustrated Total Internal Reflection. Phys. Rev. Lett. 1997, 78: 851-854
    331 D. Mugnai, A. Ranfagna, and L. S. Schulman. Delay Time Measurement in a Diffraction Experiment: a Case of Optical Tunneling. Phys. Rev. E 1997, 55: 3593-3597
    332 D. Mugnai, A. Ranfagni, and L. Ronchi. The Question of Tunneling Time Duration: a New Experimental Test at Microwave Scale. Phys. Lett. A 1998, 247: 281-286
    333 D. Mugnai. The Tunnel Effect in Electromagnetic Propagation. Opt. Comm. 2000, 175: 309-313
    334 K. Wynne, J. J. Carey, J. Zawadzka and D. A. Jaroszynski. Tunneling of Single-Cycle Terahertz Pulses through Waveguides. Opt. Comm. 2000,176: 429-435
    335 D. Mugnai, A. Ranfagni and R. Ruggeri. Observation of Superluminal Behaviors in Wave Propagation. Phys. Rev. Lett. 2000, 84: 4830-4833

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700