用于谷物清选的三维并联振动筛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清选装置为联合收获机的重要组成部分,其清选性能直接影响到整机的工作性能。作为联合收获机上广泛应用的风筛式清选装置,其清选效果的影响因素较多,其中,振动筛面的驱动运动形式及其控制为重要因素之一,目前大多数采用平面连杆机构的平面运动形式,其清选效果受到较大的影响;同时,筛面的结构和形状对清选效果也有影响,而采用常见的平面型筛面筛分谷物时,物料容易聚集到一起,易造成筛孔堵塞,影响籽粒透筛性。因此,以筛面运动形式及其控制对筛分效果的影响为重点,突破传统振动筛的主机构和筛面结构形式,研究高效的振动筛分清选装置,对提高筛分效率、降低清选损失率等,具有重要的理论意义和实践价值。本文基于这样的背景,结合国家科技支撑计划的实施,采用结构优选的变速驱动并联机构作为振动筛的主机构,开展了谷物清选并联振动筛理论及其试验研究,主要工作包括:
     1.在分析谷物成份、特性及其筛分特点的基础上,提出了适合谷物筛分的多维并联振动筛机型的设计优选原则;基于这些设计优选原则,设计了适合于谷物筛分的四类7种三自由度并联振动筛主机构,并对它们进行了结构特性分析;同时,设计了适合于谷物筛分的少凸柱筛面,为进一步优选并联振动筛主机构奠定基础。
     2.基于离散元法,建立了籽粒与籽粒、籽粒与壁面之间的接触碰撞模型,应用离散单元法应用软件-EDEM,对平面往复式和8种空间多维振动型式的筛面上稻谷物料群的透筛和运动规律进行了数值模拟,结果表明:①筛面运动形式对各筛面上谷物的透筛情况和籽粒的运动规律有较大的影响:②相比于多维振动筛,往复式振动筛的筛分效率和谷物清洁率都较低;③8种多维振动型式中,运动形式为zaβ、xzα、xyz的多维振动筛同时具有较高的谷物清洁率和筛分效率因此,应当选择具有这些运动形式的并联机构;④平面往复式筛面上籽粒运动的模拟结果与理论分析结论较为一致;同时通过试验验证,运动形式为zaβ内多维振动筛的试验结果和模拟结果基本一致,表明利用EDEM对各种运动筛面进行数值模拟具有较好的可行性,为并联振动清选筛的设计提供了依据。
     3.研究并得到了并联振动筛的驱动输入数目对筛面输出特性及其透筛特性的影响规律:对具有相同输出类型和维数(含非独立输出元素)的三、二、一自由度并联振动筛主机构,二、一自由度振动筛主机构的筛面运动输出比较接近;三、一自由度并联振动筛的籽粒透筛情况比较接近。结合考虑机器的结构简单性原则以及制造和使用的低成本原则,将一自由度并联机构作为三维振动筛实际样机制作的优选机型,并进行了谷物筛分试验,试验结果与仿真结果较为一致,表明:对于不需要很高筛分精度的谷物筛分,采用一自由度并联机构作为振动筛驱动主机构,具有结构简单、工作可靠、成本低且易操作等优点。
     4.提出了三维并联振动筛主动输入变速(转向)驱动的概念,并设计了三相交流异步电动机的变压变频调速控制系统。该系统以专用ARM电机芯片—LPC1752为变频调速系统的控制核心,同时采用智能功率模块PS21865作为逆变器,减少了了系统的复杂性,提高了系统的可靠性;根据三维振动筛谷物清选的调速要求,设计了转速、电流双闭环的SPWM变频调速系统,该调速系统的动态响应和控制精度均能满足三维振动筛的实际要求。
     5.为保证振动筛的筛分效果,提出通过调节传送系统的传输速度来控制振动筛的谷物喂入量,使振动筛的负荷保持合适的水平。设计了振动筛负荷—传输速度双闭环控制系统。传输速度控制器采用传统的PID控制,负荷控制器采用模糊控制与传统PID控制相结合的双模控制,其中的模糊控制器采用了在线修正模糊控制参数的自校正模糊控制器。对振动筛负荷控制系统进行了谷物分布密度阶跃扰动试验,试验结果表明,控制器能有效抑制外部扰动,获得期望的控制效果。
     6.在传统直线筛和一自由度三维并联振动筛样机上进行了谷物筛分的比较试验,试验结果表明:①并联机构振动筛的筛分效率和透筛率均明显高于直线振动筛;②无论并联筛还是直线筛,基于少凸柱筛面的谷物筛分效率明显高于基于平面筛面的筛分效率,筛面上的凸柱对谷物起到了疏松和防堵的作用。
     7.自行设计并研制了基于三维并联振动筛的谷物清选装置,进行了谷物筛分的正交试验,通过分析发现:①电机转速和筛孔与凸柱率的交互作用两者均对清洁率有极显著的影响,筛而凸柱率和筛孔尺寸均对清洁率有显著影响;筛孔尺寸对损失率有极显著的影响,电机转速对损失率有显著影响②各因素最佳的优化组合为:筛孔尺寸为8*8mm、筛面凸柱率为1%、电机转速为1400r/m、电机转向为反转。
As an important part of the combine harvester, Cleaning unit's performance directly affects the whole machine characteristic. The wind-sieve cleaning unit is widely used in combine harvester, and its cleaning effect is influenced by many factors. Among which, one of the important factors is the form of movement of vibrating sieve's surface driving device. Most of the current, the plane linkage mechanism is being applied, where the cleaning effect of sieving is subject to greater impact of the planar motion of sieve surface; At the same time, the structure and shape of the sieve surface also have an impact on the cleaning effect. It is easily lead to the sieve pore clogging and affects the permeability of sieving while cereals likely tend to gather together, when the common flat-sieve surface is being used. So, the research of an efficient vibration sieving-cleaning unit, focus on the effect of the form of sieve surface movement and break through the traditional main body and the sieve structure of vibrating sieve to improve sieving efficiency and reduce the loss rate of the cleaning etc, has important practical significance and academic value. Based on this background, and combined with the implementation of the project in the national scientific and technological support. We have carried out the grain cleaning parallel vibrating sieve theoretical and experimental research, which take the optimization variable drive into parallel mechanism as the main body of vibrating sieve. The major research work includes:
     1. Based on the analysis of grain composition, characteristics and sieving features, we put forward the optimization design principle of multidimensional parallel vibrating sieve machine, that suitable for grain sieving. According to those optimization principles,4types of7kinds3-DOF parallel vibrating sieve main mechanism have been designed, and their structural characteristics also been analyzed. Meanwhile, designed a less convex column sieve surface suitable for grain sieving, which lay the foundation for further optimize the parallel vibrating sieve main mechanism.
     2. The collision model between the grain and grain or grain contact the wall is established, which based on the discrete element method (DEM). Rice materials group on the sieve surface, that include flat-reciprocating and8kinds of space multi-dimensional vibration types, through the sieve and the law of motion curve is numerically simulated. To complete the work, the discrete element method and application software-EDEM need to be used. The simulation results show that:①Form of the sieve surface's motion have a greater impact on the state of through sieve and the law of motion of grain;②Compared to multi-dimensional vibrating sieve, the sieving efficiency and cereal cleaning rates of a reciprocating sieve are both lower;③Among the8kind of multi-dimensional vibration type, those new model of parallel mechanism with the motion in the form of za(3, xza, xyz multidimensional vibrating sieve, simultaneously having higher grain cleaning rate and sieving efficiency, should be preferably choose.④The numerical simulation results of surface grain beating regular,which using a flat-reciprocating vibrating sieve, is consistent with the theoretical conclusions; Simultaneously, experiments verified that the test results of the multidimensional sieve with the form of zαβmotion and simulation results are basically the same. This verified the feasibility of the numerical simulation in a variety of sieve surface's motion by EDEM, and provides a basis for the design of parallel vibrating cleaning sieve.
     3. The effect of number of driver on the screen output and pass sieves characteristic are studied and attained:①Calculation by MATLAB software of the3-DOF、2-DOF and1-DOF parallel kinematic sieve with same output type and dimension shows that:screen motor output between2-DOF and1-DOF parallel kinematic sieve are relatively close; and simulation analysis by EDEM software shows that the pass sieves effect of grain between3-DOF and1-DOF parallel kinematic sieve are relatively close;②Construction Simplicity and low-cost principle of the machine are taken into account,l-DOF parallel mechanism is chosen for optimization models of parallel kinematic sieve and grain sieving experiment are conducted, the numerical calculation results and the experimental results matched; Grain sieving need not high accuracy,l-DOF parallel mechanism is chosen for parallel kinematic sieve has a lot benefits, such as structure simple, achieved reliability, low-cost and casy-to-handle, etc.
     4. Put forward the concept of driving the three dimensional parallel vibrating screen with variable speed (rotation direction) input and designed a kind of variable voltage/frequency speed control system, for three-phase ac asynchronous motor. Employ the special motor chip ARM-LPC1752as the core of the frequency controlled system, and while use Intelligent Power Module PS21865as an inverter, which reduced lots of the system's complexity and improved the reliability; According to the speed requirements about three-dimensional vibrating sieve deal with grain cleaning, designed the speed and current double closed-loop variable frequency control system based on SPWM. The dynamic response and the control precision of the speed control system can satisfy the actual speed requirements.
     5. In order to ensure the screening effect, put forward the concept of controlling the grain feeding amount of vibrating screen by adjusting the speed of transmission system. Design the vibrating load and transmission speed double closed-loop control system. Transmission speed controller use the traditional PID control, and vibration load controller use the dual mode control with fuzzy control and traditional PID control combined. Parameter self-tuning control is adopted in the fuzzy controller. The test results of grain distribution density step disturbance show that the controller can effectively restrain the disturbance, and achieve the desired control effect.
     6. Carrying on the comparison experiment to grain sieving between traditional straight kinematic sieve and1-DOF parallel kinematic sieve, experimental results show that:①Sieving efficiency and the rate of pass sieves of parallel kinematic sieve is higher than that of straight kinematic sieve;②Whether parallel kinematic sieve or straight kinematic sieve, the sieving efficiency based on less convex column sieve is significantly higher than that based on planar sieve, convex column of sieve is useful to loose and prevent blocking grain.
     7. Based on the3-DOF parallel mechanism, a grain cleaning device designed, and orthogonal experiment is done to analyze the effect factors of sieving result, we concludes that:①The interaction between motor speed and the rate of sieve pore and convex column significantly affected cleaning rate, sieve size and the rate of Convex column also significantly affected cleaning rate; sieve size and motor speed significantly affected loss rate.②The best optimizing combination of various factors: sieve size is8*8mm the rate of Convex column is1%、motor speed is1400r/m and motor's rotary direction is reverse.
引文
[1]李耀明.水稻梳脱混合物复脱分离、清选特性的研究[D].南京农业大学博士论文,2004.
    [2]徐立章,李耀明,张立功,等.轴流式脱粒一清选装置试验台的设计[J].农业机械学报,2007,(12):85-88.
    [3]李耀明.邓玲黎,丁为民.小型联合收获机清选装置的技术分析[J].农机化研究,2004,(3):55-56.
    [4]邓玲黎,李耀明.我国水稻联合收获机的现状及发展趋势[J].农机化研究,2001(2):4-6.
    [5]吴守一.农业机械学(下册)[M].北京:机械工业出版社,1992.
    [6]杨宝善,曹建敏,李雪颖.我国水稻收获机械化的技术现状及发展趋势[J].农机化研究,2007(7):227-228.
    [7]张天义,刘士存.我国小型联合收割机现状及发展[J].粮食加工与食品机械.1997,(1):4-5.
    [8]中德超.离心风机双出口风道清选装置及其应用[J].佳木斯大学学报(自然科学版),1999,17(1):20-22.
    [9]刘江龙,申德超.双风道清选型脱粒机的试验研究[J].佳木斯工学院学报,1997.6:142-145.
    [10]陶卫民.国外农机技术发展趋势[J].江苏农机化.2003(3):21.
    [11]成芳,杨健明,蔺公振.小型联合收割机风筛式清选装置试验研究[J].农业机械学报.1996(4):60-64.
    [12]闸建文,何芳,汪裕安. 一种新型圆筒筛的性能研究[J].农业机械学报.1996.9(3):67-70.
    [13]李耀明,王智华,徐立章,等.油菜脱出物振动筛分运动分析及试验研究[J].农业工程学报.2007,23(9):111-114.
    [14]李智,周龙,王东.基于蚁群算法的往复振动筛运动参数优化设计[J].农业机械学报.2004,35(3):76-78.
    [15]陆林.基于ADAKS的油菜收割机清选装置仿真与试验研究[D].镇江:江苏大学硕士论文,2005.
    [16]李耀明,董钢,徐立章.油菜籽透筛过程的仿真实验与分析[J].农业机械学报.2007,38(9):189-191.
    [17]成芳,王俊.风筛式清选装置主要参数的试验研究[J].农业工程学报,1998,14(4):217-221.
    [18]张中元.提高振动筛处理能力的途径[J].黄金.2000,26(7):36-38.
    [19]李洪昌,李耀明,唐忠等.基于EDEM的振动筛分数值模拟与分析[J].农业工程学报,2011,27(5):117-121.
    [20]镇江农业机械学院.农业机械学[M].北京:中国农业机械出版社.1981.
    [21]张曙,HesielU.并联运动机床[M].北京:机械工业出版社.2003.
    [22]Stewar D.A Platform with 6-DOF[A]. Proc. On Institution of Mechanical Engineering [Z].1965,18(1):371-386.
    [23]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出社.1997.
    [24]朱思俊,少自由度并联机构运动学及五自由度并联机构的相关理论[D].燕山大学博士论文,2007.
    [25]汪劲松.段广洪,杨向东等VAMITIY虚拟轴机床.制造技术与机床,1998(2):42-43.
    [26]刘阳,冯宝富,蔡光起.并联机构的研究现状与展望[J].机床与液压.2004,3:7-9.
    [27]沈惠平,辛秀梅,张会芳.并联运动机械工业应用研究的最新进展[J].机械设计.2007,24(1):1-3.
    [28]Neugebauer R, Harzbecker C. Parallel kinematic structure in manufacturing[C]. In:Proceedings of 3nd Parallel Kinematics Seminar, Chemnitz, Germany:2002,17-48.
    [29]Li J F, Wang J S. Inverse kinematics and dynamics of the 3-RRS parallel platform. In:Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul, Korea,2001.
    [30]沈惠平,邓嘉鸣,王新翔,等.非平面筛面并联振动筛的研究、设计及试用[J].制造技术与机床(增刊).2012,604:95-101.
    [31]谭兆衡.国内筛分设备的现状和展望[J].矿上机械,2004,32(1):34-37.
    [32]陈文龙.国内外振动筛技术热点散议[J].矿山机械,2006,34(7):56-58.
    [33]孙旖,王兆申.大型高效筛分设备的研究[J].选煤技术,2006,(4):31-32.
    [34]范肖南.复频振动筛动力学研究及筛面物料运动分析[J].选煤技术,2000(1):15-17.
    [35]陈庆丽.对于法深度筛分设备的分析[J].河北煤炭,2000,(1):17-19.
    [36]曹文成.动定振动筛的理论与仿真研究[J].机械设计,2005,22(8):54-57.
    [37]沈惠平,杨廷力.用于并联运动装备的二自由度空间并联机构[P],ZL.200610088126.4.
    [38]张会芳.并联运动振动筛的基础理论研究[D].江苏工业学院硕士论文,2008.6.
    [39]Shen Huiping, Zhang Huifang, Li Ju, et.al. A Novel Vibration Sieve Based on the Parallel Mechanism[C]. Proceedings of the Computer-aided Industrial Design and Conceptual Design,CAID&CD, Wen Zhou,2009, Nov: 26-28.
    [40]Shen Huiping, Xue Changyu, Zhang Jiantao, et.al. A Novel PKM-Based Vibrating Sifter and Its Screening Efficiency Experimental Study[C].13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico,2011, June:19-25.
    [41]沈惠平,张会芳.一种新型并联筛及其运动学研究与研制[J].机械设计,2007,24(6):34-36.
    [42]沈惠平,张会芳.并联筛的筛分运动规律及其轨迹的研究[J].机械设计,2008,25(12):20-23.
    [43]沈惠平,张江涛.新型并联筛的筛分效率及其试验研究[J].机械设计,2011,28(2):83-86.
    [44]沈惠平,王新翔,邓嘉鸣.并联振动筛与直线筛筛分效果的试验比较研究[J].矿山机械,2012,40(5):79-83.
    [45]杨晓彬.三维振动筛设计及透筛过程中颗粒物料运动仿真[D].江苏大学硕士论文,2009.6.
    [46]林钰珍.基于并联机构的高效多维振动筛设计与研究[D].江苏大学硕士论文,2009.6.
    [47]沈有柏.颗粒物料在三自由度风筛式清选装置虚拟样机中的应用研究[D],江苏大学硕士论文,2009.6.
    [48]王成军.典型农业物料在三维并联振动筛中的筛分理论与试验[D],江苏大学博士论文,2012.12.
    [49]Gaudin M. Principle of Mineral Dressing[M].NewYork,1939.
    [50]Taggart F. Handbook of Mineral Dressing Ores and Industrial Minerals[M].NewYork,1984.
    [51]Mogensen. A New Method of Screening Granular Materials[J]. The Quarry Managers Journal, Octl965.
    [52]W.Kluge. Neuzeitliche Siebmaschinen fur die Anfbereitung[J]. Erdol und Kohle.1975(4):705-711.
    [53]W. Schultz and B. Tippon. Fundamentals of statistical[J].Trans. of soc. of min. engr of AIME. 1970(247):314-316.
    [54]E.A.streicher. Cleaning Shoe Aie Velocities in Combin Harvesting of Wheat[J].Trans of the ASAE.1986,129(4):923-928.
    [55]J.T.Macaulay. Grain Separation on Oscillating Combine Sieves as Affected by Material Entrance Conditions[J].Trans of the ASAE.1969,2(1):648-654.
    [56]J.Bruderlein. Bewegungs vorgange auf siebmaschinen[J].Aufbereitungs-Technik.1972(7):401
    [57]王亭杰.概率筛分过程透筛概率问题的研究[J].江苏煤炭.1991(4):26-28.
    [58]闻邦椿,刘凤翘.振动机械的理论与动态设计方法[M].北京:机械工业出版社.2001,60-68.
    [59]李耀明.董钢等.油菜籽粒透筛过程的仿真试验与分析[J].农业机械学报.2007,38(9):189-191.
    [60]韦鲁滨,陈清如.煤用概率分级筛数学模型的研究[J].煤炭学报.1995,20(1):57-62.
    [61]赵跃民.陈清如.煤用概率分级筛数学模型的建立[l].中国矿业大学学报.1992,21(2):18-26
    [62]赵跃民,刘初升.干法筛分理论及应用[M].北京:科学出版社.1999.
    [63]焦红光.赵跃民等.概率筛面的参数优化研究[J].中国矿业大学学报.2006,35(5):384-388.
    [64]刘初升.赵跃民.振动筛面上单颗粒运动的非线性特性的研究[J].矿山机械.1999,27(1):45-46.
    [65]P.A.Cundall, O.D.L.Sreaek. A discrete numerical model for granular assemblies. Geotechmique,29,47-65.
    [66]Y.Tatemoto, Y. Mawatari, T.Yasukawa, etal. Numerical simulation of Particle motion in Vibrated lluidized bed[J] Chemical Engineering Seience,2004,59(2):437-447.
    [67]J.Theuerkauf, P.Witt, D.Schwesig. Analysis of particle porosity distribution in fixed beds using the discrete element method[J]. PowderTechnology,2006,165:92-99.
    [68]B.P.B.Hoomans, J.A.M.KuiPers, V.Swaaij. Granular dynamics of segregation phenomena in Bubbling gas-fluidised beds[J].Powder Teehnology,2000,109(1-3):41-8.
    [69]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [70]刘凯欣,高凌大.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [71]K.Mhanoj, S.Wolfgang, T.Jurgen. Diserete element method simulation of bed comminution[JI. Minerals Engineering,2007,20(2):179-187.
    [72]S.C.Yang, S.S.Hsiau. The simulation of powders with liquid bridges in a 2D vibrated bed[J]. Chemical Engineering Scienee,2001,56:6837-6849.
    [73]E.Tijskens, H.Ramon, J.D.Baerdemaeker. Discrete element modeling for process simulation in agriculture[J]Journal of Sound and Vibration,2003,266:493-14.
    [74]B.K.Mishra. A review of computer simulation of tumbling mills by the discrete element method:Part I-contact mechanics[J]. International Journal of Mineral Processing,2003,71:73-93.
    [75]T.J.Goda,F,Ebert. Three-dimensional discrete element simulations in hoppers and silos[J]. Powder Technology,2005,158,58-68.
    [76]徐泳,李艳洁,李红艳.离散元法在农业机械化中应用评述[J].农机化研究,2004,5,26-30.
    [77]于建群,付宏,李红,等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报,2005,21(5):1-6.
    [78]张锐,李建桥,周长海,等.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [79]J.Li, C.Webb, S.S.Pandiella, etal. Discrete particle motion on sieves-a numerical study using the DEM simulation[J]. Powder Technology,2003,133:190-202.
    [80]Paul W Cleary, Mark L Sawley. DEM modeling of industrial granular flows:3D case studies and the effect of particle shape on hopper discharge[J]. Applied Mathematical Modelling,2002,26:89-111.
    [81]赵跃民,张曙光,焦红光.等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报,2006,35(5):586-590.
    [82]焦红光,赵跃民.筛面上颗粒运动的计算机仿真研究及试验验证[J].矿冶,2006,15(1):63-67.
    [83]焦红光,赵跃民.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007,36(2):232-236.
    [84]焦红光,李靖如,赵继芬,等.关于离散元法计算参数的探讨[J].河南理工大学学报(自然科学版),2007,26(1):88-93.
    [85]焦红光,刘鹏,马娇.等.筛分作业离散元模拟程序的开发及应用[J].河南理工大学学报(自然科学版),2008,27(6):711-715.
    [86]赵啦啦,刘初升,门俊霞,等.颗粒分层过程三维离散元法模拟研究[J].物理学报,2010,59(3):1870-1876.
    [87]赵啦啦,刘初升,门俊霞,等.颗粒筛分过程的三维离散元法模拟[J].煤炭学报,2010,35(2):307-311.
    [88]赵啦啦,刘初升,门俊霞,等.不同振动模式下颗粒分离行为的数值模拟[J].物理学报,2010,59(4):2582-2588.
    [89]赵啦啦,刘初升,门俊霞,等.振动筛面颗粒流三维离散元法模拟[J].中国矿业大学学报,2010,39(3):414-419.
    [90]王桂锋,童听,陈艳华,等.基于DEM的振动筛筛分参数对筛分效率影响的研究[J].矿山机械,2010,(15):102-106.
    [91]李洪昌.风筛式清选装置理论及试验研究[D].江苏大学博士论文,2011.12.
    [92]郑建祥,刘洪雷.弹性恢复系数对超细颗粒气固流场影响的研究[J].东北电力大学学报,2010,30(6):10-14.
    [93]王嘉骏,顾雪萍,杨富军,等.双流体模型中曳力及恢复系数对气固流动的影响[J].高校化学工 程学报,2006,20(2):164-168.
    [94]杨廷力,刘安心,罗玉峰,等.机器人机构拓扑结构设计[M].科学出版社,2012.
    [95]杨廷力.机器人机构拓扑结构学[M].机械工业出版社,2004.
    [96]王新翔.非平面筛面并联振动筛的筛分实验研究[D].常州大学硕士论文,2012.6.
    [97]Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete Particle Simulation of Particulate Systems:A Review of Major Applications and Findings[J]. Chemical Engineering Science,2008,63:5728-5770.
    [98]黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社.2000:112-123.
    [99]Alberto D R, Francesco P D. Comparison of contact-force models for the simulation of collision in DEM-based granular flow codes[J]. Chemical Engineering Science,2004,59:525-541.
    [100]Xu B H. Yu A B. Numerical simulation of the gas-solid flow in a bed with lateral gas blasting [J]. Power Technology,2000,109:13-26.
    [101]Li J K. Gas-particle interactions in dense gas-fluidized beds[J]. Chemical Engineering Science.2003(58):711-718.
    [102]Mindlin R D. Compliance of elastic bodies in contact. J. Appl. Mech. Trans.,ASMH.1949, 71:259-268.
    [103]Y. Tsuji, T. Tanaka, T. Ishida. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Power Technology,1992,71:239-250.
    [104]Potyondy D O, Cundall P A. A Bonded-Particle Model for Rock. International Journal of Rock Mechanics and Mining Sciences,2004,41:1329-1364.
    [105]Juan A. Carretero, Iman Ebrahimi, Roger Boudreau, Overall Motion Planning for Kinematically Redundant Parallel Manipulator[J]. Journal of Mechanisms and Robotics,Vol.4, No.2,024502, 2012.
    [106]卿建喜,李剑锋,方斌.冗余驱动Tricept并联机构的驱动优化[J].机械工程学报,2010,46(5):8-14
    [107]Brian J. Slaboch, Philip A. Voglewede, Underactuated Part Alignment System for Industrial Assembly Applications[J], Journal of Mechanisms and Robotics,Vol.5, No.1,011006,2013.
    [108]Jahns T M, Blasko V. Recent advances in power electronics technology for industrial and traction machine drives. Proceedings of the IEEE,2001,89(6):963-975.
    [109]Bernet S. Recent developments of high power converters for industry and traction applications. Power Electronics, IEEE Transactions on,2000,15(6):1102-1117.
    [110]Stemmler H. Power electronics in electric traction applications. In:International Conference on Industrial Electronics, Control, and Instrumentation, Proceedings of the IECON'93.1993,2:707-713.
    [111]Wang Chien-Ming, Yang Chia-Hao. A novel high input power factor soft-switching single-stage single-phase AC/DC/AC converter. In:IEEE Vehicle Power and Propulsion Conference.2005, 184-188.
    [112]Kajiwara T, Yamagaguchi A, Hoshi Y, et al. New intelligent power multi-chips modules with junction temperature detecting function. In:The 1998 IEEE Industry Applications Conference, Thirty-Third IAS Annual Meeting.1998,2:1085-1090.
    [113]陈桥梁,杨旭,王兆安,等.基于电力电子集成技术的开关电源模块研究.电力电子技术,2004,38(2):50-53.
    [114]陈文洁.杨拴科?杨旭,等.采用电力电子集成技术的软开关PFC电路的研究.电力电子技术.2003,37(2):53-55.
    [115]Cros J, Viarouge P. Synthesis of high performance PM motors with concentrated windings[J]. IEEE Transactions on Energy Conversion,2002,17(5):248-253.
    [116]余明锋,刘志刚,苗春晖.一种三电平空间矢量PWM控制算法的实现[J].电力电子技术.2005,39(1):48-50.
    [117]沈惠平,邓嘉鸣,王新翔,等.一种非平面凸柱型筛面的筛箱.申请号201110273038.2,2011.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700