质子交换膜燃料电池工作性能数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)应用前景广阔,市场潜力巨大,对产业结构升级、环境保护及经济的可持续发展均有重要意义。PEMFC工作过程涉及电化学反应、气体多组分传输、热传递、多孔介质渗流和气液两相流动等多种耦合在一起的复杂的物理化学现象,而且由于燃料电池的复杂结构和尺寸限制,实验数据不易测得。因此,数值模拟仿真技术作为实验技术的必要补充变得非常关键。
     本文采用一个全面完整的PEMFC三维、两相、稳态、非等温的数学模型进行了模拟分析。该模型综合考虑了电化学反应动力学以及反应气体在流道和多孔介质内的流动和传递过程、电流的传输、热量的传递、水在质子交换膜内的电渗和扩散以及两相流动。模拟的区域包括阴阳极集流板、阴阳极半个流道、阴阳极气体扩散层和催化层、以及质子交换膜。
     首先利用计算流体力学软件FLUENT和其UDF功能进行电池全场的数值模拟,通过与文献中所公布的实验数据进行对比来验证模型的准确性。该模型能够更全面地反映燃料电池内部的传输现象以及准确地描述电池工作性能。
     基于该模型通过数值模拟全面分析直流道PEMFC内不同工况下的相关传输现象,得到了电池内部详细的反应物的传输、水的传递、电流的传输以及速度和温度的分布。对PEMFC的一些性能影响因素进行详尽的模拟分析,包括扩散层孔隙率、工作温度、工作压力以及阴阳极的增湿温度。
Proton exchange membrane fuel cell (PEMFC) has broad applications and great potential of market. It is of much significance for industrial upgrading, environmental protection, and sustainable economic development. PEMFC’s operation process includes electrochemical reactions, species transport, heat transfer, flow in porous media, and gas-liquid two-phase flow, etc. These complex physical and chemical phenomena are tightly coupled. Besides, the experiment data is hard to obtain due to the complexity of fuel cell structure and the limitation of the scale of fuel cell. Therefore, the numerical simulation technology as a necessary complement to experimental techniques becomes very critical.
     In this paper, a comprehensive and complete three-dimensional, two-phase, steady-state, non-isothermal fuel cell model was used for the simulation analysis. The model took into account the electrochemical reaction kinetics, the reactant transport process in the flow channel and porous media, current transfer, heat transfer, and two-phase flow, as well as water transport in the proton exchange membrane due to the electro-osmosis and diffusion. The simulation region included plates, half of flow channels, and gas diffusion layers and catalyst layers at anode and cathode, as well as the proton exchange membrane.
     First of all, the numerical simulation of the whole fuel cell was performed using computational fluid dynamics (CFD) software FLUENT and its UDF functions. The accuracy of the model was verified by comparing experimental data published in literature. The model can comprehensively reflect the transport phenomena within the fuel cell, and accurately predict the cell performance.
     Through the numerical simulation of the model, the comprehensive analysis of PEMFC with straight flow channel under different operation conditions was conducted and the relevant detailed transport phenomena have been obtained, including the reactant transport, water delivery, electron transmission, and the distribution of velocity and temperature. Some factors which can influence the PEMFC performance were studied through a detailed simulation analysis, including diffusion layer porosity, operation temperature, and operation pressure, as well as cathode and anode humidification temperature.
引文
[1]吴俊荣,林维明.新能源开发与可持续发展.广州化工, 2008, 36(5): 10-12
    [2] http://www.ocn.com.cn/reports/2006234qingneng.htm
    [3] http://www.sl-power.com/tecnical.html
    [4] http://www.cngspw.com/BBS/displayBBS.asp?RoomID=24&BBSID=18566
    [5] http://www.kxcb.com/vps/Article_Show.asp?ArticleID=4
    [6]毛宗强,黄建兵,王诚,刘志祥.低温固体氧化物燃料电池研究进展.电源技术, 2008, 32(2): 75-79
    [7] http://blog.163.com/liubingflx@126/blog/static/25912091200810910341333/
    [8]毛宗强.氢能知识系列讲座(8)氢燃料电池汽车.太阳能, 2007(8): 19-22
    [9]赵群,张翔,李辉.基于燃料电池技术的新能源发展论述.机械, 2007, 34(7): 1-5
    [10]袁俊琪.质子交换膜燃料电池性能仿真.硕士学位论文,上海交通大学, 2005
    [11]任庚坡.质子交换膜燃料电池性能仿真与水管理的实验研究.博士学位论文,上海交通大学, 2008
    [12] http://hi.baidu.com/ljwxyz/blog/item/97d99218d7a8070434fa41e0.html
    [13]何广利.质子交换膜燃料电池内部两相流传递特性研究.博士学位论文,大连理工大学, 2007
    [14] http://www.yeqi.net/lunwen/html/?267.html
    [15]胡鸣若.质子交换膜燃料电池数学模型及千瓦级电堆的实验研究.博士学位论文,上海交通大学, 2004
    [16] Bernardi D. M., Verbrugge M. W.. Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte. AIChE, 1991, 37: 1151-1163
    [17] Bernardi D. M., Verbrugge M. W.. A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell. J. Electrochem Soc, 1992, 139(9): 2477-2491
    [18] Springer T. E., Zawodzinski T. A., Gottesfeld S.. Polymer Electrolyte Fuel Cell Model. J. Electrochem Soc, 1991, 138(8): 2334-2342
    [19] Springer T. E., Wilson M. S., Gottesfeld S.. Modeling and experimental diagnostics in polymer electrolyte fuel. J. Electrochem Soc, 1993,140(12): 3513-3526
    [20] Bernardi D. M.. Water-balance calculations for solid-polymer-electrolyte fuelcells. J. Electrochem Soc, 1990, 137(9): 3344-3358
    [21] Fuller T. F., Newman J.. Water and thermal management in solid-polymer-electrolyte fuel cells. J. Electrochem Soc, 1993,140(5): 1218-1224
    [22] Baschuk J. J., Li X. G.. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J. Power Source, 2000, 86: 181-196
    [23] Gurau V., Barbir F., Liu H. T.. An analytical solution of half-cell model for PEM fuel cells. J. Electrochem Soc, 2000, 147(8): 2468-2481
    [24] Djilali N., Lu D. M.. Influence of heat transfer on gas and water transport in fuel cells. Int. J. Therm Sci, 2002, 41(1): 29-40
    [25] Jaouen F., Lindbergh G., Sundholm G.. Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode. J. Electrochem Soc, 2002, 149(4): A437-A447
    [26] Andre W. R., Li X. G.. Mathematical modeling of proton exchange membrane fuel cells. J. Power Sources, 2001, 102: 82-96
    [27] Nguyen T. V., White R. E.. A water and heat management model for proton-exchange-membrane fuel cells. J. Electrochem Soc, 1993, 140(8): 2178-2186
    [28] Wang Z. H., Wang C. Y., Chen K. S.. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources, 2001, 94(1): 40-50
    [29] Yi J. S., Nguyen T. V.. An Along-the-Channel Model for Proton Exchange Membrane fuel cells. J. Electrochem Soc, 1998,145(4): 1149-1159
    [30] Yi J. S., Nguyen T. V.. Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the gas distributors. J. Electrochem Soc, 1999,146(1): 38-45
    [31] Gurau V., Liu H., Kakac S.. Two-Dimensional Model for Proton Exchange Membrane Fuel Cells. AIChE, 1998, 44(11): 2410-2422
    [32] Hsing I. M., Futerko P.. Two-dimensional simulation of water transport in polymer electrolyte fuel cells. Chemical Engineering Science, 2000, 55: 4209-4221
    [33] Dannenberg K.. Mathematical model of the PEMFC. J. Applied Electrochemistry, 2000, 30: 1377-1386
    [34] Hontanon E.. Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques. J. Power Source, 2000, 86: 363-368
    [35] Um S., Wang C. Y., Chen K. S.. Computational fluid dynamics modeling ofproton exchange membrane fuel cells. J. Electrochem Soc, 2000, 147(12): 4485-4493
    [36] Natarajan D., Nguyen T. V.. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J. Electrochem Soc, 2001, 148: A1324-1335
    [37] Kazim A., Liu H. T., Forges P.. Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields. J. Applied Electrochem, 1999, 29(12): 1409-1416
    [38] He W., Yi J. S., Nguyen T. V.. Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields, AIChe, 2000,46(10): 2053-2063
    [39]孙红,郭烈锦,刘洪潭等.质子交换膜燃料电池多孔介质中水的两相迁移.西安交通大学学报, 2005, 39(11): 1177-1181
    [40]孙红,郭烈锦,刘洪潭等. PEM燃料电池中质子交换膜内水和质子的迁移特性.化工学报, 2005, 56(6): 1081-1085
    [41] Sun H., Liu H. T., Guo L. J.. PEM fuel cell performance and its two-phase mass transport. Journal of Power Sources, 2005, 143: 125-135
    [42] Dutta S., Shimpalee S., Zee J. W. V.. Three-dimensional numerical simulation of straight channel PEM fuel cells. J. Applied Electrochemistry, 2000, 30(2): 135-146
    [43] Shimpalee S., Dutter S., Lee W. K. etc.. Effect of humidity on PEM fuel cell performance part II-numerical simulation. Proceedings of the ASME heat transfer division, 1999, 1: 367-380
    [44] Dutta S., Shimpalee S., Zee J. W. V.. Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int. J. Heat and Mass Transfer, 2001, 44: 2029-2041
    [45] Zhou T., Liu H. T.. 3-D isothermal model for proton exchange membrane fuel cells. Proceedings of the 13th World Hydrogen Energy Conference, 2000, 2: 926-930
    [46] Berning T., Lu D. M., Djilali N.. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Source, 2002, 106: 284-294
    [47] Costamagna P.. Transport phenomena in polymeric membrane fuel cells. Chemical Engineering Science, 2001, 56(2): 323-332
    [48] Um S., Wang C. Y.. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J. Power Sources, 2004, 125: 40-51
    [49] Meng H., Wang C. Y.. Model of two-phase flow and flooding dynamics in polymer electrolyte fuelcells. Journal of Electrochemical Society, 2005, 152(9): A1733-A1741
    [50]詹志刚.质子交换膜燃料电池中水传输机理研究.博士学位论文,武汉理工大学, 2006
    [51]周圆圆.质子交换膜燃料电池中的传递过程研究.硕士学位论文,清华大学, 2004
    [52] Yan Q., Toghiani H., Wu J.. Investigation of water transport through membrane in a PEM fuel cell by water balance experiments. Journal of Power Sources, 2006, 158(1): 3165-325
    [53] Meng H, Wang C Y. Electron Transport in PEFCs. J. Electrochem. Soc., 2004, 151(3): A358-A367
    [54] Taylor R., Krishna R., Multicomponent Mass Transfer, Wiley, 1993, New York
    [55] Schwarz D H, Djilali N.. 3D Modeling of Catalyst Layers in PEM Fuel Cells. J. Electrochem. Soc., 2007, 154(11): B1167-B1178
    [56] Udell K. S.. Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects. J. Heat Transfer, 1983, 105(3): 485-492
    [57] Leverett M. C.. Capillary behavior in porous solids. Trans. AIME, 1941, 142: 152-169
    [58] Gostick J. T., Fowler M. W., Ioannidis M. A., etc.. Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources, 2006, 156(2): 375-387
    [59] Kumbur E. C., Sharp K. V., Mench M. M.. On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media. J. Power Sources, 2007, 168(2): 356-368
    [60] Gostick J. T., Ioannidis M. A., Fowler M. W., etc.. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources, 2007, 173(1): 277-290
    [61] Springer T. E., Zawodzinski T. A., Gottesfeld S.. J. Electrochem. Soc., 1991, 138(8): 2334
    [62] Meng H.. A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. Journal of Power Sources, 2007, 168(1):218-228
    [63] FLUENT 6.3 User's Guide
    [64]艾勇诚. PEM燃料电池气体分配、质量传递与电化学模型及应用.硕士学位论文,武汉理工大学, 2007
    [65] Li S. P., Becker U.. A Three Dimensional CFD Model for PEMFC. Fluent Inc., Lebanon, NH (2004)
    [66] Cheng C H, Lin H H, Lai G J. Numerical prediction of the effect of catalyst layer Nafion loading on the performance of PEM fuel cells. J. Power Sources, 2007, 164: 730-741
    [67] Wu H., Li X., Berg P.. Numerical analysis of dynamic processes in fully humidified PEM fuel cells. International Journal of Hydrogen Energy, 2007, 32: 2022-2031
    [68] Sivertsen, Djilali. CFD-based modelling of proton exchange membrane fuel cells. J. Power Sources, 2005, 141: 65-78
    [69] Wang L, Husar T, Zhou T H, Liu H T. A parametric study of PEM fuel cell performances. Int. J. Hydrogen Energy, 2003, 28: 1263-1272
    [70]王晓丽,张华民,张建鲁等.质子交换膜燃料电池气体扩散层的研究进展.化学进展, 2006, 18(4): 507-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700