中国南海新芋螺多肽的合成及结构改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芋螺毒素是近二十年来国际上的研究热点。芋螺毒素由芋螺毒液和毒囊内壁的毒腺所分泌,多数由12-40个氨基酸组成,富含二硫键,能特异作用于乙酰胆碱受体及其它神经递质的各种受体亚型,以及钙、钠、钾等多种离子通道。世界上芋螺资源丰富,在我国主要分布在西沙群岛、南海及台湾海域。本实验室在中国南海芋螺的采集、毒素分离、纯化、基因克隆、合成及活性测定等方面进行了系列工作。本论文在已有工作的基础上,开展如下三方面研究:(1)ω-芋螺毒素SO-3的结构与活性关系;(2)中国南海α-家族芋螺毒素的合成及结构改造;(3)中国南海几种新的芋螺毒素的合成。
     在SO-3的结构与活性关系研究中:设计合成了7个SO-3和MⅦA嵌合体,测定了其金鱼毒性及镇痛活性,发现影响SO-3毒性较低的关键氨基酸处于1及2,2的氨基酸影响更显著。
     在中国南海α-家族芋螺毒素的合成及结构改造方面:(1)合成了7个α-家族芋螺毒素,并对它的镇痛活性进行评价,发现4个多肽具有显著的镇痛活性。(2)设计合成了1个双功能小分子多肽。在GI分子的N-端引入小分子钠通道抑制剂后,新分子具有部分钠通道抑制活性,对金鱼的毒性显著减低,其对烟碱型乙酰胆碱受体的作用正在测定中。(3)设计合成了2个Vc1.1和GI突变物。(4)利用α-芋螺毒素的骨架(CC-C-C)及天然堂皇芋螺毒素的氨基酸组成,设计合成了一个由11个氨基酸组成的线性短肽,确定了二硫键连接方式,发现其有较高的镇痛活性。
     在中国南海新克隆芋螺毒素的合成及镇痛活性研究中:(1)合成了6个T-超家族芋螺毒素,初步研究表明,这些毒素在较大剂量下对金鱼不致死,且部分具有兴奋作用。(2)合成了6个新克隆芋螺多肽,其中有4个肽由于疏水性较强而没有得到目标产物。在大鼠坐骨神经半切模型中,一个新的M型芋螺毒素L-6 (Mr6)具有强烈的镇痛活性且呈剂量依赖性。
     上述研究为确定ω-芋螺毒素SO-3的毒性、活性位点,发现具有镇痛应用前景的新型芋螺多肽,作出了新贡献。
Conotoxins have been intensively studied during last twenty years. Conotoxin excreted from the venom gland of the venom canal are mostly small, disulfide-rich peptides with 12~40 amino acids in length, and specifically target nicotinic acetylcholine receptors, ion-channels and their subunits, such as calcium, sodium and potassium ion channel. Conus resources exist widely in the world, specifically, are mainly distributed in the Paracel Islands, South China Sea and the waters around Taiwan. A series of studies on conotoxins including: the collection of conus, toxin isolation, purification, gene cloning, synthesis and activity assay, have been carried on in our laboratory. The thesis mainly focused on the three aspects in conotoxins: (1) The structure-activity relationship of theω-conotoxins SO-3; (2) Syntheses and modifications ofα-conotoxins from South China Sea; (3) Syntheses of several new conotoxins from South China Sea.
     In the studies of the structure-activity relationship of theω-conotoxins SO-3, seven variants of SO-3 and MⅦA were designed and synthesized, toxicity and analgesic activity were evaluated, and the effect of key amino acids in 1 and 2 on the toxicity of SO-3 were discovered.
     In the studies of syntheses and modifications ofα-conotoxins from South China sea: (1) Sevenα-conotoxins were synthesized and evaluated for their analgesic activity, and four peptides of them were found to have significant analgesic activity. (2) A low molecular difunctional peptide, which a small-molecule sodium channel inhibitor is attached in the N-terminal of GI, was designed and synthesized and showed inhibitory activity in sodium channels and low toxicity to the goldfish compared with GI. (3) Two variants of Vc1.1 and GI were designed and synthesized. (4) A small peptide of 11 amino acids has been designed and synthesized based on cysteine framework (CC-C-C) ofα-conotoxins disulfide connectivity and exhibited high analgesic activity.
     In the studies of several novel conotoxins from South China Sea: (1) Six T-superfamily conotoxins were synthesized and their toxicity were determined with goldfish. The results indicated that these T-superfamily conotoxins have no toxicity and some of them show exciting activity. (2) Six novel conotoxin linear peptides were synthesized but four final products were not obtained because of the difficulty in folding. The analgesic activity of a M-superfamily conotoxin L-6 (Mr6) was determined with PNL model in rats. The results indicated that Mr6 has potent analgesic activity in dose-dependent mode.
     The above studies will contribute to determination ofω-conotoxins SO-3 toxicity and active site, and discovery of novel analgesic conus peptides.
引文
[1] Philippe F, Reto S. Marin snail venoms: use and trends in receptor and channel neuropharmacology [J]. Pharmacology, 2009, 9:594-601.
    [2] Buczek O, Bulaj G, Olivera B M. Conotoxins and the posttranslational modification of secreted gene products [J]. Cellular and Molecular Sciences, 2005, 62(24):3067-3079.
    [3] Olivera B M, Cruzab L J. Conotoxins in retrospect [J]. Toxicon, 2001, 39(1):7-14.
    [4] Shon K, Olivera B M, Watkins M, et al.μ-conotoxin PⅢA, a new peptide for discrimination among tetrodotoxin-sensitive Na channel subtypes [J]. Neuroscience, 1998, 18:4473-4481.
    [5] Walker C S., Steel D, Jacobsen R B, et al. The T-superfamily of conotoxins [J]. Biological Chemistry, 1999, 274(43):30664-30671.
    [6] Zamponi G W, Lewis R J, Todorovic S M., Stephen P. Arneric, Terrance P. Snutch. Role of voltage-gated calcium channels in ascending pain pathways [J]. Brain Research Reviews, 2009, 60:84-89.
    [7] Motin L, Adams D J.ω-Conotoxins inhibition of excitatory synaptic transmission evoked by dorsal root stimulation in rat superficial dorsal horn [J]. Neuropharmacology, 2008, 55:860-864.
    [8] Bingham J, Mitsumaga E, Bergeron Z L. Drgus from slugs-Past, present and future perspectives ofω-conotoxin research [J]. Chemico-Biological Interactions, 2010, 183:1-18.
    [9] Sxhulz J R, Norton A G, Gilly W F, et al.The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism [J]. Biological Bulletin, 2004, 207(2): 77-79.
    [10] Kohn A J. Piscivorous gastropods of the genus Conus [J]. National Academy of the Sciences, 1956, 42(3):168-171
    [11] Zhan Li, He XiangPing, Xie ZuoPing, et al. Effect of new o-superfamily contoxin SO-3 on sodium and potassium currents of cultured hippocampal neurons [J]. Brain Research, 2003 965 (1-2):155-158.
    [12] Basus V J, Nadasdi L, Ramachandran J,et al.Solution structure ofω-conotoxin MⅦA using 2D NMR spectroscopy [J].FEBS, 1995, 370(3):163-167.
    [13]闫永彬,涂光忠,罗雪春,等.ω-芋螺毒素SO-3溶液构象的核磁共振研究[J].科学通报, 2003, 48(7):677
    [14] Kim J I, Takahashi M, Martin-Moutot N, et al. Tyr13 is essential for the binding ofω–conotoxin MⅦC to the P/Q-type calcium channel [J]. Biochemical and Biophysical Communications, 1995, 214:305-309.
    [15] Nadasdi L, Yamashiro D, Chung D, et al. Structure activity analysis of a conus peptide blocker of N-type neuronanl calcium channels [J]. Biochemistry, 1995, 34:8076-8081.
    [16] Kim J I, Takahashi M, Ogura A, et al. Hydroxyl group of Tyr13 is essential for the activity ofω-conotoxin GⅥA, a peptide toxin for N-type calcium channel [J]. Biological Chemistry,
    1994, 269:23876-23878.
    [17] Sato K, Park N G, Kohno T, et al. Role of basic residues for the binding ofω-conotoxin GⅥA to N-type calcium channels [J]. Biochemical and Biophysical Communications, 1993, 194:1292-1296.
    [18] Kim J I, Takahashi M, Martin-Moutor N, et al. Tyr13 is essential for the binding ofω-conotoxin MⅥC to the P/Q-type calcium channel [J]. Biochemical and Biophysical Communications, 1995, 214:305-309.
    [19]戴秋云,刘凤云,周艳荣,等.ω-芋螺毒素MⅦC的N及C端修饰对折叠及活性影响[J].中国生物化学与分子生物学报, 2001, 17(1):66-70.
    [20] Nielsen K J, Schroeder T, Lewis R. Structure-activity relationships ofω-conotoxins at N-type voltage-sensitive calcium channels [J]. Molecular Recognition, 2000, 13: 55-70.
    [21] Rauck R L, Wallace M S,Burton A W, et al. Intrathecal ziconotide for neuropathic pain: a review [J]. Pain Practice, 2009, 9(5):327-337.
    [22] Penn R D, Paice J A. Adverse effects associated with the intrathecal administration of ziconotide [J]. Pain, 2000, 85(1-2):291-296.
    [23] Smith M J, Cabot P J, Ross F B, et al.The novel N-type calcium channel blocker, AM336, produces potent dose-de pendent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices [J]. Pain, 2002, 96:119-127.
    [24] Wermeling D P, Berger J R. Ziconotide infusion for severe chronic pain: Case series of patients with neuropathic pain [J]. Pharmacothery, 2006, 26(3):395-402.
    [25] Scot D A t, Wright C E, Angus J A. Actions of intrathecalω-conotoxins CⅥD, GⅥA , MⅦA, and morphine in acute and neuropathic pain in the rat [J]. European Journal of Pharmacology, 2002, 451:279-286.
    [26] Yan Y B, Tu G Z, Luo X C, et al. Three-dimensional solution structure of w-conatoxin SO-3 determined by NMR [J]. Chinna. Science. Bulletin., 2003, 48(11):1097-1102.
    [27]张镭,王敏伟,宫泽辉.芋螺毒素SO-3对小鼠中枢神经系统作用的研究[J].解放军药学学报, 2006, 22(4):254-258.
    [28] Duggan P J, Lewis R J, Lok Y P, et al .Low molechlar weight non-peptide mimics ofω-conotoxin GⅥA [J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19:2763-2765.
    [29]柴志芳,吉永华,利用蝎毒分子骨架的蛋白质工程[J].生命科学, 2003, 15(5):317-320.
    [30] Peng Can, Wu Xuechen, Han Yuhong, et al. Identification of six novel T-1 conotoxins from conus pulicarius by molecular cloning [J]. Peptides, 2007, 28:2116-2124.
    [31] Jiang Hui, Wang Chengzhong, Xu Chenqi, et al. A novel M-superfamily conotoxin with a unique motif from Conus vexillum [J]. Peptides, 2006, 27:682-689.
    [32] Luo Sulan, Zhangsun Dongting, Lin Qiujin, et al. Sequence diversity of O-superfamily conopetides from Conus marmoreus native to Hainan [J]. Peptides, 2006, 27:3058-3068.
    [33] Cnudde S E., Prorok M, Dai Quiyun, et al. The crystal structures of the calcium-bound con-G and con-T[K7γ] dimeric peptides demonstrate a novel metal-dependent helix-forming motif [J]. JACS, 2007, 129(6):1586-1593.
    [34] Sheng Zhenyu, Dai Qiuyun, Prorok Mary, et al. Subtype-selective antagonism of N-methyl-d-aspartate receptor ion channes by synthetic conantokins peptides [J]. Neuropharmacolog, 2007, 53:145-156.
    [35] Dai Qiuyun, Xiao Cai, Dong Mingxin, et al. Non-strict Strand Orientation of the Ca2+-induced Dimerization of a Conantokin Peptide Variant with Sequence-shifted -carboxyglutamate Residues [J]. Peptides, 2009, 30: 866-872.
    [36] Wang Xue, Xu Liping, Li Qi-ang, et al. Effect of O-superfamily conotoxin SO-3 on synchronized spontaneous calcium spikes in cultured hippocampal networks [J]. Cell Biology and Toxicology, 2008, 24(1):11-17.
    [37]戴秋云,徐宁,胡洁,刘珠果.α-型芋螺多肽衍生物及其应用[P], 200810222341.8
    [38] Peng Can, Tang Shaojun, Pi Canhui, et al. Discovery of a novel class of conotoxin from Conus litteratus, It14a, with a unique cysteine pattern [J]. Peptides, 2006, 27:2174-2181.
    [39] Luo Sulan, Zhangsun Dongting, Zhangben, et al. Direct cDNA cloning of novel conotoxins of the T-superfamily from Conus textile [J]. Peptides, 2006, 27:2640–46.
    [40] Luo Sulan, Zhangsun Dongting, Zhang Ben, et al. Novel alpha-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity [J]. Peptides, 2006, 12(11):693-704.
    [41] Lluisma A O, Lopez-Vera E, Bulaj G, et al. Characterization of a novelΨ-conotoxin from Conus parius reeve [J]. Toxicon, 2008, 52(2):174-180.
    [42] Wang Lei, Liu Junliang, Pi Canhui, et al. Identification of a novel M-superfamily conotoxin with the ability to enhance tetrodotoxin sensitive sodium currents [J]. Molecular Toxicology. 2009, 83(10):925-932
    [43] Han Yuhong, Huang Feijuan, iangHui J, et al. Purification and structural characterization of a D-amino acid-containing conopeptide, conomarphin, from Conus marmoreus [J]. FEBS Joural, 2008, 275:1976-1987.
    [44] Gowd K H, Twede V, Watkins M, et al. Conantokin-p, an unusual conantokin with a long disulfide [J]. Toxicon, 2008, 52:203-213.
    [45] Holford M, Zhang Minmin, Gowd K H, et al. Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus [J]. Toxicon 2009, 53:90-98.
    [46] Walewska A, Skalicky J J, Davis D R, et al. NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the mu-conotoxin SxⅢA [J]. Journal of the American Chemical Society, 2008, 130(43):14280-14286.
    [47] Liu Zhuguo, Xu Ning, Hu Jie. Identification of novel I-superfamily conopeptides from several clades of Conus species found in the South China Sea [J]. Peptides, 2009, 30:1782–1787.
    [48] Yuan Duoduo, Liu Li, Shao Xiaoxia, et al. New conotoxins define the novel I3-superfamily [J]. Peptides, 2009, 30:861–65.
    [49] Chen Ping, Garrett J E., Watkins M, et al. Purification and characterization of a novel excitatory peptide from Conus distans venom that defines a novel gene superfamily of conotoxins [J]. Toxicon, 2008, 52:139-145.
    [50] Loughnan M, Nicke A, Lawrence N, et al. Novel D-Conopeptides and Their Precursors Identifide by cDNA Cloning Define the D-Conotoxin Superfamily [J]. Biochemistry, 2009, DOL: 10.1021/bi9000326.
    [51] Liu Li, Wu Xuechen, Yuan Duoduo, et al. Identification of a novel S-superfamily conotoxin from vermivorous Conus caracteristicus [J]. Toxicon, 2008, 51:1331-1337.
    [52] Clark R J, Fischer H, Nevin S T, et al. The synthesis, structural characterization and receptor specificity of the alpha-conotoxin Vc1.1 [J]. Biological Chemistry, 2006, 281(32):23254-263
    [53] Ellison M, Haberlandt C, Gomez-Casati ME, et al. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR [J]. Biochemistry, 2006, 45(5):1511-1517.
    [54] Brown M. Killer snails ease the pain. Drug Discovery Today [J], Druge Discovery Today, 2002, 7(17):885-886.
    [55] Seltzer Z, Dubner R, Shir Y. A novel behavial model of neuropathic pain produced by partial sciatic nerve injury [J]. Pain, 1990, 43(2):205-218.
    [56] Xiao Cai, Huang Yuanyuan, Dong Mingxin, et al. NR2B-selective Conantokin Peptide Inhibitors of the NMDA Receptor Display Enhanced Antinociceptive Properties Compared to Non-selective Conantokins NMDA Receptor [J]. Neuropeptides, 2008, 42(5-6):601-609.
    [57] Dai Qiuyun, Liu Fengyun, Zhou Yanrong, et al. The Synthesis of SO-3, a Conopeptide with High Analgesic Activity Derived from Conus striatus [J]. Natural Products, 2003, 66 (9):1276-1279.
    [58] Decosterd I, Woolf C J. Spared nerve injury: an animal model of pesistent peripheral neuropathic pain [J]. Pain, 2000, 87(2):149-158.
    [59] Martin L, Stricher F, Misse D, et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes [J]. Natural Biotechnology, 2003, 21(1):71-76.
    [60] Herrewege Y V, Morellato L, Descours A, et al. CD4 mimetic miniproteins: potent anti-HIV compounds with promising activity as microbicides [J]. Antimicrobial Chemother, 2008, 61(4):818-826.
    [61] Espiritua D J D, Watkinsc M, Dia-Monjea V, et al. Venomous cone snails: molecular phylogeny and the generation of toxin diversity [J]. Toxicon, 2001, 39(12):1899-1916.
    [62] Vita C , Vizzavona J, Drakopoulou E, et al. Novel miniproteins enqineered by the transfer of active sites to small natural scaffolds [J]. Biopolymers ,1998, 47(1):93-100.
    [63] Hogenkamp D J, Nguyen P, Shao B. Aryl Substituted Pyrimidines: United States, US686721B2. 2005 03 15.
    [64] Miloslavina A A, Leipold E, Kijas M, et al. A room temperature ionic liquid as convenient solvent for the oxidative folding of conopeptides [J]. Peptide science, 2009, 15:72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700