基于观测器的线性切换系统输出反馈设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切换系统是由若干个子系统和控制子系统激活与否的切换律组成的一类重要的混杂系统。对于切换系统而言,可镇定是最基本的要求,也是目前切换系统研究的热点及难点领域之一。制约切换系统可镇定性设计的主要原因在于:由于切换律的引入,使得切换系统在保留子系统部分性能的同时,也可能产生子系统所没有的复杂的动态特性。这一点在自治线性切换系统的可镇定设计中显得尤为突出,因为此时的可镇定设计问题就是寻找到能使系统渐近稳定的切换律。因此,非常有必要研究自治线性切换系统的可镇定问题。
     对于自治线性切换系统的可镇定设计,如果系统满足一致稳定条件,周期切换可以使得该系统稳定。除此之外,切换镇定问题所寻找的切换律必然是和系统状态相关的。但在实际应用中,系统状态往往不可知或者不可直接测量,因此,就有必要研究切换系统输出反馈镇定问题,考虑设计状态观测器来逼近系统状态值,然后根据观测器的值来生成切换信号。但由于此时系统的切换律是基于观测器切换的,因此,切换律的设计和观测器的设计互相耦合,使得基于观测器驱动的输出反馈镇定问题成为一个非常具有挑战性的问题。
     在本文中,我们研究了连续时间自治线性切换系统的输出反馈切换镇定问题。本文在前两章对切换系统的相关概念及基本结论做了介绍,在此基础上,本文主要研究了以下问题:
     1.针对子系统均可观测的自治线性切换系统,提出了一种改进的低增益观测器设计方法。基于此,接下来我们研究了其输出反馈切换镇定问题,提出了一种构造性的基于切换路径的观测器驱动切换镇定设计方法。该方法的基本思路为:首先寻找一组切换路径,使其满足指定收敛要求的收敛域能构成状态空间的一个全覆盖;接下来,基于上述切换路径的最小驻留时间,设计观测器;最后,根据提出的基于路径的观测器驱动切换律,实现系统稳定。利用此方法,不仅能使得任意可镇定系统稳定,而且能使切换律的设计与观测器设计分开,得到一个弱化的分离原理。
     2.把输出反馈切换镇定设计推广到更一般的系统,即线性切换系统能观测,但子系统不一定能观测的情况。为此,首先我们研究了能观测线性切换系统的观测器设计问题,基于能观测切换路径的概念,提出了几种观测器设计方法。接下来,利用前面介绍的基于切换路径的观测器驱动切换镇定设计方法,在将不可观测切换路径修改为可观测算法的基础上,根据切换路径的观测器驱动切换律,实现了任意可镇定系统的稳定,同时保持了弱化的分离原理。
     3.考虑到实际系统不可避免出现扰动,探讨了上述基于路径的观测器驱动切换可镇定设计方法所得系统针对结构性、非结构性以及切换信号扰动的鲁棒性。针对线性切换系统切换信号的扰动,引入切换信号之间的相对距离来描述切换信号受扰的程度。
     4.作为实例,研究了汽车半主动悬挂系统的输出反馈镇定问题。在其线性切换系统模型基础上,利用本文所介绍的基于路径的观测器驱动切换可镇定设计方法对其进行设计,实现了系统的稳定,而且系统的鲁棒性也得以保证,仿真分析进一步验证了我们的结论。
     最后,总结全文,并对一些有待研究的问题进行了展望。
A switched system is a hybrid system which consists of a fnite number of linear sub-systems and a switching law governing the activeness of those subsystems. For switchedsystems, stabilization is not only an essential requirement, but also a hot research feldlasting for decades. A well-known characteristic of switched systems is that they includesboth continuous and discrete dynamics, which makes the system dynamics extremelycomplicated, and the stabilization design very tough. Especially for the stabilization de-sign in autonomous switched systems, for which the problem is to fnd, if possible, anappropriate switching law that makes the system asymptotically stable.
     For autonomous switched linear systems, when the system is consistently stabilizable,it has been established that a periodic switching signal could be found to solve thestabilization problem. Otherwise, state-driven switching mechanisms have to be soughtfor addressing the problem. Consider the fact that the state is usually unknown andcannot be measured directly in practice, an observer should be introduced. However, thedesign of the observer and the design of the stabilizing state-driven switching law are ingeneral coupled with each other as a common switching law is sought for both the originalsystem and the observer. This makes the observer-driven switching stabilization problemvery challenging.
     In this dissertation, we focus on the observer-driven switching stabilization problem.For this, we frst introduce some basic knowledge about the switched systems. On thisbasis, the main contents of this dissertation are summarized in the following:
     1. For switched autonomous linear systems whose subsystems are completely ob-servable, we frst introduce an improved less-overshooting observer design method, andthen consider the observer-driven switching stabilizing problem. A constructive path-wiseobserver-driven switching stabilization mechanism is proposed, by means of which, notonly the augmented system is stable, but also the design of the switching law and thedesign of the observer can be separated into two steps, thus a weak version of separationprinciple is established. Generally, to achieve stability with the observer-driven switchingstabilization scheme, we should implement the following steps. First, fnd a set of well- defned switching paths, whose corresponding contractive cones are a fnite partition ofthe state space. Second, place an observer based on the switching paths’ minimal dwelltime. Finally, a path-wise observer-driven switching law is introduced.
     2. Relaxing the observability assumption to the observability of the switched linearsystem. For this, we frst study the observer design problem for observable switchedlinear systems, and proposed some observer design methods. Then by modifying theunobservable switching path to be observable, based on the path-wise observer-drivenswitching mechanism introduced before, an observer-driven switching law is given, whichmakes the augmented system stable. It is remarkable that the weak version of separationprinciple is also preserved.
     3. Consider the fact that perturbations can enter into any system, the robustnessis analyzed for system under structural, unstructural and switching perturbations. Tocapture the sensitivity of perturbed switching signals, the relative distance between thenominal and perturbed switching signals is introduced.
     4. As an illustrative example, the output-feedback stabilization problem for semi-active suspension vehicle is explored. Based on its switched linear system model, bymeans of the observer-driven switching stabilization mechanism, the problem is solved,and its robustness is proved.
     Finally, the conclusions and the prospects of future research are given at the end ofthis dissertation.
引文
[1] Agrachev A.A. and Liberzon D., Lie-algebraic stability criteria for switched sys-tems[J]. SIAM Journal on Control and Optimization.2001,40(1):253–269.
    [2] Aubin J.P. and Cellina A., Diferential inclusions[M]. Berlin: Springer;1984.
    [3] Automatica.1999,35(3).(Special Issue on Hybrid Systems).
    [4] Bemporad A., Ferrari-Trecate G., and Morari M., Observability and controllabilityof piecewise afne and hybrid systems[J]. IEEE Transactions on Automatic Control.2000,45(10):1864–1876.
    [5] Blanchini F., Nonquadratic Lyapunov function for robust control[J]. Automatica.1995,31(3):451–461.
    [6] Blanchini F., Set invariance in control[J]. Automatica.1999,35(11):1747–1767.
    [7] Blanchini F., The gain scheduling and the robust state feedback stabilization prob-lems[J]. IEEE Transactions on Automatic Control.2000,45(11):2061–2070.
    [8] Blanchini F. and Miani S., On the transient estimate for linear systems with time-varying uncertain parameters[J]. IEEE Transactions on Circuits and Systems I: Fun-damental Theory and Applications.1996,43(7):592–596.
    [9] Blanchini F. and Miani S., A new class of universal Lyapunov functions for thecontrol of uncertain linear systems[J]. IEEE Transactions on Automatic Control.1999,44(3):641–647.
    [10] Blanchini F., The gain scheduling and the robust state feedback stabilization prob-lems[J]. IEEE Transactions on Automatic Control.2000,45(11):2061–2070.
    [11] Bolzern P., Colaneria P., and Nicolaob D. G., Markov jump linear systems withswitching transition rates: mean square stability with dwell-time[J]. Automatica.2010,46(6):1081–1088.
    [12] Branicky M.S., Multiple Lyapunov functions and other analysis tools for switchedand hybrid systems[J]. IEEE Transactions on Automatic Control.1998,43(4):475–482.
    [13] Cheng D., Guo L., and Huang J., On quadratic Lyapunov functions[J]. IEEE Trans-actions on Automatic Control.2003,48(5):885–890.
    [14] Cheng D., Guo L., Lin Y., et al., Stabilization of switched linear systems[J]. IEEETransactions on Automatic Control.2005,50(5):661–666.
    [15] Chesi G., Colaneri P., Geromel J.C., et al., On the minimum dwell time for lin-ear switching systems[C]. In Proceeding of the American Control Conference,2010,2487–2492.
    [16] Costa O.L.V., Fragoso M.D., and Marquez R.P., Discrete-time Markov jump linearsystems. London: Springer;2005.
    [17] Das T. and Mukherjee R., Optimally switched linear systems[J]. Automatica.2008,44(5):1437–1441.
    [18] Dayawansa W.P. and Martin C.F., A converse Lyapunov theory for a class of dynam-ical systems which undergo switching[J]. IEEE Transactions on Automatic Control.1999,44(4):751–760.
    [19] Decarlo R.A., Branicky M.S., Pettersson S., et al., Perspectives and results on the sta-bility and stabilizability of hybrid systems[J]. Proceedings of the IEEE,88(7):1069–1082,2000.
    [20] Ezzine J. and Haddad A.H., Controllability and observability of hybrid systems[J].International Journal of Control.1989,49(6):2045–2055.
    [21] Feng G., Lu G.P., and Zhou S.S., An approach to H∞controller synthesis of piecewiselinear systems[J]. Communications in Information and Systems,2002,2(3):245–254.
    [22] Feng G. and Ma J., Quadratic stabilization of uncertain discrete-time fuzzy dynamicsystems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory andApplications.2001,48(11):1337–1344.
    [23] Feron E., Quadratic stabilizability of switched systems via state and output feed-back[R]. Technical Report CICS-P-468, MIT,1996.
    [24] Filippov A.F., Diferential equations with discontinuous right-hand side[M]. Moscow:Nauka,1985.
    [25] Geromel J.C., Colaneri P., and Bolzern P., Dynamic output feedback controlof switched linear systems[J]. IEEE Transactions on Automatic Control.2008,53(3):720–733.
    [26] Goebel R., Sanfelice R.G., and Teel A.R., Invariance principles for switching systemsvia hybrid systems techniques[J]. Systems&Control Letters.2008,57(12):980–986.
    [27] Goncalves J.M., Megretski A., and Dahleh A., Global stability of relay feedbacksystems[J]. IEEE Transactions on Automatic Control.2001,46(4):550–562.
    [28] Goncalves J.M., Megretski A., and Dahleh A., Global analysis of piecewise linearsystems using impact maps and surface Lyapunov functions[J]. IEEE Transactionson Automatic Control.2003,48(12):2089–2106.
    [29] Heemels W.P., Schutter D.B., and Bemporad A., Equivalence of hybrid dynamicalmodels[J]. Automatica.2001,37(7):1085–1091.
    [30] Hespanha J.P., Logic-based switching algorithms in control[D]. PhD Thesis, YaleUniversity, New Haven, CT, USA,1998.
    [31] Hespanha J.P., Liberzon D., Angeli D., et al., Nonlinear norm-observability notionsand stability of switched systems[J]. IEEE Transactions on Automatic Control.2005,50(2):154–168.
    [32] Hespanha J.P., Liberzon D., and Morse A.S., Overcoming the limitations of adap-tive control by means of logic-based switching[J]. Systems&Control Letters.2003,49(1):49–65.
    [33] Hespanha J.P. and Morse A.S., Stability of switched systems with average dwell-time[C]. In Proceeding of the IEEE Conference on Decision and Control,1999:2655–2660.
    [34] Heymann M., Comments ‘On pole assignment in multi-input controllable linear sys-tems’[J]. IEEE Transactions on Automatic Control.1968,13(6):748–749.
    [35] Hu M. and Barmish B., Adaptive stabilization of linear systems via switching con-trol[J]. IEEE Transactions on Automatic Control.1986,43(12):1097–1103.
    [36]胡宗波.基于线性切换系统的DC-DC变换器控制基础理论研究[D].华南理工大学,2005.
    [37] IEEE Transactions on Automatic Control,1998,43(4).(Special Issue on HybridSystems)
    [38] Isidori A., Nonlinear control systems[M]. New York: Springer-Verlag,1999.
    [39] Ji, Z., Feng, G., and Guo, X., A constructive approach to reachability realizationof discrete-time switched linear systems[J]. Systems&Control Letters.2007,56(11–12):669–677.
    [40] Ji Z., Guo X., Xu X., et al., Stabilization of switched linear systems with time-varyingdelay in switching occurrence detection[J]. Circuits Systems and Signal Processing.2007,26(3):361–377.
    [41] Ji Z., Wang L., and Xie G., New results on the quadratic stabilization of switchedlinear systems[C]. In Proceeding of the IEEE Conference on Decision Control,2003:1657–1662.
    [42] Ji, Z., Wang, L., and Guo, X., Design of switching sequences for controllabilityrealization of switched linear systems[J]. Automatica,2007,43(4):662–668.
    [43] Johansson M., Piecewise linear control systems[M]. New York: Springer,2003.
    [44] Johansson M. and Rantzer A., Computation of piecewise quadratic Lyapunovfunctions for hybrid systems[J]. IEEE Transactions on Automatic Control.1998,43(4):555–559.
    [45] Karnopp D. and Crosby M.J., Vibration control using semi-active force generators[J].Journal of Engineering for industry, Transactions of the ASME,1974,5(2):619–626.
    [46] Khalil H.K., Nonlinear systems[M]. New Jersey: Prentice Hall,2002.
    [47] Kozin F., A survey of stability of stochastic systems[J]. Automatica.1969,5(1):95–112.
    [48] Lee J.W. and Khargonekar P.P., Detectability and stabilizability of discrete-time switched linear systems[J]. IEEE Transactions on Automatic Control.2009,54(3):424–437.
    [49]李坚强,基于不变集的混合系统研究与应用[D].华南理工大学,2008.
    [50] Li Z.G., Wen C.Y., and Soh Y.C., Observer-based stabilization of switching linearsystems[J]. Automatica.2003,39(3):517–524.
    [51] Liberzon D., Switching in Systems and Control[M], Boston, MA: Birkhauser,2003.
    [52] Liberzon D., Hespanha J.P., and Morse A.S., Stability of switched linear systems: aLie-algebraic condition[J]. Systems&Control Letters.1999,37(3):117–122.
    [53] Liberzon D. and Morse A.S., Basic problems in stability and design of switchedsystems[J]. IEEE Control Systems Magazine,1999,19(5):59–70.
    [54] Lin H. and Antsaklis P.J., Persistent disturbance attenuation properties for net-worked control systems[C], In Proceeding of the IEEE Conference on Decision andControl,2004:953–958.
    [55] Lin H. and Antsaklis P.J., Switching stabilizability for continous-time uncer-tain switched linear systems[J]. IEEE Transactions on Automatic Control.2007,52(4):633–646.
    [56] Lin H. and Antsaklis P.J., Stability and stabilizability of switched linear systems:A survey of recent results[J]. IEEE Transactions on Automatic Control.2009,54(2):308–322.
    [57] Liu H., Nonami K., and Hagiwara T., Active following fuzzy output feedback slid-ing mode control of real-vehicle semi-active suspensions[J]. Journal of Sound andVibration.2008,314(1):39–52.
    [58] Lincoln B. and Rantzer A., Relaxing dynamic programming[J]. IEEE Transactionson Automatic Control.2006,51(8):1249–1260.
    [59] Lur’e A.I., Nekotorye nelineinye zadachi teorii avtomaticheskogo regulirovaniya(Some nonlinear problems of the automatic control theory)[M], Moscow: Gostekhiz-dat,1951.
    [60] Lygeros J., Lecture notes on hybrid systems[R], Department of Electrical and Com-puter Engineering, University of Patras,2004,2:2–6.
    [61] Margaliot M. and Liberzon D., Lie-algebraic stability conditions for nonlinearswitched systems and diferential inclusions[J]. Systems&Control Letters.2006,55(1):8–16.
    [62] Mancilla-Aguilar J.L. and Garcia R.A., A converse Lyapunov theory for nonlinearswitched systems[J]. Systems&Control Letters.2000,41(1):67–71.
    [63] McClamroch N.H. and Kolmanovsky I., Performance benifts of hybrid control designfor linear and nonlinear systems[J], Proceedings of the IEEE.2000,88(7):1083–1096.
    [64] Molchanov A.P. and Pyatnitskiy YeS., Lyapunov functions defning the necessaryand sufcient conditions for absolute stability of the nonlinear control systems, I[J].Avtomatika i Telemekhanika.1986,3:63–73.
    [65] Molchanov A.P. and Pyatnitskiy YeS., Lyapunov functions defning the necessaryand sufcient conditions for absolute stability of the nonlinear control systems, II[J].Avtomatika i Telemekhanika.1986,4:5–15.
    [66] Molchanov A.P. and Pyatnitskiy YeS., Lyapunov functions defning the necessaryand sufcient conditions for absolute stability of the nonlinear control systems, III[J].Avtomatika i Telemekhanika.1986,5:38–49.
    [67] Morse A.S., Supervisory control of families of linear set-point controller-part I: exactmatching[J]. IEEE Transactions on Automatic Control.1996,41(10):1413–1431.
    [68] Morse A.S., Control using logic-based switching[M]. New York: Springer-Verlag,1997.
    [69] Morari M., Baotic M., and Borrelli F., Hybrid systems modeling and control[J].European Journal of Control.2003,9(2–3):177–189.
    [70] Muller M.A. and Liberzon D., Input/output-to-state stability of switched nonlinearsystems[C], In Proceeding of the American Control Conference,2010:1708–1712.
    [71] Narendra K.S. and Balakrishnan J., A common Lyapunov function for stable LTIsystems with commuting A-matrices[J]. IEEE Transactions on Automatic Control.1994,39(12):2469–2471.
    [72] Opoiytsev V.I., Conversion of principle of contractive maps[M]. UspMat Nauk.1976,31:169–98.
    [73] Peleties P. and DeCarlo R.A., Asymptotic stability of m-switched systems usingLyapunov-like functions[C]. In Proceeding of the American Control Conference,1991:1679–1684.
    [74] Pettersson S., Synthesis of switched linear systems[C], In Proceeding of the IEEEConference on Decision and Control,2003:5283–5288.
    [75] Pettersson S. and Lennartson B., Stability and robustness for hybrid systems[C]. InProceeding of the IEEE Conference on Decision and Control,1996:1202–1207.
    [76] Pettersson S. and Lennartson B., Exponential stability of hybrid systems using piece-wise quadratic Lyapunov functions resulting LMIs[C]. In Proceeding of the14thWorld Congress of IFAC, Beijing,1999.
    [77] Pettersson S. and Lennartson B., Stabilization of hybrid systems using a min-projection strategy[C]. In Proceeding of the American Control Conference,2001:223–228.
    [78]彭宇平,切换系统的反馈设计和性能优化[D].华南理工大学,2010.
    [79] Priyandoko G., Mailah M., and Jamaluddin H., Vehicle active suspension systemusing skyhook adaptive neuro active force control[J]. Mechanical Systems and SignalProeessing,2009,33(3):858–868.
    [80] Ravindranathan M. and Leitch R., Model switching in intelligent control systems[J].Artifcial Intelligence in Engineering,1999,13(2):175–187.
    [81] Riedinger P., Sigalotti M., and Daafouz J., On the algebraic characterization ofinvariant sets of switched linear systems[J]. Automatica.2010,46(6):1047–1052.
    [82] Rodrigues L. and How J.P., Automated control design for a piecewise-afne approx-imation of a class of nonlinear systems[C]. In Proceeding of the American ControlConference,2001:3189–3194.
    [83] Rodrigues L., Dynamic output feedback controller synthesis for piecewise-afne sys-tems[D]. PhD Thesis, Stanford University, CA, USA,2002.
    [84] Santis E.D. and Benedetto M.D., Design of Luenberger-like observers for detectableswitching systems[C]. In Proceeding of the IEEE International Symposium on Intel-ligent Control,2005:30–35.
    [85] Savkin A.V., Petersen I.R., Skafdas E., et al., Hybrid dynamical systems: robustcontrol synthesis problems[J]. Systems&Control Letters.1996,29(2):81–90.
    [86] Savkin A.V., Skafdas E., and Evans R.J., Robust output feedback stabilizability viacontroller switching[J]. Automatica,1999,35(1):69–74.
    [87] Savaresi S.M., Silani E., and Bittanti S., Acceleration-driven-damper (ADD): Anoptimal control algorithm for comfort-oriented semiactive suspensions[J]. Journal ofDynamic Systems, Measurement, and Control,2005,127(2):218–229.
    [88] Skafdas E., Evans R.J., Savkin A.V., et al., Stability results for switched controllersystems[J]. Automatica,1999,35(4):553–564.
    [89] Shorten R.N. and Narendra K.S., A sufcient condition for the existence of a commonLyapunov function for two second-order linear systems[C]. In Proceeding of the IEEEConference on Decision and Control,1997:3521–3522.
    [90] Shorten R.N. and Narendra K.S., On the existence of a common quadratic Lyapunovfunctions for linear stable switching systems[C]. In Proceeding of Yale Workshop onAdaptive and Learning Systems,1998.
    [91] Shorten R.N. and Narendra K.S., On common quadratic Lyapunov functions forpairs of stable LTI systems whose system matrices are in common form[J]. IEEETransactions on Automatic Control,2003,48(4):618–621.
    [92] Song X.B., Ahmadian M., and Southward S., An adaptive semiactive contro1al-gorithm for magneto-rheological suspension systems[J]. Journal of Vibration andAcoustics,2005,127(5):493–502.
    [93]宋晓琳,殷智宏,郭孔辉等,基于免疫算法的汽车主动悬架控制研究[J].汽车工程,2006,28(5):465–470.
    [94] Sontag ED. Nonlinear regulation: the piecewise linear approach[J]. IEEE Transac-tions on Automatic Control.1981,26(2):346–58.
    [95] Systems&Control Letters,1999,40(5).(Special Issue on Hybrid Systems)
    [96] Sun Z., Stabilizablibity and intensitivity of switched linear systems[J]. IEEE Trans-actions on Automatic Control.2004,49(7):1133–1137.
    [97] Sun Z., A robust stabilizing law for switched linear systems[J]. International Journalof Control,2004,77(4):389–398.
    [98] Sun Z., Combined stabilizing strategies for switched linear systems[J]. IEEE Trans-actions on Automatic Control.2006,51(4):666–674.
    [99] Sun Z., Stabilizing switching design for switched linear systems: a state-feedbackpath-wise switching approach[J]. Automatica,2009,45(7):1708–1714.
    [100] Sun Z., Robust switching of discrete-time switched linear systems[J]. Automatica(inpress).
    [101] Sun Z. and Shorten R., On convergence rates of switched linear systems[C]. InProceeding of the IEEE Conference on Decision and Control,2003:4800–4805.
    [102] Sun Z. and Ge S.S., Dynamic output feedback stabilization of a class of switchedlinear systems[J]. IEEE Transactions on Circuits and Systems I,2003,50(8):1111–1115.
    [103] Sun Z. and Ge S.S., Switched linear systems: control and design[M], London:Springer,2005.
    [104] Sun Z. and Ge S.S., Switched stabilization of higher-order switched linear sys-tems[C]. In Proceeding of the IEEE Conference on Decision and Control,2005:4873–4878.
    [105] Sun Z. and Ge S.S., On stability of switched linear systems with perturbed switchingpaths[J]. Journal of Control Theory&Applications,2006,4(1):18–25.
    [106] Sun Z. and Ge S.S., Stability theory of switched dynamical systems[M], London:Springer,2011.
    [107] Sun Z. and Peng Y., Stabilizing design for switched linear control systems: a con-structive approach[J]. Transactions of the Institute of Measurement and Control,2010,32(6):706–735.
    [108] Sun Y.G., Wang L., Xie G., et al., Improved overshoot estimation in pole placementsand its application in observer-based stabilization for switched systems[J]. IEEETransactions on Automatic Control.2006,51(12):1962–1966.
    [109] Szabo Z., Bokor J., and Balas G., Generalized piecewise linear feedback stabilizabil-ity of controlled linear switched systems[C]. In Proceeding of the IEEE Conferenceon Decision and Control,2008:3410–3414.
    [110] Tanwani A., Shim H., and Liberzon D., Observability implies observer design forswitched linear systems[C], In Proceeding of International Conferece on Hybrid Sys-tems: Computation&Control,2011.
    [111] Tokarzewski J., Stability of periodically switched linear systems and the switchingfrequency[J]. International Journal of Systems Science,1987,18(4):697–726.
    [112] Wicks M.A., Peleties P., and DeCarlo R.A., Construction of piecewise Lyapunovfunctions for stabilizing switched systems[C]. In Proceeding of the IEEE Conferenceon Decision and Control,1994:3492–3497.
    [113] Wicks M.A., Peleties P., and DeCarlo R.A., Switched controller synthesis for thequadratic stabilization of a pair of unstable linear systems[J]. European Journal ofControl,1998,4(2):140–147.
    [114] Wirth F., A converse Lyapunov theorem for linear parameter-varying and linearswitching systems[J]. SIAM Journal on Control and Optimization.2005,44(1):210–39.
    [115] Willams R.A., Automotive active suspensions part1: basic principles[J]. Proceed-ings of the Institution of Mechanical Engineers, Part D: The Journal of AutomobileEngineering,211,1997:415–426.
    [116] Witsenhausen H., A class of hybrid-state continuous-time dynamic systems[J].IEEE Transactions on Automatic Control.1966,11(2):161–167.
    [117] Wonham W.M., Linear multivariable control-a geometric approach[M]. Berlin:Springer-Verlag,1979.
    [118] Wu J. and Sun Z. New slow-switching laws for switched linear systems[C]. InProceeding of the IEEE International Conference on Control and Automation,2010:2274–2277.
    [119] Wu J. and Sun Z., Observer-driven switching stabilization of switched linearsystems[C]. In Proceeding of the IEEE Multi-conference on System and Control,2011:1524–1527.
    [120]吴参,车辆半主动悬架非线性特性与控制算法研究[D].杭州:浙江大学机械设计研究所,2010
    [121]谢广明,郑大钟,线性切换系统的非奇异变换[J].清华大学学报(自然科学版),2002,42(9):1273–1275.
    [122] Xie G. and Wang L., Necessary and sufcient conditions for controllability and ob-servabiity of switched impulsive control systems[J]. IEEE Transactions on AutomaticControl,2004,49(6):960–966.
    [123] Xie G. and Wang L., Stabilization of switched linear systems with timedelay indetection of switching signal[J]. Journal of Mathematical Analysis and Applications.2005,305(1):277–290.
    [124] Xie, G. and Wang. L., Reachability realization and stabilizability of switched lineardiscrete-time systems[J]. Journal of Mathematical Analysis and Applications.2003,280(2):209–220.
    [125] Xie G. and Wang L., Periodic stabilizability of switched linear control systems[J].Automatica,2009,45(9):2141–2148.
    [126] Xie D. and Wu Y., Stabilisability of switched linear systems with time-varyingdelay in the detection of switching signals[J]. IET Electric Power Applications,2008,3(4):404–410.
    [127]余森,汽车磁流变半主动悬架控制系统研究[D].重庆:重庆大学,2003.
    [128] Zhai G. and Yasuda K., Stability analysis for a class of switched systems[J], Trans-actions of the Society of Instrument and Control Engineers.2000,36(5):409–415.
    [129] Zhao J. and Hill D.J., On Stability gain and control for switched systems[J]. Auto-matica,2008,44(5):1220–1232.
    [130] Zhao J. and Hill D.J. Dissipativity theory for switched systems[J]. IEEE Transac-tions on Automatic Control.2008,53(4):941–953.
    [131] Zhao J. and Hill D.J., Passivity and stability of switched systems: a multiple storagefunction method[J]. Systems&Control Letters.2008,57(2):158–164.
    [132] Zhang W., Abate A., Hu J.H., et al., Exponential stabilization of discrete-timeswitched linear system[J]. Automatica,2009,45(11):2526–2536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700