转台低速性能分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度测试转台是一种用来对惯导系统和惯性仪表进行误差模型标定的设备。测试转台性能的优劣直接关系到测试试验的可靠性和精度,是提高航空、航天产品和武器系统的精度和性能的基础。随着航空、航天技术的迅猛发展,对导航和制导设备的性能和精度的要求不断提高,相应地需要精度更高测试转台。然而,转台低速性能的提高却受到以摩擦力矩为主的扰动力矩的影响,而摩擦力矩的减小又受到工艺水平及实验经费等条件的限制。因此,从控制方法上设计能克服摩擦影响的控制律,减弱或消除摩擦影响从而达到高精度控制,对研制结构简单且性能优良的转台具有重要的理论意义和实际应用价值。针对本课题,主要完成了以下工作:
     首先介绍了国内外转台低速性能的研究现状,着重分析了前人在转台低速性能影响方面的研究情况;针对摩擦补偿问题,介绍了常用的摩擦模型以及摩擦补偿研究方法。在转台基本结构的基础上,针对具体系统建立转台的数学模型;介绍了现在转台常用的PID控制方法,并分析了其中各参数对系统性能的影响。
     针对转台低速性能问题,深入分析了影响转台低速性能的主要因素,即测角系统误差、电机波动力矩和摩擦干扰力矩,研究了这些因素对系统低速性能的影响;分析了加速度反馈抑制外界干扰的原理,在此基础上设计了基于滤波器/观测器的加速度反馈控制律,特别针对小幅值低频正弦输入信号和低速斜坡信号进行了仿真分析和研究。
     理论和实验分析表明,系统跟踪误差是与给定信号同频率的谐波叠加的形式,在此基础上分析了前馈控制和自适应控制的特点,将两者进行有机结合为自适应前馈控制;分析了转台自适应前馈控制原理,设计出相关控制律,并通过仿真证明了方案的正确性。
     以某单轴转台的研制为契机,设计了测角系统和接口硬件电路。针对光栅使用过程中出现的偏心和斜角误差进行了分析,实验验证了误差补偿的正确性,提高了测角精度。设计实现了工控机控制软件的编写,完成了自适应前馈控制算法的编写和实验。实验结果表明该方法是可行有效的。
Test turntable with high precision is a kind of significant apparatus for model calibration of inertial navigation systems and inertial instruments. The quality of test turntable determines the reliability and accuracy of experiments and is the foundation upon which the precision and performance of aeronautics and astronautics products and weapon systems is guaranteed. With the rapid progress of aeronautics and astronautics technologies, more excellent performance and accuracy of navigation and guidance is demanded, which in turn need improvement of the test turntable. However, the enhancement of the turntable in performance is limited by the disturbing torque, especially friction torque, while the reduction of friction is limited by technological level and experimental funds. Therefore, devising interrelated control laws to eliminate and compensate friction effect and in turn achieving high precision control contribute apparent theoretical significance and applicant value for the research of turntable with simple structure and high precision. For the problems mentioned above, relative researches are finished as follows:
     First, the research situations of turntable with low velocity are introduced and especially in the aspect of friction effect for turntable. Aiming at the problem of friction compensation, friction models in common use and compensation methods are presented. Based on the structure of turntable, the control model is constructed and linearization for actual system is finished, which in turn achieve the mathematic model of turntable. Also, the PID control law in tradition for turntable is recommended and the influence of parameters in PID for system is analyzed.
     For the low velocity performance of turntable, research is carried on about main factors which show clear effects on the low velocity performance, such as angel measuring error, disturbing torque of motor and friction torque, and relative researches are completed by simulation and experiments. In foundation of the theoretical analysis for restraining environmental disturbance by acceleration negative feedback, the control law for acceleration negative feedback which based on filter and observer are designed, and more simulations and researches are carried out, especially for sinusoidal signals with low frequency and ramp signals with small slope.
     By analyzing theoretical simulation and actual experiment, the tracking error of system is a series of signals with the same frequency as the order signal, based on which, the character of forward-back control method and self-adaptive control method are analyzed. In turn, self-adaptive and forward-back control law is conbined. The simulation indicates that this method performs apparent control capability in restraining the effect of friction torque for turntable performance in low velocity.
     Based on the research of a kind of turntable, hardware of angel measuring system and interface circuits is devised. For the decentration and pitched error in the process of grating application, relative researches are carried out, and of which, the correctess is poroved by experiment. Also, the software of industrial control computer is accomplished and the self-adaptive and forward-back control law is tested by turntable with single shaft. Finally, the experiment results significantly suppose the validation of the control law designed.
引文
1刘金香,刘树荣,黄庆根. CGC伺服设计的一些考虑.美国惯导测试设备测试技术的现状及趋势.中国惯性技术学会.中国航空精密机械研究所. 2000, 6: 49~53
    2王旭永.三轴台外框电液位置伺服系统低速运动的研究.哈尔滨工业大学博士学位论文. 1993: 6~10
    3姜玉宪.伺服系统低速跳动问题.自动化学报. 1982, 8(2): 136~144
    4张锦江.三轴仿真机转台的控制问题研究.哈尔滨工业大学工学博士论文. 1998: 2~8
    5曾庆双.三轴测试转台角位置测量系统与控制系统设计研究.哈尔滨工业大学工学博士论文. 1997: 1~11
    6刘强,尔联洁,刘金琨.摩擦非线性环节的特性,建模与控制补偿综述.系统工程与电子技术. 2002, 24(11): 45~52
    7 D. Karnopp. Computer simulation of stick-slip friction mechanical dynamic systems. Journal of Dynamic Systems, Measurement, and Control. 1985, 107(1): 100~103
    8 Dahl P. A Solid Friction Model. Aerospace Corp. 1968
    9 Canudas De Wit C. A New Model for Control of Systems with Friction. IEEE Trans. on Automatic Control. 1995, 40(3): 419~425
    10 D. A. Haessing and B. Friedland. On the Modeling and Simulation of Friction. Tans. ASME: Journal of Dynamic Systems, Measurement, and Control. 1991, 113(3): 354~362
    11 Morel. G, Iagnemma. K. The Precise Control of Manipulators with High Joint Friction Using Base Force/Torque Sensing. Automatica. 2000, 36: 931~941
    12 Armstrong B. Control of Machines with Friction. Norwell. Kluwer Academic Publishers. 1991
    13 Li. Zhongjuan, Zhang. Xinzheng. Variable Structure Control Method for Discrete-time System. Proceedings of the 27th Chinese Control Conference. 2008, 111~113
    14 Betin. F, Sivert. A, Nahid. B, Capolino. G. A. Position Control of an Induction machine Using Variable Structure Control. IEEE/ASME Transactions onMechatronics. 2006, 11(3): 358~361
    15 Choi. Han. Ho. Output Feedback Variable Structure Control Design with an H2 Performance Bound Constraint. Automatica. 2008, 44(9): 2403~2408
    16 Mohamed Vall. O. M. An Approach to Polynomial NARX/NARMAX Systems Identification in a Closed-loop with Variable Structure Control. International Journal of Automation and Computing. 2008, 5(3): 313~318
    17 Parra-vega, V. Chattering-free dynamic TBG adaptive sliding mode control of robot arms with dynamic friction for tracking in finite-time. Proceedings IEEE International Conference on Robotics and Automation. 2001, 4: 21~26
    18 Zhang Wenjing. An Adaptive Sliding Mode Compensation for Friciton and Force Ripple in PMSM AC Servo System. Proceedings of the 26th Chinese Control Conference. 2007: 71~75
    19 Lu Lu, Bin Yao, Qingfeng Wang, and Zheng Chen. Adaptive Robust Control of Linear Motor Systems with Dynamic Friction Compensation Using Modified LuGre Model. Proceedings of the 2008 IEEE/ASME International Conference on Advaced Intelligent Mechatronics. 2008: 961~966
    20 Jinzhu Zhou, Baoyan Duan and Jin Huang. Adaptive Control of Servo Systems with Uncertainties Using Self-Recurrent Wavelet Neural Networks. Proceedings of the IEEE International Conference on Automation and Logistics. 2007: 2111~2116
    21 Hariong Zeng and Nariman Sepehri. Adaptive Backstepping Control of Hydraulic Manipulators with Friction Compensation Using LuGre Model. Proceedings of the 2006 American Control Conference. 2006, 3164~3169
    22 Jen-te Yu. A New Adaptive Backstepping Coulomb Friction Compensator for Servo Control Systems. Asian Journal of Control. 2009, 11(1): 1~10
    23 T. Liao, T. Chen. An Exponentially Stable Adaptive Friction Compensator. IEEE Trans. on Automatic Control. 2000, 45(5): 77~980
    24 J. T. Huang. An Adaptive Compensator for a Servo-system with Coulomb and Viscous Friction. Proceedings of the 2001 International Conference on Control Applications. 2001: 196~199
    25 L. Weiping and X. Cheng. Adaptive High Precision Control of Position Table Theory and Experiments. IEEE Trans. on Control System Technology. 1992, 2: 265~270
    26李书训,姚郁,王子才.一种自适应摩擦补偿方法研究.电机与控制学报,1999, 3(3): 129~133, 142
    27 Ashwani K. Padthe, JinHyoung Oh, Dennis S. Bernstein. On the LuGre Model and Friction Induced Hysteresis. Proceedings of the 2006 American Control Conference. 2006: 3247~3252
    28 S. Chatterjee, T. K. Singha and S. K. Karmakar. Effect of High-Frequency Excitation on a Class of Mechanical Systems with Dynamic Friction. Journal of Sound and Vibration, 2006, 269: 61~89
    29 R. H. A. Hensen, M. J. G. van de Molengraft, and M. Steinbuch. Friction Induced Hunting Limit Cycles: A Comparison between the LuGre and Switch Friction Model. Automatica. 2003, 9: 2131~2137
    30杨松.高精度机械轴承转台摩擦补偿研究.哈尔滨工业大学博士论文. 2009: 43~48
    31 M. K. Ciliz, M. Tomizuka. Neural Network Based Friction Compensation in Motion Control. Electronics Letters. 2006, 40(12): 752~753
    32 S. M. Song, Z. Y. Song, B. T. Zhang, G. R. Duan. Adaptive Wavelet Network Friction Compensation of Inter-Satellite Optical Communication Coarse Pointing Subsystem. Proceedings of the 6th World Congress on Intelligent Control and Automation. 2006: 2768~2772
    33纪志成,沈艳霞,姜建国.基于MALAB无刷直流电机系统仿真建模的新方法.系统仿真学报. 2003, 15(12): 1745~1749
    34王宏.无刷直流方波电机PWM控制器设计.现代雷达. 2002, 6(3): 83~86
    35克晶.高精度转台摩擦补偿研究.哈尔滨工业大学博士学位论文. 2003: 17~22
    36马杰.电动转台伺服控制系统设计研究.哈尔滨工业大学硕士论文. 1997:4~6
    37王强.大力矩低脉动无刷直流电动机系统及特殊问题的研究.哈尔滨工业大学博士论文. 1996: 33~46
    38钟于义.超低速转台控制方法的研究与实现.哈尔滨工业大学硕士论文. 2007: 14~15
    39 A. Hansson, P. Gruber, D. Todtli. Fuzzy Anti-reset Windup for PID Controllers. Proc. World Congress on Automatic Control, IFAC, Sidney, Australia, 1993: 103~110
    40 B. Armstrong. B. Amin. PID Control in the Presence of Static Friction: ACompensation of Algebraic and Describing Function Analysis. Automatica. 1996, 32(5): 679~692
    41 S. Jokro, S. L. Shah. Adaptive PID Control. Proceedings of the 1985 American Control Conference, San Francisco, 1985: 1528~1534
    42 C. C. Hang, W. K. Ho, L. S. Cao. A Comparison of two Design Methods for PID Controllers. ISA Transations. 1994, (33): 147~151
    43 G. Zhang, J. Furusho. Speed Control of Two-inertia System by PI/PID Control. IEEE Trans. on Control Systems Technology. 2006 ,47(3): 1~3
    44 P. J. Grawthrop, P. E. Nomikos. Automatic Tuning of Commercial PID Controllers for Single-Loop and Multi-loop Applications. IEEE Control Systems Magazine. 1990, 10(1): 1123~1138
    45李智铭.三轴飞行反震转台频带拓宽技术研究.航天控制.2000, (3): 10~16
    46刘洪玉.转台伺服系统低速性能分析与摩擦补偿研究.哈尔滨工业大学硕士论文. 2006: 6~8
    47陈娟.伺服系统低速特性与抖动补偿研究.中国科学院博士论文. 2001: 15
    48徐国柱,刘樾,张元生.转台速率波动原因及其对转台速率性能影响的分析.中国惯性技术学会测试专业委员会第八次学术交流会论文集. 2003: 74
    49翟百臣.直流PWM伺服系统低速平稳性研究.中国科学院博士论文. 2005: 25~27
    50曾庆双,秦嘉川.转台伺服系统低速性能分析.中国惯性技术学报. 2001, 9(2): 65~66
    51王忠山.高精度机械轴承转台摩擦补偿研究.哈尔滨工业大学博士论文. 2007: 36~41
    52徐国柱,刘樾,孟凡军.利用加速度反馈改善转台低速性能.中国惯性技术学报. 2008, 16(4): 503~504
    53孟凡军,徐国柱,郭晓月.基于转台观测器的扰动补偿在转台控制中的应用.中国惯性技术学报. 2009, 17(4): 489~490
    54仇振安.姿态稳定平台测控技术研究.国防科学技术大学硕士论文. 2006: 53~56
    55胡寿松.自动控制原理. 2001: 258~263
    56黄金鑫,刘樾.基于自适应跟踪的精密角振动控制系统设计研究.中国惯性技术学会测试专业委员会第十一次学术交流会论文集. 2009: 121~123
    57 Karl. Johan. Austrom, Bjorn. Writtenmark. Adaptive Control. Addison Wesley. 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700