固体酸催化剂SO~(2-)_4/TiO_2-SiO_2催化酯化反应对玉米芯热解油性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着石油越来越紧缺,科研人员开始寻求燃油的替代品。考虑到生物质的可再生性,生物质热解油技术受到了广泛的关注。然而生物质热解油的热值低、粘度大、氧含量高且热不稳定,使得热解油直接替代石油燃料的潜能受到限制。国内外很多学者围绕生物质热解油的改性进行了大量的探索研究。目前,固体酸催化酯化法被认为是一种有效的热解油改性技术,但此方法是否对所有热解油都有明显的改性效果,值得更深入的研究。当前此领域研究的比较透彻的是固体酸催化酯化反应改性稻壳、木屑等生物质热解油,但对玉米芯这种在中国广大农村地区普遍存在的农作物废弃物所制取的热解油,用催化酯化法改性其性质还很少有科研人员对其进行深入系统的研究。
     基于以上认识,本试验针对玉米芯单一生物质中温500℃热解所产生的热解油为研究对象,加入无水乙醇后进行固体酸催化酯化反应,考察催化酯化反应对玉米芯热解油比重、黏度、热值、分子量及主要成分的影响,探究固体酸催化酯化法是否能有效的提升玉米芯热解油的品质。
     研究发现,利用自制固体酸SO2-4/TiO2-SiO2催化酯化玉米芯热解油后,玉米芯热解油小分子量物质含量稍有降低,较大分子量的物质有所增加,热解油的比重变化不明显,黏度明显升高,热值有所升高,但幅度不大,这与用固体酸催化酯化改性稻壳、木屑等热解油结果有所差异,此方法对这类热解油的比重几乎没有影响,且能有效降低热解油的黏度,明显提高热解油的热值。就热值而言,固体酸催化酯化反应确实能提高玉米芯热解油的热值,但提高幅度不大,且热值提高的同时,热解油的黏度不降反升,这对玉米芯热解油作为燃油替代品来说,是极其不利的。本试验对玉米芯热解油做了GC-MS分析,GC-MS图谱显示玉米芯中温热解所制取的热解油的成分是有机酸、酮、醛、酚等含氧有机物,其中糠醛、苯酚及其衍生物(主要为对乙基苯酚、2-甲氧基苯酚、2-甲氧基-4-乙基苯酚)含量高达54%。反应后成分有所变化,但主要成分糠醛、苯酚及其衍生物含量变化不明显,与其它热解油相比,玉米芯热解油不含乙酸,而木屑、稻壳等热解油乙酸含量高达11%,这就决定了主要通过酯化反应(除催化酯化反应外固体酸还是异构化,缩醛等反应的催化剂)提升热解油品质的催化酯化法对玉米芯热解油的改性意义不大,但玉米芯热解油中糠醛、苯酚、对乙基苯酚、2-甲氧基苯酚、2-甲氧基-4-乙基苯酚含量较高,这些物质是非常有用的化工原料,从玉米芯热解油中提取这些化工原料可能对玉米芯的利用意义更大。
In recent years, researchers began to do search for fuel alternatives, due to the shortage of the non-renewable resource petroleum. Taking into account renewable property, biomass pyrolysed oil (bio-pyro-oil) technology has been widely paid attention. However, pyro-oil has been thermal instability, low heat value, high viscosity and oxygen content, making the pyro-oil as direct substitute for fuel oil limited. Many scholars did a lot of research in order to change the negative property of pyro-oil as fuel at home and abroad .Upgrading pyro-oil over solid acid by esterification is considered to be an effective technology. Current research in this area is relatively focused on refining rice husk, wood chips and other bio-pyro-oil, rarely without considering refining corncob pyro-oil that are widespread in china.
     Based on the above condition, this test only probe into solid acid catalysed esterification to corncob pyro-oil, and then inspecting its density, viscosity, calorific value, molecular weight and major component changes, in order to make sure if this method is effective for refining corncob pyro-oil.
     The experimental results show that Corncob pyro-oil content of small molecular weight material reduce slightly and the larger ones increase; The density of pyro-oil did not change obviously, but the viscosity reduced sigificantly and the calorific value marginally raised after esterification reaction. The results are different with those published literature. In recent years, research in this area has been focused on the pyro-oil from the rice husk, wood chips or a mixture of both. Researchers found that the solid acid catalyst esterification method for density of such pyro-oil had little impact, and can effectively reduce viscosity of the pyro-oil, while the calorific value has been obviously improved. The solid acid catalyzed esterification can indeed improve corncob pyro-oil calorific value too, but the viscosity did not fall but rise, which is extremely negative for corncob pyro-oil as fuel alternatives. The component of corncob pyro-oil be different with others may lead to the results. GC-MS analysis show corncob pyro-oil (500℃pyrolyzed) are organic acids, ketones, aldehydes, phenols and other oxygenated organic compounds mixture, and furfural, phenol and its derivatives (mainly for ethyl phenol, 2 - methoxy-phenol, 2 - methoxy -4 - ethyl-phenol) content up to 54%. The components of pyro-oil change slightly after reaction, but the major components furfural, phenol and its derivatives did not change basically. Compared to other pyrolysis oil , corncob pyrolysis oil does not contain acetic acid, but acetic acid content up to 11% in pyro-oil from wood chips, rice husk pyro-oil, which make the way mainly through esterification reaction to enhance the quality of pyro-oil very little meaning for corncob pyro-oil. However, corncob pyro-oil contains useful chemicals such as furfural, phenol, and ethyl phenol, 2 - methoxy-phenol, 2 - methoxy -4 - ethyl phenol with a high level, which means extracting chemical industrial materials from corncob pyro-oil have greater significance.
引文
[1]朱锡锋,郑冀鲁,郭庆祥等.生物质热解油的性质精制与利用[J].中国工程科学,2005,7(9):83-87.
    [2]张姝玉,王述洋.生物燃油的特性及应用[J].林业机械与木工设备,2005,6(33):54-57.
    [3]郭树才.煤化学工程[M].北京:冶金工业出版社, 1991:2-10.
    [4]江淑琴.生物质燃料燃烧热值的测定[J].新能源, 1991,13(7): 34-36.
    [5]王新运.生物质热解动力学研究[D].安徽:安徽理工大学, 1996.
    [6]陈冠益.生物质热解动力学建模及锥式闪速热解装置设计理论研究[D].哈尔滨:东北林业大学, 2002.
    [7]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003, 1-2.
    [8]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业, 2002, 22(2): 75-80.
    [9]Chen B, Chen G. Q.Resource analysis of the Chinese society 1980-2002 based on exergy-Part2:Renewable energy sources and forest [J]. Energy Policy, 2007, 35(4): 2051-2064.
    [10]丁素珍,王孟杰.生物质能的利用[J].农业工程学报, 1993, 9(4):51-57.
    [11]任铮伟,徐清,陈明强等.流化床生物质快速裂解制液体燃料[J].太阳能学报, 2002,23(4):462-466.
    [12]戴先文,吴创之,陈勇.固体生物质的热解液化[J].新能源, 1998,20(8):1-4.
    [13]郭艳.生物质快速裂解液化技术的研究进展[J].技术进展, 2001,15(8):13-17.
    [14]乔国朝,王述洋.生物质热解液化技术研究现状及展望[J].林业机械与木工设备, 2005,33(5):4-7.
    [15]Graham R. G. , Freel B. A., Rapid thermal processing: Biomass fast pyrolysis overview[C]//Hogan E, Robert J, Grassi G, etc.Biomass processing. Newbury, UK: CPL Press, 1992, 52-63.
    [16]吴创之.循环流化床作为生物质热解液化反应器的实验研究[J].化学反应工程与工艺, 2000,21(3):30-35.
    [17]何芳,易维明,柏雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,1999,13(3):61-64.
    [18]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究[J].环境工程,1999, 17(5):71-74.
    [19]Bridgewater Q. V, Boocock D. G. B. Developments in the thermochemical biomass conversion [M]. Glasgow: Blackie Academic and Professional, 1997, 242-252.
    [20]戴先文,吴创之,周肇秋等.循环流化床反应器固体生物质的热解液化[J].太阳能学报,2001,22(2):124-130.
    [21]HROMADKOVA Z,KOVACIKOVA J,EBRINGEROVA A.Study of the classical and ultrasound-assisted extraction of the corncob xylan [J]. industrial crops and products, 1999, 9(2): 101-109.
    [22]RIVAS B,DOMINGUEZ J M,DOMINGUEZ H, etc. Bioconversion of posthydrolysed autohydrlysis liquors:an alternative for xylitol production from corn cob[J]. Enzyme and Microbial Technology, 2002, 31(4): 431-438.
    [23]PEROTTI N I, MOLINA O E. Corn cob as bacterial substrate for production of forage protein[J]. Biological waste, 1988, 26(1): 125-131.
    [24]徐寿昌.有机化学[M].北京:高等教育出版社,1998:416-420.
    [25] TSAI W T,CHANG C Y,WANG S Y, etc. Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasificationwith CO2[J]. Bioresource Technology, 2001, 78(2): 203-208.
    [26]郭燕,魏飞.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17.
    [27]杨巧利,刘一真,张瑞芹. GC-MS分析生物质热解油的研究[J].郑州大学学报, 2007,3(39):140-144.
    [28]王晓燕.生物油及相关生物质原料的特性分析[D].吉林:吉林农业大学,2005.
    [29]Sipila K, Kboppala E , Fagernas L. Characterization of biomass based flash pyrolysis oils [J]. Biomass and Bioenergy , 1998 , 14(2): 103-113.
    [30]徐保江,李美玲,曾忠.旋转锥闪速热解生物质实验研究[J].环境工程, 1999,17 (5):71-74.
    [31]廖艳芬,王树荣,洪军等.生物质热裂解制取液体燃料的实验研究[J].能源工程,2003,3:1-3.
    [32]王树荣,骆仲泱,董良杰等.生物质闪速热裂解制取生物油的实验研究[J].太阳能学报,2002,23(1):4-10.
    [33]戴先文,吴创之,周肇秋等.循环流化床反应器固体生物质的热解液化[J].太阳能学报,2001,22(2):124-130.
    [34]任铮伟,徐清,陈明强等.流化床生物质快速裂解制液体燃料[J].太阳能学报,2002,23(4):462-466.
    [35]Shihadeh A, Hochgreb S. Impact of Biomass Pyrolysis Oil Process Conditions on Ignition Delay in Compression Ignition Engines[J]. Energy Fuels, 2002, 16(3):552-561.
    [36]Oasmaa A, Czernik S. Fuel Oil Quality of Biomass Pyrolysis Oils State of the Art for the End-Users[J]. Energy Fuels, 1999, 13(4): 914-921.
    [37]彭为民,吴庆余.生物质热解燃料的生产[J].新能源,2000,22(11):35-44.
    [38]Pindoria R V, Lim J Y, Hawkes J E, etc. Structural Characterization of Biomass Pyrolysis Tars /Oils from Eucalyptus Wood Wastes: Effect of H2 Pressure and Samples Configuration[J]. Fuel, 1997, 76(11): 1013-1023.
    [39]Zhang Suping, Yan Yongjie, Li Tingchen, etc. Upgrading of Liquid Fuel from the Pyrolysis of Biomass[J]. Bioresour Technology, 2005, 96(5): 545-550.
    [40]Senol O I, Viljava T R, Krause A OI. Hydrodeoxygenation of Methyl Esters on Sulphided NiMo/γ-Al2O3 and CoMo/γ- Al2O3 Catalysts[J]. Catalysts Today, 2005, 100(4): 331-335.
    [41]郭晓亚,颜涌捷,李庭琛等.生物质裂解油催化裂解精制[J].过程工程学报,2003,3(1):91-95.
    [42] Adjaye J D , Bakhshi N N. Production of Hydrocarbons by Catalytic Upgrading of A Fast pyrolysis Bio-oil. Part 1: conversion over various catalyst [J]. Fuel Processing Technology, 1995 , 45: 161-183.
    [43]Chiaramonti D, Bonini M, Fratini E, etc. Development of Emulsions from Biomass Pyrolysis Liquid and Diesel and Their Use in Engines. Part 1: Emulsion Production[J]. Biomass Bioenergy, 2003, 25(1): 85-99.
    [44]Ikura M, S tanciulescu M, Hogan E. Emulsification of Pyrolysis Derived Bio-Oil in Diesel Fuel[J]. Biomass Bioenergy, 2003, 24(3): 221-232.
    [45]王志华,孙小嫚,孙桂芳等.固体超强酸SO42-/Fe2O3-ZrO2-LaO2催化制备生物柴油[J].北京化工大学学报,2007,34(5):544-548.
    [46]张琦.固体酸碱催化剂催化酯化改质提升生物油的研究[D].安徽:中国科学技术大学,2006.
    [47]华卫琦,周力,吴肖群等. SO42-/MnOm型固体超强酸及其制备技术[J].石油化工,1997,26(1):553-560.
    [48]Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem Rev, 1995, 95: 559-664.
    [49]黄卫,粟洪道. SO2-4/Fe2O3型固体超强酸的制备及酯化催化活性的研究[J].石油化工高等学校学报,2002,15(1):11-14.
    [50]张萍,李平,贾振斌等.硫酸浓度对SO2-4/SiO2固体超强酸的影响[J].河北师范大学学报,2003,27(5):493-496.
    [51]Khodadadi Moghaddam M, Gholami M R. Preparation of titania based solid strong acid and study of its catalytic activity in esterification of phthalic anhydride and sebacic acid[J]. Materials Letters, 2006, 60(6): 715-719.
    [52]崔秀兰,林明丽,郭海褔.稀土固体超强酸催化合成乙酸异物酯得研究[J].化学世界,2003,44(1):21-30.
    [53]张小曼.稀土固体超强酸对合成乙酸乙酯的催化性能研究机[J].化学试剂2002,24(4):233-234.
    [54]金华峰,李文戈.纳米复合固体超强酸SO42-/ZnFe2O4的制备与催化合成葵二酸二乙酯的研究[J].无机化学学报,2002,18(3):265-268.
    [55]常铮,郭灿雄,李峰.新型磁性纳米固体超强酸ZrO2/Fe2O3的制备及表征[J].化学学报,2002,60(2):298-303.
    [56]王尚弟,孙俊全.催化剂工程制备[M],北京:化学工业出版社,2001,7:38-68.
    [57]段维宇,南军.一种固体超强酸及其制备方法[P].中国专利:CN01106021,2002.
    [58]华伟明,陈建民,高滋.流动指示剂表征固体超强酸强度[J].石油化工,1995,24(6):385-387.
    [59]李青燕.指示剂蒸汽法测定固体超强酸酸强度[J].石油化工,2005,35(1):75-77.
    [60]张琦,常杰,王铁军等.固体酸催化剂SO2-4/TiO2-SiO2的制备及其催化酯化性能[J].催化学报,2006,27(11):1033-1038.
    [61]尹喜林,韩焕梅,郭灵姬等.SO42-/ZrO2-TiO2-SnO2催化剂的制备及催化性能的研究[J].石油化工,1994,23(1):22-27.
    [62]高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用[J].石油化工,2004,33(1):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700