面向气象预报数值模式的高效并行计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气科学尤其数值模式的发展进步与并行计算息息相关,这一点已经成为气象预报和并行计算两个领域的共识。随着并行计算技术的不断发展进步,并行计算机的规模愈来愈大,计算能力愈来愈强,这使得更为快捷、准确地进行数值预报成为可能。而预报模式能否高效地应用于高性能计算机,主要取决于模式所采用的数值方法是否可以实现有效的并行计算。
     本文从气象预报数值模式分布式存储并行计算的实际需要出发,着眼于谱元素方法和有限差分的并行计算性能,研究了二维半隐谱元素浅水波模式、中国科学院大气物理研究所第三代海洋环流模式和中国新一代多尺度预报模式等三个气象预报模式的高效并行计算,设计实现了相应的应用软件。本文的主要研究成果概括如下:
     (1) 讨论了数值并行计算技术的发展现状及其对数值预报模式的影响,深入研究了并行计算模型、并行编程模型和数值并行软件的软件工程等问题。
     (2) 关于谱元素方法及两维半隐谱元素浅水波模式的并行计算
     ⅰ) 依据切比契夫多项式和勒让德多项式的计算特点,提出了一个混合局部基函数预备定理,给出了两类混合局部基谱元素格式。采用混合局部基函数可以在不降低计算精度的情况下使元素矩阵具有特定的稀疏特征,且能保持谱元素方法在元素界面上的C~0连续性。
     ⅱ) 将有限元方法中的逐元素(EBE)策略应用于谱元素方法的并行计算,在PC机群上设计实现了并行应用软件PSES。研究表明:即使在网络性能瓶颈非常突出的以太网PC机群上,采用高阶谱元素方法(高于7阶)和通常的空间离散规模(32×32个元素以上)求解两维椭圆问题,可实现60%以上的8机并行效率。
     ⅲ) 研究了两维半隐谱元素浅水波模式的高效并行计算,给出了离散方程的逐元素(EBE)并行求解技巧,设计了相应的并行应用软件,并在PC机群上获得高效实现。
     (3) 关于中科院大气物理研究所第三代海洋环流模式的高效并行计算
     ⅰ) 基于对有限差分离散的分析,提出了一个面向显式时间积分并行计算的多重叠
    
    国防科学技术大学研究生院学位论文
     边界优化模型,指出了网络速度与处理器速度间的落差使得采用冗余计算取代
     部分通信成为一种具有相对优势的实用技术。结合以矩阵矢量乘积为主的迭代
     计算特点,从通信量、通信计算比和并行可扩展性等方面比较分析了离散格式
     对于并行计算的影响。
     11)发展了国内第一个高效并行海洋环流模式:深入研究了中国科学院大气物理所
     第三代海洋环流模式,分析了其串行计算特点和并行可扩展性,指出了其计算
     方法上存在的对并行计算的某些限制,对该模式组织了有效并行计算,并成功
     应用了包括多重叠边界在内的若干并行优化方法,在国产小型MPP系统和SGI
     originZoo。上都获得了较高的性能。
    (4)关于中国新一代多尺度预报模式动力内核的高效计算问题
     i)三维复杂核姆霍兹方程的离散求解是中国新一代多尺度预报模式动力内核中
     的一个瓶颈问题,该问题的计算性能决定了整个数值模式的效率。对此,本文
     提出了一种基于逐层门限技术的近似逆矩阵稀疏模式预选方法,并构造了相应
     的稀疏近似逆预条件子,结合GCR算法和G州[R卫S算法,首次将逐层门限稀
     疏近似逆预条件子应用于新一代多尺度预报模式动力内核的实际计算,数值实
     验表明这里给出的方法可以大大提高数值模式的计算效率。
The development of atmosphere science, especially the numerical meteorologic forecasting model, and the parallel computing are closed linked. To meet the practical requirements for distributed-memory parallel computing of numerical forecasting models, we study on the parallel characteristics of spectral element and finite difference methods. On this basis, we develop fast and parallel computations for three meteorologic models, including 2-D shallow water equations, the new generation multi-scale weather forecasting model and the ocean general circulation model. The main work is summarized as follows:
    (1) We analyze the situation of the parallel computing technology and it's influence on numerical forecasting models, and point out that the numerical models now are in serious demand for efficient parallel algorithms. We also review parallel computing model, parallel programming model and the software engineering for numerical applications.
    (2) On spectral element method and parallel computing of 2-D spectral element shallow water model
    i) We put forward a hybrid-local-basis theorem, and give two kinds of local basis schemes fitting for both the Chebyshev polynomials and the Legendre case. With these spectral element schemes, we can get elemental matrix with specific sparse pattern, without sacrificing precision. In addition, the famous C?continuity can be hold by these schemes.
    ii) The parallel computing of spectral element methods by element-by-element strategy is analyzed deeply, and we design a high-performance spectral element parallel software package named PSES. Numerical tests show that the high-order (>7) spectral element methods can performance efficiently on the relatively slow-network PC clusters, and parallel efficiency with eight nodes is more than 60% with normal elemental scale (32*32 elements).
    iii) For the semi-implicit spectral element method on the 2-D shallow water equations, we give a parallel mass-matrix-diagonal preconditioned CG method with the element-by-element strategy and develop the corresponding parallel software package. We also get high efficiency on PC clusters.
    
    
    
    (3) On parallel computing of the third generation Ocean General Circulation Model from LASG/IAP
    i) We present an optimization model by multi-overlapping-boundary for parallel explicit integration with finite difference discretization, and point out that the gap between speed of network and CPU makes it a practical technique. We compare the parallel characteristics of spectral element and finite difference from the point of view of communications, communication-to-computation ratio and scalability.
    ii) We organize the parallel computing of'the third generation ocean general circulation model from the Chinese Institute of Atmosphere Physics (LASG/IAP), and we also apply several parallel optimization strategies including multi-overlapping-boundary. The parallelism is implemented both on distributed memory and shared memory parallel computers, based on the spitting of latitude zones. This parallel ocean general circulation model is the first one in China.
    (4) On the efficient method for the dynamical core of the new generation multi-scale forecasting model
    i) We present a new multi-level sparse approximate inverse preconditnioner for the complicated 3-D helmholtz equations in the new generation weather forecasting model. As a result, the new sparse approximate inverse preconditioned GCR and GMRES algorithms are given and successfully applied in the dynamical core. Numerical tests show that the new algorithms perform very efficiently, and can greatly improve the efficiency of numerical model.
引文
[1] Swarztrauber P.N., Spectral transform method for solving Shallow Water Equation on Sphere, Mon. Wea. Rev., 1996, 124:730~744
    [2] Walker D.W., Worpley P.H., Parallelizing Spectral Transforming Method (Ⅰ), Concurrency: practice and experiences, 1992, 5:269~291
    [3] Walker D.W., Worpley P.H., Parallelizing Spectral Transforming Method (Ⅱ), Concurrency: practice and experiences, 1992, 4:509~531
    [4] Swarztrauber P.N., MPP: What Went Wrong? Can It Be Made Right?, Procseedings of the Seventh Workshop on the Use of Parallel Processors in meteorology, World Scientific Publishing, London, 1997
    [5] Worley P.H., Ian Foster, Parallel Spectral Transform Shallow Water Model: A Runtime-Tunable Parallel Benchmark Code, Proceeding of the Scalable High Performance Computing Conf., IEEE Computer Society Press, Los Alamitos, 1994
    [6] Ian Foster, Patrick H. Worley, Parallel Algorithms for the Spectral Transform Methods, SIAM J. Sci. Comput., 1997, 18: 806~837
    [7] Edmund Chadwick, A hybrid parallel algorithm for the spectral transform method which uses functional parallelism, Parallel Computing, 1999, 25:345~360
    [8] Scot Breitenfeld, Philippe Geubelle, Parallel Implementation of a Spectral Scheme for Simulations of 3-D Dynamical Fracture Events, The International Journal of High Performance Computing Applications, 2000, 14(1): 26~38
    [9] Swarztrauber P.N., Transposing Array on Multiprocessors De Bruijn Sequence, J. Para. & Dis. Comput., 1998, 53:63~77
    [10] 颜宏,大规模并行计算—21实际气象数值模拟与预报的未来,数值天气预报中的新技术,北京:气象出版社,1995:295~306
    [11] 李泽椿,陈德辉,国家气象中心集合数值预报业务系统的发展与应用,应用气象学报,2002,13(1):1
    [12] 王宗皓,郭庆雪,大气科学问题并行计算方法,数值天气预报中的新技术,北京:气象出版社,1995:307~333
    
    
    [13] 毕训强,曾庆存,气候模式并行计算,气候与环境研究,1997,2(2):99
    [14] 陈德辉,世界数值预报发展动态与中国数值预报发展设想,数值预报与并行计算研讨会论文集,重庆,2000
    [15] Sherwin S.J., Peir J., Shah O., Karamanos G. S., Computational haemodynamics: geometry and non-newtonian modelling using spectral/hp element methods, Comput. Visual. Sci., 2000, 3:77~83
    [16] Julia G. Levin, Mohamed Iskandarani, Dale B. Haidvogel, A nonconforming spectral element ocean model, Int. J. Numer. Meth. Fluids, 2000, 34: 495~525
    [17] Mario A. Casarin, Schwarz preconditioners for the spectral element discretization of the steady Stokes and Navier-Stokes equations, Numer. Math., 2001, 89:307~339
    [18] Francis X. Giraldo, A spectral element shallow water model on spherical geodesic grids, Int. J. Numer. Meth. Fluids, 2001, 35: 869~901
    [19] Francis X. Giraldo, The Lagrange-Galerkin method for the two-dimensional shallow water equations on adaptive grids, Int. J.Numer. Meth. Fluids, 2000, 33: 789~832
    [20] 孟相杰,张理论,曾泳泓,大规模分布式并行计算中的矩阵转置并行算法研究,计算机工程与科学,1999,5:67
    [21] Neungsoo Park, Viktor K. Prasanna, etc., Efficient Algorithms for Block-Cyclic Array Redistribution between Processor Sets, Available at: http://ceng.usc.edu/
    [22] Huang Kai, Xu Zhiwei, Scalable Parallel Computing: Technology, Architecture, Programming, BeiJing: China Machine Press, 1999
    [23] 郑维民,汪东升,石威,高性能集群计算:编程与应用,北京:电子工业出版社,2001
    [24] 李晓梅,莫则尧,文尚猛,窦勇,面向结构的并行算法—设计与分析,长沙:国防科技大学出版社,1996
    [25] 陈国良,并行计算—结构、算法和编程,北京:高等教育出版社,1999
    [26] 陈军,分布式存储环境下的并行可扩展性研究与应用,长沙:国防科技大学研究生院博士学位论文,2000
    [27] 安虹,陈国良,并行程序设计模型和语言,软件学报,2002,13(1):118
    [28] 赖树华,陆朝俊,孙永强,BSP模型下的并行程序设计与开发,上海交通大学学
    
    报,2001,35(2):228
    [29] Victorio E. Sonzogni, Andrea M. Yommi, Norberto M. Nigro, CFD Finite Element Parallel Computations on A Beowulf Cluster. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona
    [30] Sun Xian He, Scalability versus Execution Time in Scalable Systems, Journal of Parallel and Distributed Computing, 2002, 62:173~192
    [31] Kahlert M., Paffrath M., Wever U., Scalability of Industrial Applicatons on Different Computer Architectures, Ninth International Conference on Domain Decomposition Methods, Bergen, Norway, 1998
    [32] Murli, Maddalena L., Some Perspectives on High-performance Mathematics Software, Conference on High-performance software for Non-linear optimization, Ischia, 1997
    [33] Devloo P. R., Object Oriented Tools for Scientific Computing, Engineering with Computers, 2000, 16:63~72
    [34] Available at: http://www.nag.co.uk/projects/PINEAPL.html
    [35] Available at: http://www.mcs.anl.gov/petsc
    [36] Akin J. E., Object Oriented Programming via Fortran 90, Engineering Computations, 1999, 16(1): 26~48
    [37] Machiels L., Deville M.O., Fortran 90: An Entry to Object-Oriented Programming for the Solution of Partial Differential Equations, ACM Transactions on Mathematics Software, 1997, 23(32): 1146~1167
    [38] 迟利华,大型稀疏线性方程组在分布式存储环境下的并行计算,长沙:国防科技大学研究生院博士学位论文,1998
    [39] Saad Y., Schultz M. H., A generalized minimal residual algorithm for solving nonsymmetric linear systems, Sci. Stat. Comput., 1986, 7:856~869
    [40] Michele Benzi, A comparative study of sparse approximate inverse preconditioners, Applied Numerical Mathematics, 1999, 30:305~340
    [41] 迟利华,刘杰,李晓梅,并行近似逆并行预条件子,数值计算与计算机应用,2000,6:88-94
    [42] 李晓梅,任兵,宋君强,并行计算与偏微分方程数值解,长沙:国防科技大学出
    
    版社,1990
    [43] 吕涛,石济民,林振宝,区域分解算法—偏微分方程数值解新技术,北京:科学出版社,1997
    [44] 郭本瑜,偏微分方程的差分方法,北京:科学出版社,1988
    [45] Edmond Chow., Parallel Implementation and Practical Use of Sparse Approximate Inverse Preconditioners With A Priori Sparsity Patterns, Int. J. High Perf. COMPUT. Apps., 2001, 15: 56~74
    [46] Edmond Chow., A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners, SIAM J. Sci. Ccmput., 2000, 21: 1804~1822.
    [47] Carpentieri, Sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism, CERFACS Tech. Rep. No.:TR/PA/00/05, Available at: http://www.cerfacs.fr/~carpenti/
    [48] MARCUS J. GROTE, THOMAS HUCKLE, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput., 1997, 18(3): 838~853
    [49] Michele Benzi, A sparse approximate inverse preconditioner for nonsymmetric linear for nonsymmetric linear systems, SIAM J.Sci. Comput., 1998, 19(3): 968~994
    [50] Claus Koschinski, New methods for adapting and for approximating inverses as preconditioners, Applied Numerical Mathematics, 2002, 41: 179~218
    [51] Mario A. Casarin, Schwarz preconditioners for spectral and mortar finite element methods with applications to incompressible fluids, [PhD Thesis], New York University, 1996
    [52] Zhang Jun, A sparse approximate inverse preconditioner for parallel preconditioning of general sparse matrices. Applied Mathematics and Computation, 2002, 130: 63~85
    [53] 韩庆书,王唯,求解二维Navier—Stokes方程的谱元法,北京联合大学学报,1998,12:124
    [54] 秦国梁,徐忠,谱元方法求解正方形封闭空腔内的换热,计算物理,2001,18:119
    [55] 秦国梁,徐忠,谱元方法求解两维不可压Navier—Stokes方程,应用力学学报,2000,17:20
    
    
    [56] Luca F. Pavarino, Domain decomposition methods with small overlap for On-On-2 spectral elements. Applied Numerical Mathematics, 2000, 33: 463-470
    [57] Anita W. Tam, High-order Spatial Discretization Methods for the Shallow Water Equations, [PhD Thesis], University of Toronto, 2001
    [58] Thomas S.J., Loft R.D. , Parallel Semi-Implicit Spectral Element Methods for Atmospheric General Circulation Models, Journal of Scientific Computing, 2000, 15(4) : 499-518
    [59] Jose Valenciano, Robert G.Owens, An h-p adaptive spectral element method for Stokes flow, Applied Numerical Mathematics, 2000,33: 365-371
    [60] G.Wang, D.K.Tafti, Uniprocessor performabce enhancement with additive Schwarz preconditioners on Origin 2000, Advance in Engineering Software, 1998, 29(3) : 425-431.
    [61] Wang G., Tafti D.K. , Parallel performance of additive Schwarz preconditioners on Origin 2000, Advance in Engineering Software, 1998,29(3) : 433-439.
    [62] Yang Dan Ping, Analysis of a parallel Schwarz algorithm for elliptic problems, Applied Mathematics and Computation, 2000,114: 75-93
    [63] Shen Jie, Effcient spectral-galerkin method-Direct solvers of second-and fourth-order equations using legendre polynomials, SIAM J. Sci. Comput., 1994, 15: 489-505
    [64] Shen Jie, Effcient spectral-galerkin method-Direct solvers of second-and fourth-order equations using chebyshev polynomials, SIAM J. Sci. Comput., 1995, 16: 74-87
    [65] Black Kelly, A spectral element technique with a local spectral basis, SIAM J. Sci. Comput., 1997, 18: 355-370
    [66] Claudio Canuto, Hussaini M.Yousuff, Alfio Quarteroni, Thomas A. , Spectral method in fluid dynamics, Springer, Berlin, 1988
    [67] Boyd J. P. , Chebyshev and Fourier spectral methods ( 2nd ed. ) , DOVER press, New York, 1999
    [68] George Karniadakis, Spencer J. Sherwin, Spectral/hp element method for CFD, Oxford University Press, 1999
    [69] Bernhard Hientzsch., Fast Solvers and Domain Decomposition Preconditioners for
    
    Spectral element Discretizations of Problems in H(curl), [PhD Thesis], Courant Institute of Mathematical Science, New York University, 2001
    [70] Hughes T.J.R., EBE implicit algorithms for heat conduction, J. Engin. Mech., 1983, 109: 576~585
    [71] 周树荃,梁维泰,邓绍中,有限元结构分析并行计算,北京:科学出版社,1997
    [72] Seriani G.., 3-D spectral element-by-element wave modeling on Cray T3E, Phys. Chem. Earth (A), 1999, 24(3): 241~245
    [73] Bova S.W., Carey G..F., A distributed memory parallel element-by-element scheme for semiconductor device simulation, Comput.Methods Appl. Meth. Engrg., 2000, 181: 403~423
    [74] Hiroshi Okuda, Norihisa Anan, Optimization of element-by-element FEM in HPF, Concurrency Computat. Pract. Exper., 2002, 2(3): 647~663
    [75] 莫则尧,李晓梅,工作站网络环境下的并行计算,计算机学报,1997,20(6):510
    [76] Hockney R.W., A Framework of Benchmark Performance Analysis, Advances in Parallel Computing, Elsevier Science Pub., 1993
    [77] 徐长发,实用偏微分方程数值解法,华中理工大学出版社,1989
    [78] Patera A.T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 1984,54: 468~488
    [79] Serge Goossens, Kian Tan, Dirk Roose, A Krylov Schwarz Iterative for the Shallow Water Equations, Phys. Chem. Earth., 1998, 23(5): 485~490
    [80] Curchitser E. N., Iskandarani M., Haidvogel D. B., A spectral element solution of the shallow water equations on multiprocessor computers, Journal of Atmospheric and Oceanographic Technology, 1998, 15(2): 510~521
    [81] Mark Taylor, The Spectral Element Method for the Shallow Water Equations on the Sphere, J. Comput. Phys., 1997, 130: 92~108
    [82] Richard D.Loft, Stephen J. Thomas, John M. Dennis, Terascale Spectral Element Dynamical Core for Atmosphere General Circulation Models, Supercomputing 2001, Denver Colorado
    [83] J. B. Dake, I. T. Foster, J. Michalakes, P.H.Worley, Parallel Algorithms for Semi-lagrangian Transport in Global Atmosphere Circluation Model, proceeding of 7th
    
    SIAM conference on parallel processing, 1995, 118~124
    [84] C. Armand, Object oriented parallel implementation of the element by element conjugate gradient method, Available at: http://www.ticam.utexas.edu/~armando/
    [85] 董敏,气候模式的基本原理和技术方法,气象出版社,1997
    [86] Giovanni Erbacci, Valeria Simoncini, Roberto Ansaloni, A Spectral Finite Element Model for Shallow Water Equations: Implementation Experiences on the Cray T3D, CUG 1995, Spring Proceedings, 35~42
    [87] 陈德辉等,新一代多尺度数值预报系统技术手册,中国气象科学研究院NWP创新基地,2001
    [88] William C. Skamarock, Piotr K. Smolarkiewicz, Josepn B.Klemp, Preconditioned conjugated residual Solvers for Helmholtz Equations in Nonhydrostatic Models, Mon. Wea. Rev., 1997, 125: 587~599
    [89] Chen, S.H., Sun W.Y., Application of the multigrid method and a flexible hybrid coordinate in a non-hydrostatic model, Mon. Wea. Rev., 2001, 129: 2660~2676
    [90] Malevsky, Thomas S., Benoit R., Desgagne M., Parallel simulation of Compressible Atmosphere Flows, International Conference on Massively Parallel Processing, Elsevier Scientific Publishers, 1996
    [91] Stanley C.Eisenstat, Howard C. Elaman, Martin H. Schyltz, Variation Iterative Methods for Non-symmetric systems of Linear Equations, SIAM J. NUMER. ANAL., 1983, 20: 345~357
    [92] Chow, Sadd Y., Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput., 1997,18:1657~1675
    [93] Frederik Jan Lingen, A Generalised Conjugate Residual Method For The Solution of Non-symmetric Systems of Equations with Multiple Right-hand Sides, Int. J. Numer. Meth. Eng., 1999, 44: 641~656
    [94] Gilbert J., Predicting structure in sparse matrix computations, SIAM J. Matrix. Anal. Appl., 1994, 15: 62~79.
    [95] 王能超,同步并行算法设计,北京:科学出版社,1996
    [96] 丁咏华,原庆能,臧斌宇,朱传琪,多处理机系统循环间数据重用的cache优化,软件学报,1998,9(8):582
    
    
    [97] Zhang XueHong, User's Guide and Reference Manual for the Third Generation of IAP/LASG World Ocean General Circulation Model, State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics, Institute of Atmosphere Physics, Chinese Academy of Science, 1999
    [98] Arakawa, Computational design of the basic dynamical processes of the UCLA General Circulation Model, Methods in Comp. Phys. , 1977, 17: 173-265
    [99] Konchady M. , Implementation and performance evaluation of a parallel ocean model, Parallel Computing, 1998, 24: 181-203
    [100] Bleck R., A comparison of data-parallel and message passing versions of the Miami Isopycnic Coordinate Ocean Model , Parallel Computing , 1995 , 21 : 1695-1720
    [101] Higdon R.L., Implementation of a Barotropic-Baroclinic Time Splitting for Isopycnic Coordinate Ocean Modeling, Journal of Computation Physics, 1999,148: 579-604
    [102] Jin Xiangze, Zhou Tianjun, Fundamental Framework and Experiments of the Third Generation of IAP/LASG World Ocean General Model, Advance in Atmosphere Science, 1999,2(1) : 11-24
    [103] Harvey J. Wassermann, Performance Evaluation of the SGI Origin2000: A Memory-Centric Characterization of LANL ASCI Applications, SC97, Available at: http ://www. sc97. acm. org/
    [104] Luo Yong , Shared Memory vs. Message passing: the COMOPS Benchmark Experiment, The Journal of Supercomputing, 1999, 13: 283-301
    [105] 莫则尧,大型科学与工程应用程序并行化关键技术及其应用研究,北京应用物理 与计算数学研究所博士后研究工作报告,1999
    [106] Arnt H. Veenstra, Hai Xiang Lin, Edwin A.H. Vollebregt, A Comparison of Scalability of Different Parallel Iterative Methods for Shallow Water Equations, Contemporary mathematics, 1998, 218: 357-364
    [107] M. Xue, Droegemeier K. K., Wong V. , The Advanced Regional Prediction System-a multi-scale nonhydrostatic atmospheric simulation and prediction model, Part I: Model dynamics and verification, Meteorol. Atmos. Phys. , 2000, 75: 161-193
    [108] George Puliot , A Variable Resolution nonhydrostatic Global Atmospheric Semi-implicit Semi-lagrangian Model, [PhD Thesis], North Carolina State University,
    
    2000
    [109] Vuik C., Frank J., A parallel block-preconditioned GCR method for incompressible flow problems, Future Generation Computer Systems, 2001, 18: 31~40
    [110] Stephen M.Griffles, Claus Boning, Developments in ocean climate modeling, Ocean Modelling, 2000, 2: 123~192
    [111] CRAIG DOUGLAS, Special Solution Strategies Inside a Spectral Element Ocean Model, Mathematical Models and Methods in Applied Sciences, World Scientific Publishing Company, 2002
    [112] Julia G. Levin, Mohamed Iskandarani, Dale B. Haidvogel, A Spectral Filtering Procedure for Eddy-Resolving Simulations with a Spectral Element Ocean Model, J. of Comput. Phys., 1997, 137: 30~154
    [113] Boyd J.P., Multipole Expansion and Pseudospectral Cardinal Function: A New Generation of the Fast Fourier Transform, J. Comp. Phys., 1992, 103: 184-186
    [114] Paul F. Fisher, High-performance Spectral Element Algorithms and Implementations, Available at: http://www-unix.mas.anl.gov/appliedmath/flow/cfd.html
    [115] Gottlieb D., Orszag S.A., Numerical Analysis of Spectral Method: Theory and Applications, SIAM, Philadelphia, 1977
    [116] 张宝琳,谷同祥,莫则尧,数值并行计算原理与方法,北京:国防工业出版社,1999
    [117] 何银年,杨晓忠,非线性Galerkin算法和Galerkin算法,西安邮电学院学报,1998,3(4):1
    [118] Alfio Quarteroni, Alberto Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994
    [119] 王承尧,王正华,杨晓辉,计算流体力学及其并行算法,长沙:国防科技大学出版社,2000
    [120] 徐树方,矩阵计算,北京:北京大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700