基于DSP的PWM整流器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子器件及二极管整流器的广泛应用,给电网带来了大量的谐波和无功污染,而PWM整流器的出现,使得网侧电流的正弦化和功率因数控制成为可能。在电力电子技术飞速发展的今天,PWM整流器的控制技术发展仍相对缓慢,成为限制其性能发挥的瓶颈,因此论文对三相电压型PWM整流器(PWM-VSR)的控制策略进行了深入的研究,研究成果对提高PWM-VSR系统整体性能具有重要的理论指导意义和工程实践意义。
     论文首先对VSR的直接功率控制进行了研究,以电网的输入瞬时功率为直接控制对象,利用空间矢量原理绘制了向量开关表,采用滞环控制器实现对VSR瞬时功率的控制,并对其性能进行了仿真分析。结果表明,直接功率控制方式下瞬时功率具有较快的动态响应速度,且同时可实现电流的高度正弦化控制。
     其次,针对VSR控制系统中大量电压及电流传感器的使用所带来的系统成本增加和稳定性降低问题,论文对无网侧电压传感器的VSR控制策略进行了深入的研究,提出采用虚拟磁链法计算瞬时功率,并利用锁相环计算电网角度,解决了无网侧电压传感器控制系统中的关键问题。为提高系统的稳态性能,得到更加平滑的电流,论文将SVPWM技术引入到直接功率控制系统当中,对瞬时功率进行了前馈解耦,实现了基于SVPWM的虚拟磁链直接功率控制。
     再次,为实现对谐波电流的实时检测,论文提出了一种扩展的基于瞬时功率理论的谐波电流检测方法,使得对基波无功电流和特定次谐波电流的检测可在一个电网周期内完成。同时为实现VSR的无功补偿和谐波抑制控制,论文在分析直接功率控制局限性的基础上,提出了对谐波电流在谐波同步旋转坐标系下进行控制的方法,以实现无静差调节。
     最后,构建了基于TMS320F2812 DSP的系统硬件平台,编写了软件程序代码,对文中所提出的方法进行了实验验证,实验结果表明,论文所提出的控制策略正确可行,系统具有良好的动态性能和稳态精度。
The widely use of power electronic devices and diode rectifier produce large quantity of harmonics and reactive power pollution. PWM rectifier has the advanced features including sinusoidal current output and controlled power factor. These features can not be achieved without applicable control technology while power electronic is increasingly developing. This paper discusses the control strategies of three phase PWM voltage source rectifier under unity power factor control and compensation control of harmonics and reactive power. The results obtained in this paper have great significance in improving the performance of PWM-VSR system.
     Firstly, the direct power control(DPC) strategy is studied, which operates directly to the input instantaneous power of grid. This paper makes deeply research on this strategy, plots the control switch table by principle of space vector and implements the instantaneous power control of VSR by using hysteresis controller. Simulation results show that DPC is able to perform excellent sinusoidal current and power factor control.
     Secondly, in order to control the cost and increase reliability of VSR system, a control strategy without ac voltage sensors which are replaced by virtual flux estimator is discussed. Moreover, instantaneous power and grid angle is calculated by the information of virtual flux using PLL, which is the key point of direct power control. The introducing of SVPWM technology in direct power control improves the static performance and get more sinusoidal current, and this control strategy is achieved by a power decoupling control.
     Thirdly, a novel real-time harmonic detection method is proposed based on instantaneous power theory, which checks out harmonic and fundamental reactive current within one period of grid. In order to achieve reactive power and harmonic compensation control, a new method that using the synchronous reference frame of harmonic to implement current control is proposed based on the discussion of the limitation of direct power control, which can eliminate the static error.
     At last, a TMS320F2812 DSP based experimental platform is developed to verify all the analyses of the control strategy. The experimental results demonstrate the correctness and feasibility of DPC, at the same time show the excellent performance of the strategies studied in this paper.
引文
1 JoséR. Rodríguez, Juan W. Dixon. PWM regenerative rectifiers: state of the art. IEEE Transactions on Industry Electronics. 2005,52(1):5~22
    2 Mariusz Cichowlas, Mariusz Malinowski. DSP based direct power control for three-phase PWM rectifier with active filtering function. IEEE International Symposium on Industrial Electronics. 2003,2:831~835
    3 P. Antoniewicz, M. Jasinski. AC/DC/AC converter with reduced DC Side capacitor value. The International Conference on Computer as a Tool. 2005,2:1481~1484
    4 M. Jasinski, M. P. Kazmierkowski. Sensorless direct power and torque control of PWM back-to-back converter-fed induction motor. Industrial Electronics Society. 2004,3:2273~2278
    5 M. Yamamoto, H. Hattori. Digitally-controlled three phase soft-switching PFC converter with instantaneous power feedback control scheme. Power Electronic Drives and Energy Systems for Industrial Growth. 1998,2:1002~1006
    6 T. Nussbaumer, J. W. Kolar. Comparison of 3-phase wide output voltage range PWM rectifiers. IEEE Transactions on Industrial Electronics. 2007,54(6):3422~3425
    7屈莉莉,张波.三相电压型PWM整流器控制技术的发展.电力电子. 2007,4:19~24
    8李建林,潘立青. PWM整流器在直驱风力发电系统中的应用研究.华电技术. 2008,30(2): 74~77
    9郭晓明,贺益康.双馈风力发电机开关频率恒定的直接功率控制.电力系统自动化. 2008,32(1): 61~65
    10 Marek Jasinski, Dariusz Swierczynski. Direct active and reactive power control of AC/DC/AC converter with permanent magnet synchronous generator for sea wave converter. International Conference on Power Engineering. 2007: 78~83
    11 M. Malinowski, W. Kolomyjski. Control of variable-speed type wind turbines using direct power control space vector modulated 3-level PWM converter. IEEE International Conference on Industrial Technology.2006: 1516~1521
    12 B. Wang, G. Venkataramanan. Unity power factor control for three-phase three-level rectifiers without current sensors. IEEE Transactions On Industry Applications. 2007, 43: 1341~1348
    13 Wu Chen, Xinbo Ruan. Current-doubler-rectifier ZVS PWM hybrid full-bridge three-level converter. Power Electronics Specialists Conference. 2007: 413~419
    14权广力,张庆范.低开关损耗的电流滞环PWM整流器的研究与仿真.技术探讨与研究. 2006(2): 36~38
    15杨旭,王兆安.准固定频率滞环PWM电流模式控制方法的研究.电源世界. 2001(1): 5~8
    16王兆安,杨君.谐波抑制和无功功率补偿.机械工业出版社, 1998:192~204
    17张崇巍,张兴. PWM整流器及其控制.机械工业出版社,2005: 44~49
    18王传兵.三相电流型PWM整流器的研究.浙江大学硕士论文. 2006:2~6
    19接峰,黄进.三相PWM整流器直接功率控制的新调制方法.电力电子技术. 2006,40(4) : 1~3
    20 Wu R, Dewan S B. Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control. IEEE Transactions on Industry Applications. 1991,27(2):355~364
    21 Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Transactions Power Electron. 1998,35:508~515
    22 Hirofumi Akagi, Yoshihira Kanazawa. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications. 1984,20(3):625~630
    23 G. H. Bode, Poh Chiang Loh. An improved robust predictive current regulation algorithm2005,41(6):1720~1733
    24 M.Perez, R.Ortega. Passivity-based PI control of switched power converters. IEEE Transactions on Control Systems Technology. 2004,12(6): 881~890
    25 Lixiang Wei, R.A Lukaszewski. Optimization of the main inductor in a LCL filter for three phase active rectifier. IEEE Transactions on Industry Applications.2007:1816~1822
    26 M. Cichowlas, M. Malinowski. Direct power control for three-phase PWM rectifier with active filtering function. Applied Power Electronics Conference and Exposition.2003,2:913~918
    27 M. Malinowski, M. Jasinski. Simple direct power control of three-phase PWMrectifier using space-vector modulation (DPC-SVM) .IEEE Transactions on Industrial Electronics.2004,51(2):447~452
    28 Toshihiko Noguchi, Hiroaki Tomiki. Direct power control of PWM converter without power-source voltage sensors. IEEE Transactions on Industry Applications. 1998,34(3):473~479
    29 J. R.Espinoza, G. Joos. Decoupled control of PWM active-front rectifiers using only DC bus sensing. Industry Applications Conference. 2000,4:2169~2176
    30 Yongsug Suh. Analysis and control of three phase AC/DC PWM converter under unbalanced operating conditions. Ph. D. dissertation, University of Wisconsin-Madison, 2004: 5~7
    31 M. Cichowlas, M. Malinowski. Active filtering function of three-phase PWM boost rectifier under different line voltage conditions. IEEE Transactions on Industrial Electronics.2005,52(2):410~419
    32 D. Sharon, F. W. Fuchs. Switched link PWM current source converters with harmonic elimination at the mains. IEEE Transactions on Power Electronics. 2000,15(2):231~241
    33 R. Skandari, A. Rahmati. A fuzzy logic controller for direct power control of PWM rectifiers with SVM. International Conference on Power Electronics, Drives and Energy Systems.2006:1~5
    34 G. Joos, H. Pinheiro. DSP implementation of neural network-based controller for voltage PWM rectifier neural. IEEE TENCON. 1996,2(26~29): 881~888
    35 V. Soares, P. Verdelho. Linear and sliding-mode controllers for three-phase four-wire power converters. Proceedings of the IEEE International Symposium on Industrial Electronics. 2005,2:799~804
    36 Yang Ye, M. Kazerani. Modeling, control and implementation of three-phase PWM converters. IEEE Transactions on Power Electronics. 2003,18(3):857~864
    37 R .J. Kerkman, B. J. Seibel. A new flux and stator resistance identifier for AC drive systems. IEEE Transactions on Industry Applications. 1996,32(3):585~593
    38刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用.电工技术学报. 1999, 14(1): 49~54
    39 J. Luukko, M. Niemela. Estimation of the flux linkage in a direct-torque-controlled drive. IEEE Transactions on Industrial Electronics.2003,50(2):283~287
    40杨贵杰,孙力.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001,21(5): 79~83
    41 Levy Ely de Lacerda de Oliveira, Luiz Eduardo Borges da Silva. Improving the dynamic response of active power filters based on the synchronous reference frame method. Applied Power Electronics Conference and Exposition Seventeenth Annual IEEE.2002,2:742~748
    42胡开埂.基于DSP的永磁同步电机四象限驱动控制系统的研究.哈尔滨工业大学硕士论文. 2007: 24~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700