钢坯修磨机磨头运行轨迹及压下力控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁工业的发展,对钢坯修磨机性能指标要求越来越高,磨头是钢坯修磨机的核心组件,其控制性能的好坏直接影响修磨质量。本文以钢坯修磨机为研究对象,以提高钢坯修磨机磨头控制性能为目的,通过理论分析、仿真研究和试验验证,对钢坯修磨机磨头运行轨迹及压下力控制技术进行了相关研究,改进了磨头电液控制系统,提升了钢坯修磨机的自动化程度。
     本文重点分析了磨头压下力控制的特点和消除多余力的措施,针对磨头压下系统中多余力的影响,提出在三通比例减压阀开环控制压力的基础上叠加闭环控制;为提高工作效率,提出压下过程采用位置、压力复合控制;为减小磨头平移系统进刀时的冲击,提出采用斜坡控制器延长伺服阀阀口打开时间。利用建模与仿真软件AMESim分别建立了磨头压下系统和磨头平移系统的仿真模型,并对压下系统的下压过程及压力控制特性,平移系统的速度控制特性进行了仿真分析。着重探讨了PROFIBUS-DP协议基本功能和网络配置方式,构建出钢坯修磨机电气控制系统分布式通信网络和磨头控制系统硬件配置及软件实现。在此基础上建立了磨头试验系统,对磨头压下系统主动加载和磨头平移系统进刀过程进行了试验研究,验证了理论和仿真分析。
With the development of iron and steel industry, the request to performance index of steel grinding machine is more and more high. Grinding head is the core components of steel grinding machine. Its control performance has a direct impact on the grinding quality. In this paper, grinding head is subject investigated. In order to improve control performance of grinding head, the control technique on track and force of steel machine grinding head is researched from aspects of theory, simulation and test. The electro-hydraulic control systems and the automatic level of grinding head have been improved on.
     The force control characteristics of grinding head and the elimination of redundant force are analyzed in detail. Considering influence of redundant force, it is put forward using closed-loop to control pressure in the basis of three-way proportional pressure reduce valve controlling pressure in open-loop; the position and pressure compound control is brought forward in the down process to increase efficiency; in order to reduce impact of feed, it is put forward to use ramp function controller to extend the opening time of the valve. And then, the simulation models of grinding head loading system and grinding head translating system are separately established with AMESim. The simulation analyses with pressure control characteristic, down process of the grinding head loading system and speed control characteristic of the grinding head translating system are carried out. The basic functions and network configuration of the PROFIBUS-DP are discussed. The distributed communication networks for electrical control system of steel grinding machine,hardware configuration and software design of the grinding head are built. And finally the test systems of the grinding head are built up to have study of active loading and feed. The theoretical and simulation analysis are verified by the test result.
引文
[1]王宛山.钢坯修磨的新技术[J].机械设计与制造,1988(1):24-26.
    [2]王宛山,郑焕文,王生力,等.砂轮速度对钢坯修磨影响的研究[J].东北大学学报(自然科学版),1982(2):47-60.
    [3]蔡光起,郑焕文,杨文恭,等.修磨压力对钢坯修磨影响的研究[J].东北大学学报(自然科学版),1982(4):63-77.
    [4]蔡光起.大修磨工艺参数对修磨生产率的影响[J].特殊钢,1984(1):35-41.
    [5]蔡光起,郑焕文.修磨砂轮磨除能力系数及在摩擦系数研究中的应用[J].特殊钢,1984(2):72-81.
    [6]蔡光起,郑焕文.磨除能力系数—评价钢坯修磨砂轮磨削能力的新指标[J].东北大学学报(自然科学版),1984(1):91-101.
    [7]蔡光起,郑焕文.80m/s高速400kgf负荷钢坯修磨的试验研究[J].金刚石与磨料磨具工程,1984(4):1-7 .
    [8]杨耀亮,张志真,刘建新,等.钢坯修磨机[P].中国:CN 89201981.6,1989-11-08.
    [9]郑焕文,蔡光起.近十年国内外磨削科技的新进展[J].金刚石与磨料磨具工程,1992(1):1-6.
    [10]王益群,王燕山.电液力控制研究的进展[J].液压与气动,2002(7):1-4.
    [11]沙道航,王大庆,葛思华,等.钢坯修磨机电液比例加载系统动特性的研究[J].机床与液压,1996(6):17-21.
    [12]沙道航,杨华勇,葛思华,等.钢坯修磨机电液伺服加载系统跟随特性的研究[J].重型机械,1997(1):33-37.
    [13] Jiao Z X,Gao J X,Hua Q.The Velocity Synchronizing Control on the Electro-hydraulic Load Simulator[J].Chinese J of Aeronautics,2004,17(1):9-46.
    [14] Niksefat N,Sepehri N.Design and Experimental Evaluation of a Robust Force Controller for an Electro-hydraulic Control Actuator via Quantitative Feedback Theory[J].Control Engineering Practice,2000,8(12):1335-1345.
    [15]高俊霞,华清,焦宗夏.电液加载系统中的多余力及各种补偿方法的比较[J].液压气动与密封,2003,101(5):1-6.
    [16]王永进.大型钢坯修磨机恒力加载系统的研究[D].太原:太原理工大学,2003.
    [17]沙道航,葛思华,何钺.大型钢坯修磨机恒力加载系统神经网络自适应控制的研究[J].机床与液压,1996(1):14-17.
    [18]沙道航,王大庆,葛思华,等.大型钢坯修磨机砂轮加载系统模型跟随自适应控制的研究[J].西安工业学院学报,1996(1):44-51.
    [19]李运华,史维祥,林廷圻.近代液压伺服系统控制策略的现状与发展[J].液压与气动,1995(1):3-6.
    [20] G. P. Liu,S. Daley.Optimal-tuning nonlinear PID control of hydraulic systems [J] .Control Engineering Practice,2000(8):1045-1053.
    [21] Liu Rong , Pan Huachen , Chen Ying . CONTROL STRATEGY FOR ELECTRO-HYDRAULIC POSITION SERVO SYSTEM WITH GENERALIZED PULSE CODE MODULATION[J].Chinese Journal of Mechanical Engineering,2007,20(3):P50-53.
    [22] Rui Liu,Andre Alleyne.Nonlinear force/pressure tracking of an electro-hydraulic actuator [J].ASME Journal of Dynamic Systems, Measurement and Control,2000,122(3):232-237.
    [23] Andrew Alleyne,Rui Liu.A simplified approach to force control for electro-hydraulic systems [J].Control Engineering Practice,2000(8):1347-1356.
    [24] Rong-Fong Fung,Rong-Tai Yang.Application of VSC in position control of a nonlinear electro-hydraulic servo system[J].Computers & Structures,1998,66(4):365-372.
    [25] L. Laval,N.K.M’Sirdi,J.C Cadiou.H∞force control of a hydraulic servo- actuator with environmental uncertainties[J].Proc. IEEE Conf. Robotics and Automation, Minneapolis, MN,1996:1566-1571.
    [26]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].浙江:浙江大学出版社,2006.
    [27]王春行.液压控制系统[M].北京:机械工业出版社,1999.
    [28]王永进,权龙,杨付生.大型钢坯修磨机恒力加载系统的研究[J].工程设计学报,2006(1):58-61.
    [29] F. Norberto Pires,Tiago Godinho,Ricardo Araujo.Force control for industrial applications using a fuzzy PI controller[J].Sensor Review,2004,24(1):60-67.
    [30] Xu Weiwei,Mamoru Minami,Yasushi Mae.Position/force control of grinding robot by using real-time presumption of constrained condition[J].SICE 2007 Annual Conference,2007:1861-1868.
    [31] Ikeda T,Minami M.Position/force control of a manipulator by using an algebraic relation and evaluations by experiments[J].Advanced Intelligent Mechatronics,2003:503-508.
    [32]权龙,许小庆,李敏,等.电液伺服位置、压力复合控制原理的仿真及试验研究[J].机械工程学报,2008,44(9):100-105.
    [33]廖常初.S7-300/400 PLC应用技术[M].北京:机械工程出版社,2004.
    [34]高金源,夏洁.计算机控制系统[M].北京清华大学出版社,2007:366-397.
    [35]刘美俊.现场总线概述[J].中华纸业,2004(7):58-61.
    [36]张士超,仪垂杰,林海波,等.现场总线的技术特点及应用分析[J].国内外机电一体化技术,2007(3):16-18.
    [37]王杰.现场总线技术的现状与发展[J].电气传动自动化,2005(3):15-19.
    [38]张琳.工业自动化系统现场总线技术的现状与展望[J].国内外机电一体化技术,2006(3):1-2.
    [39]林屹.基于PROFIBUS现场总线控制系统的研究与应用[D].南京:南京信息工程大学,2007.
    [40]徐春玲,凌志浩.PROFIBUS现场总线概述及发展趋势[J].科技广场,2005(12):117-119.
    [41]郝战存.可编程控制器发展综述[J].河北工业科技,2004(2):53-56.
    [42]郑最,巩建平,张学.现代可编程序控制器原理与应用[M].北京:科学出版社,1999.
    [43] Siemens AG.Configuring Hardware and Communication Connections STEP7 V5.3 Manual.http://www.ad.siemens.com.cn/download,2003.
    [44] Siemens AG.Working with STEP7 V5.3 Getting Started.http://www.ad.siemens.com.cn/ download,2003.
    [44] Siemens AG.S7-300可变程序控制器产品目录.http://www.ad.siemens.com.cn/downlo- ad,2003.
    [45] Siemens AG.S7-400可变程序控制器产品目录.http://www.ad.siemens.com.cn/downlo- ad,2003.
    [46] Siemens AG.工业通讯现场设备产品目录.http://www.ad.siemens.com.cn/download,2001.
    [47]宋辉.Siemens PLC在闭环控制系统中PID算法的实现[J].机床与液压,2007(3):33-35.
    [48]秦家升,游善兰.AMESim软件的特征及其应用[J].微机应用与智能化,2004(12):6-7.
    [49]刘海丽.基于AMESim的液压系统建模与仿真[D].西安:西北工业大学,2006.
    [50]赵克定,刘冬.负载刚度对主动式电液力控制系统性能的影响[J].机械工程师,2005(6):23-24.
    [51]付永领,祁晓野.AMESim系统建模和仿真-从入门到精通[M].北京:北京航空航天大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700