高压输电线电晕放电特征及其对环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力事业的迅速发展,目前我国的电网结构已经很难满足我国国民经济快速发展的需要。根据预测和规划,高压、超高压和特高压输变电工程的建设是未来的重要任务。伴随着高压输变电工程的建设和人口密集负荷中心的深入,输变电工程的电磁环境问题引起了人们的广泛关注。尤其是输电线电晕放电的问题,将成为制约输变电事业发展的关键,因此对输电线电晕放电及其影响的研究十分必要。目前对输电线环境影响的研究主要集中在对其强电场的影响上,但是从电晕放电特征角度研究电磁环境的并不多。本文以220kV哈尔滨热电厂——哈东送变电线路为研究对象,主要针对电场分布和电晕放电特征来深入研究输电线路的电磁环境,为输电线路设计和环境影响评价提供理论依据,具有非常重要的现实意义。
     本文在采用了两种工程电磁场计算方法来研究输电线周围的电场强度,建立了输电线路的计算模型,分别对其下方电场、表面电场、起晕电场进行计算。对计算结果进行分析,研究输电线电晕放电的产生情况和放电特征。本文在用模拟电荷法计算输电线模型电场分布的基础上,又提出了基于有限元法分析导线表面有毛刺、污垢或水滴时,尖端部分的畸变电场分布情况。建立了非光滑表面的导线模型,验证了在输电线表面曲率较大的部分局部场强会远远大于其周围场强,形成自持放电,产生电晕放电现象。
     特别地,本文对电晕放电辐射场进行了深入研究,对其辐射频谱和距离特性进行了计算,建立了电晕放电的数学模型,从理论上证实了电晕放电所辐射出的宽频带脉冲群就是造成无线电干扰、电晕噪声等环境问题的根源。
     本文还对220kV哈尔滨热电厂——哈东送变电线路的各种导线排列方式的电场和无线电干扰场强进行了计算,编制了仿真程序。本文所编制的各种导线排列方式下的电场分布程序和无线电干扰计算程序可以适用于国网220kV~1000kV输电线的环境评估,为输电线的设计和环境保护提供了理论依据。
With the development of China's power industry, the power system structureof our country can not supply enough power for our country's economicdevelopment. According to the plan, it will be an arduous task to build HV, extraHV and ultra HV projects. Inevitably, the high voltage substations along with thehigh voltage transmission lines will emerge in the residential area. Theelectromagnetic affection to the neighborhood residents, which are generated bythe transmission and transform equipments, has brought the attention to manydepartments. In particular corona discharge from transmission line will become aproblem to restrict the development of the power industry. So it is necessary tostudy corona discharge and its impact to the environment. At present the strongelectric field and its impact is studied a lot, but it is not so much to focus on theimpact of electromagnetic environment caused by the corona discharge fromtransmission line. In the paper, all the parameters of this paper come from the220kV Harbin Power Plant-East of Harbin Double-circuit Transmission Line.Electric distribution and characteristics of corona discharge are emphasized on.This study could provide a theoretical basis for the design of transmission lineand have very important practical significance.
     Two methods are adopted to calculate the electric field of the model of theline both under and on the surface of it. And then analysis why corona couldhappen and the characteristics of corona discharge from the results. Besides theCharge Simulation Method to calculate the electric field, the Finite ElementMethod to analysis the surface electric field of the transmission line with burr,dirt or water is proposed, and the a non-smooth surface of the cable model isestablished. The results show that the surface electric field of the part with largercurvature will be far greater than the surrounding field so self-dischargehappened. That is, a corona discharge phenomenon.
     In particular, the radiation field of corona has researched in-depth andcalculated the radiation spectrum and distance characteristics of the dischargemodel. It confirmed theoretically that the wide-band radiation group caused bythe corona discharge is the root of the environment problem such as radio interference, noise and so on.
     This paper also compiles the simulation program and calculated the electricfield and radio interference field in various arrangement of the wire of the 220kVHarbin Power Plant-East of Harbin Double-circuit Transmission Line. Theprogram can be applied to the environmental assessment of 220kV~1000kVtransmission line and provides a theoretical basis for the design of transmissionlines and environmental protection.
引文
1. Friedlander, Gordon D. UHV: onward and upward [J]. IEEE Spectrum, 1977,14(2): 56~65
    2. Paris L. Future of UHV transmission lines[J]. IEEE Spectrum , 1969,6(9):44~51
    3. Manzoni G, Annestrand S A, Cardoso R et al. Electric power transmission atvoltages of 1000 kV AC or士600 kV DC and above. Network problems andsolutions peculiar to UHV AC transmission[J]. Electra, 1989, (122):40~75
    4.周则存,沈其工等.高电压技术.第二版.中国电力出版社, 2005: 1~33
    5.张晓,陈稼苗,周浩. 750kV超高压交流输电线路电磁环境研究.华东电力. 2008, 36(3):1~5
    6.王媛,冯林. 500KV超高压输电线工频电场分析及其预测模型研究. EMC,扬州, 2006.电子科技大学, 2006:1~3
    7.陈仕姜. 500kV超高压输电线工频电场分布及控制研究.福州大学硕士学位论文. 2006:25~40
    8.郑伟,黄道春. 500kV同杆并架四回输电线路分裂导线表面电场强度计算.电工理论与新技术学术年会论文集. 2005:92~95
    9.高玉明. 500千伏输电线路电晕损失和地面场强的计算.高电压技术.1983, 04:1~2
    10. Enrique E . Mombello, Giuseppe Ratta. Corona loss characteristics ofcontaminated conductors in fair weather.Electric Power Systems Research,2001, 59: 51~59
    11.高广淦.交流500~1100kV输电线路电晕损失计算.武汉高压研究所.1985, (01):1~3.
    12.李永卿.北京地区典型地域电磁辐射环境分析.北京工业大学硕士学位论文. 2004:39~47
    13.胡宇.超高压输电线环境中人体电磁场分析.沈阳工业大学硕士学位论文. 2003:23~32
    14.齐红星.电磁脉冲对人体的作用和数值方法研究.华东师范大学博士学位论文. 2004:1~6
    15. British Columbia Ministry of Transportation. Effects of High VoltageTransmission Line In Proximity of Highways. 2005:1~30
    16.国家环境保护总局, 500 kV超高压送变电工程电磁辐射环境影响评价技术规范(HJ/T24-1998), 1999.
    17. Zakariya M, Al-Hamouz. Combined Finite Element - Charge SimulationComputation of Monopolar Corona on Bundle Wires. IEEE, 1998:1988~1989
    18.刘国强,赵凌志,蒋继娅.工程电磁场有限元分析.电子工业出版社,2006:1~14
    19. Bhag Singh Guru, Huseyin R. Hiziroglu. Electromagnetic Field TheoryFundamentals. 2006:50~80
    20.刘国强,赵凌志,蒋继娅.工程电磁场有限元分析.电子工业出版社,2006:3
    21.周则存,沈其工等.高电压技术.第二版.中国电力出版社, 2005: 31~33
    22. C Budd. Coronas and the space charge problem. Eur. J. Appl. Math.,1991:43~81,
    23. H Wintle. Unipolar wire-to-plane corona: accuracy of simple approximations.J. Electrostat. vol. 28, 1992:149-159
    24. M Yu and E Kuffel, A new algorithm for calculating HVDC corona with thepresence of wind, IEEE Trans. Magnetics, vol. 28, 1992:802~2804
    25. Ali Zangeneh, Ahmad Gholami, Vahraz Zamani. A New Method forCalculation of Corona Inception Voltage in Stranded Conductors of OverheadTransmission Lines. First International Power and Energy Coference.Putrajaya, Malaysia, 2006. IEEE, 2006:571~572
    26.肖冬萍,何为,谢鹏举等.高压输电线路电晕放电特性及其电磁辐射场计算. 2007, 31(21):1~3
    27. Peek F W . Dielectric phenomena in high voltage engineering (3rdedition[M].New York:Wiely,1929
    28.国际大电网会议第36.01工作组.输电系统产生的电场和磁场.水利电力出版社, 1984: 1~20
    29.邹澎.高压输电线附近电晕放电辐射的数学模型.中国电力. 1995,03:13~15
    30. L. V. Timashova (USSR), Statistical Investigation of Radio Interference on750kV Transmission Lines, 1988 IEEE International Symposium on EMC
    31. S Abdel-Sattar. Monopolar corona on bundle wires as influenced by wind,IEEE Trans. Ind.1987:984~989
    32.陈水明,王磊,何金良.多回高压输电线路产生的无线电干扰分析.电波科学学报. 2002, 17(6):677~681
    33.孙竹森,张禹方,张广州等. 1500kV变电站电磁干扰和防护措施的研究[J ].高电压技术, 2001, 16(1):6~18
    34.邬雄,万保权,蒋宏.特高压线路绝缘子串的无线电干扰[J ].高电压技术, 1999, 25(2):28~291
    35.庄池杰,曾嵘,龚有军.交流输电线路的无线电干扰计算方法.电网技术.2008, 32(2):56~60
    36. Anderson J G. Transmission line reference book 345 kV and above . Beijing:Power Industry Press, 1982
    37. Juette G W, Roe G M. Modal components in multiphase transmission lineradio noise analysis[J]. IEEE Trans on Power Apparatus and Systems, 1971,90(2):808~813
    38. Gary C H. The theory of the excitation function:A demonstration of itsphysical meaning[J]. IEEE Trans on Power Apparatus and Systems, 1972,91(1):305-310
    39. P. Sarma, Maruvada. Corona performance of High-voltage transmission lines.Research Studies Press Ltd, England. 2000:114
    40.张殿生.高压送电线路设计手册.第二版.水利电力出版社. 2005:51~53
    41. D. I. Lee, J. B. Kim, and K. H. Yang et al. Audible noise performance of 6-rail conductors on a 765-kV double circuit test line. IEEE Trans. on PowerDelivery. 1997:1343~1351
    42. V. L. Chartier and R. D. Stearns. Formulas for predicting audible noise Fromoverhead high voltage AC and DC lines. IEEE Trans. on PAS. 1981:121~129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700