胃癌组织中Th1细胞因子与胃癌患者术后生存的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
检测Th1细胞因子在胃癌组织中的表达,分析其与胃癌患者术后生存的相关性及其临床意义。
     选取2006年6月至2008年1月之间接受标准D2根治术并达到R0切除的胃腺癌患者58例,随访截止时间为2010年2月。运用荧光实时定量PCR(qRT-PCR)技术,检测所有患者的胃癌组织中Th1细胞因子TRAV10、IRF1、TBX21、CD3Z、GZMB、GNLY、GATA3和IFNG的mRNA的表达量,并分析其与胃癌患者术后生存的关系及其临床意义。
     截止到末次随访时间,共有13例患者死亡(22.4%),均死于胃癌复发。中位随访期为30.5个月(1.0-43.0)。所有患者的1年生存率为84.5%,2年生存率为80.6%。卡方检验显示GNLY、GZMB和IFNG的mRNA表达与胃癌组织中脉管癌栓的形成数量呈负相关。单变量cox回归分析提示GNLY的mRNA表达水平(p=0.022)以及TRAV10等八个因子的mRNA表达水平均下调(p=0.001)与胃癌患者术后生存显著相关,而单个TRAV10、IRF1、TBX21、CD3Z、GZMB、GATA3和IFNG的mRNA表达水平与胃癌患者术后生存无统计学意义,K-M分析也提示GNLY的mRNA表达水平(p=0.012)以及TRAV10等八个因子的mRNA的综合表达水平(p<0.001)与胃癌患者术后生存显著相关,但多变量cox回归分析仅提示TRAV10等八个因子的mRNA表达水平均下调(p=0.05)有统计学意义,提示该因素是影响胃癌患者术后生存的独立因素。1、GNLY的mRNA表达水平与胃癌患者术后生存有相关性,但不是独立因素。2、在TRAV10、IRF1、TBX21、CD3Z、GZMB、GNLY、GATA3和IFNG的mRNA表达水平中,有任意因子上调的患者预后好于皆下调的患者,该指标为影响胃癌患者术后生存的独立因素。
     3、GNLY、GZMB和IFNG的mRNA的单独表达上调与胃癌组织脉管癌栓的形成数量呈负相关。
To investigate the correlation and clinical significance of the expressions and effects of Thl cytokines on survival time of patients with gastric cancer after radical resection.
     We selected specimens from 58 patients who underwent RO resections with extended lymph nodes dissection(D2) from June 2006 through January 2008 at Zhongshan Hospital (Shanghai, China). The date of last follow-up was February 2010. The expressions of Thl cytokines mRNA was detected in tumor tissues from 58 patients with gastric cancer by real-time polymerase chain reaction (RT-PCR) method. Prognostic effects of Thl cytokines were evaluated by Cox regression and Kaplan-Meier analysis using median values as cutoff.
     At last follow-up,13 patients (22.4%) studied had died, all of whom died from the recurrence of gastric cancer. The median duration of follow-up were 30.5 months (range,1.0-43.0). The overall survival (OS) rates were 84.5% for 1 year,80.6% for 2 years, respectively, for the whole study. The mRNA expressions of GNLY, GZMB and IFNG are associated with tumor emboli. The mRNA expressions of TRAV10, IRF1, TBX21, CD3Z, GZMB, GATA3 and IFNG are not associated with OS. In the tumor sites, the lower mRNA expression of GNLY is associated with worse OS (Urivariate analysis HR 0.23, p=0.022), however, it is not an independent predictor. At the same time, the combination of mRNA expressions of eight cytokines is an independent factor for OS (Urivariate analysis HR 0.23,p=0.001; Mutlivariate analysis HR 0.17,p=0.05).1-year and 2-year OS rates were 98%,89.8% for the group with high mRNA expression of eight cytokines, compared with 66.7%,55.6% for the group with low mRNA expression (Logrank-testp<0.001).
     1. The mRNA expression of GNLY is associated with OS, but it is not an independent factor.
     2. The combination of mRNA expressions of the eight cytokines is an independent factor for OS.
     3. The mRNA expression of GNLY, GZMB and IFNG is separately negatively correlated with tumor emboli.
引文
[1]. Prendergast GC, Jaffee EM. Cancer immunologists and cancer biologists:why we didn't talk then but need to now [J]. Cancer Res 2007;67:3500-4.
    [2]. Muranski P, Restifo NP. Adoptive immunotherapy of cancer using CD4(+) T cells [J]. Curr Opin Immunol 2009;21:200-8.
    [3]. Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation:new players and new insights [J]. J Clin Immunol 2003;23:147-61.
    [4]. Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer [J]. N Engl J Med 2005;353:2654-66.
    [5]. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer:a novel perspective [J]. Cancer Res 2007;67:1883-6.
    [6]. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion [J]. Nat Rev Immunol 2006;6:715-27.
    [7]. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy [J]. J Natl Cancer Inst 1996;88:100-8.
    [8]. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes [J]. Nat Immunol 2002;3:999-1005.
    [9]. Mantovani A, Romero P, Palucka AK, Marincola FM. Tumour immunity:effector response to tumour and role of the microenvironment [J]. Lancet 2008;371:771-83.
    [10]. Krensky AM, Clayberger C. Granulysin:a novel host defense molecule [J]. Am J Transplant 2005;5:1789-92.
    [11]. Andersen P, Pedersen MW, Woetmann A, et al. EGFR induces expression of IRF-1 via STAT1 and STAT3 activation leading to growth arrest of human cancer cells [J]. Int J Cancer 2008;122:342-9.
    [12]. Moriyama Y, Nishiguchi S, Tamori A, et al. Tumor-suppressor effect of interferon regulatory factor-1 in human hepatocellular carcinoma [J]. Clin Cancer Res 2001;7:1293-8.
    [13]. Ho IC, Pai SY. GATA-3-not just for Th2 cells anymore [J]. Cell Mol Immunol 2007;4:15-29.
    [14]. Kouros-Mehr H, Bechis SK, Slorach EM, et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model [J]. Cancer Cell 2008;13:141-52.
    [15]. Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M. Natural killer T cell-mediated antitumor immune responses and their clinical applications [J]. Cancer Sci 2006;97:807-12.
    [16]. Berzofsky JA, Terabe M. NKT cells in tumor immunity:opposing subsets define a new immunoregulatory axis [J]. J Immunol 2008;180:3627-35.
    [17]. Glimcher LH. Trawling for treasure:tales of T-bet [J]. Nat Immunol 2007;8:448-50.
    [18]. Kishi A, Takamori Y, Ogawa K, et al. Differential expression of granulysin and perforin by NK cells in cancer patients and correlation of impaired granulysin expression with progression of cancer [J]. Cancer Immunol Immunother 2002;50:604-14.
    [19]. Nagasawa M, Kawamoto H, Tsuji Y, Mizutani S. Transient increase of serum granulysin in a stage IVs neuroblastoma patient during spontaneous regression:case report [J]. Int J Hematol 2005;82:456-7.
    [20]. Sekiya M, Ohwada A, Katae M, Dambara T, Nagaoka I, Fukuchi Y. Adenovirus vector-mediated transfer of 9 kDa granulysin induces DNA fragmentation in HuD antigen-expressing small cell lung cancer murine model cells [J]. Respirology 2002;7:29-35.
    [21]. Kato Y, Cyon JC, Yoshimatsu K, Ogawa K. [Efficacy of activated lymphocytes transfer therapy as a novel maker for serum granulysin level with advanced gastric cancer patients] [J]. Gan To Kagaku Ryoho 2008;35:2262-4.
    [22]. Saigusa S, Ichikura T, Tsujimoto H, et al. Serum granulysin level as a novel prognostic marker in patients with gastric carcinoma [J]. J Gastroenterol Hepatol 2007;22:1322-7.
    [23]. Yip WK, Abdullah MA, Yusoff SM, Seow HF. Increase in tumour-infiltrating lymphocytes with regulatory T cell immunophenotypes and reduced zeta-chain expression in nasopharyngeal carcinoma patients [J]. Clin Exp Immunol 2009;155:412-22.
    [1]. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol 1986;136:2348-57.
    [2]. Mosmann TR, Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol 1989;7:145-73.
    [3]. Nishimura T, Iwakabe K, Sekimoto M, et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo [J]. J Exp Med 1999;190:617-27.
    [4]. Mattes J, Hulett M, Xie W, et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells:an eotaxin and STAT6-dependent process [J]. J Exp Med 2003;197:387-93.
    [5]. Nishimura T, Nakui M, Sato M, et al. The critical role of Thl-dominant immunity in tumor immunology [J]. Cancer Chemother Pharmacol 2000;46 Suppl:S52-61.
    [6]. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J]. Nat Immunol 2005;6:1123-32.
    [7]. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation [J]. J Exp Med 2005;201:233-40.
    [8]. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells [J]. Nat Immunol 2007;8:950-7.
    [9]. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity [J]. Nat Immunol 2007;8:345-50.
    [10]. Surman DR, Dudley ME, Overwijk WW, Restifo NP. Cutting edge:CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen [J]. J Immunol 2000;164:562-5.
    [11]. Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory [J]. Science 2003;300:337-9.
    [12]. Bourgeois C, Veiga-Fernandes H, Joret AM, Rocha B, Tanchot C. CD8 lethargy in the absence of CD4 help [J]. Eur J Immunol 2002;32:2199-207.
    [13]. Bevan MJ. Helping the CD8(+) T-cell response [J]. Nat Rev Immunol 2004;4:595-602.
    [14]. Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help [J]. Science 2003;300:339-42.
    [15]. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy [J]. J Natl Cancer Inst 1996;88:100-8.
    [16]. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes [J]. Nat Immunol 2002;3:999-1005.
    [17]. Heller KN, Gurer C, Munz C. Virus-specific CD4+ T cells:ready for direct attack [J]. J Exp Med 2006;203:805-8.
    [18]. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response [J]. J Exp Med 1998;188:2357-68.
    [19]. Mumberg D, Monach PA, Wanderling S, et al. CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma [J]. Proc Natl Acad Sci U S A 1999;96:8633-8.
    [20]. Lauritzsen GF, Bogen B. The role of idiotype-specific, CD4+ T cells in tumor resistance against major histocompatibility complex class II molecule negative plasmacytoma cells [J]. Cell Immunol 1993;148:177-88.
    [21]. Corthay A, Skovseth DK, Lundin KU, et al. Primary antitumor immune response mediated by CD4+ T cells [J]. Immunity 2005;22:371-83.
    [22]. Perez-Diez A, Joncker NT, Choi K, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells [J]. Blood 2007;109:5346-54.
    [23]. Tsung K, Dolan JP, Tsung YL, Norton JA. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection [J]. Cancer Res 2002;62:5069-75.
    [24]. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer [J]. J Clin Invest 2007;117:1175-83.
    [25]. Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth [J]. Nature 2006;442:461-5.
    [26]. Langowski JL, Kastelein RA, Oft M. Swords into plowshares:IL-23 repurposes tumor immune surveillance [J]. Trends Immunol 2007;28:207-12.
    [27]. Tartour E, Fossiez F, Joyeux I, et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice [J]. Cancer Res 1999;59:3698-704.
    [28]. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway [J]. J Exp Med 2009;206:1457-64.
    [29]. Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment [J]. Cancer Cell 2009;15:114-23.
    [30]. Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis [J]. J Immunol 2005;175:6177-89.
    [31]. Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth [J]. Blood 2003;101:2620-7.
    [32]. Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients [J]. J Hepatol 2009;50:980-9.
    [33]. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines [J]. J Exp Med 1996;183:2593-603.
    [34]. Inozume T, Hanada K, Wang QJ, Yang JC. IL-17 secreted by tumor reactive T cells induces IL-8 release by human renal cancer cells [J]. J Immunother 2009;32:109-17.
    [35]. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer [J]. Clin Cancer Res 2008;14:6735-41.
    [36]. Lee YK, Turner H, Maynard CL, et al. Late developmental plasticity in the T helper 17 lineage [J]. Immunity 2009;30:92-107.
    [37]. Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments [J]. Blood 2009;114:1141-9.
    [38]. Muranski P, Boni A, Antony PA, et al. Tumor-specific Thl7-polarized cells eradicate large established melanoma [J]. Blood 2008;112:362-73.
    [39]. Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1,2, or 17 cell lineages [J]. Immunity 2008;29:138-49.
    [40]. Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs [J]. Immunity 2008;29:44-56.
    [41]. Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation:new players and new insights [J]. J ClinImmunol 2003;23:147-61.
    [42]. Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Thl cells, and B cells:synergism with IL-18 for IFN-gamma production [J]. J Immunol 1998;161:3400-7.
    [43]. Wu C, Wang X, Gadina M, O'Shea JJ, Presky DH, Magram J. IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites [J]. J Immunol 2000;165:6221-8.
    [44]. Tau GZ, von der Weid T, Lu B, et al. Interferon gamma signaling alters the function of T helper type 1 cells [J]. J Exp Med 2000; 192:977-86.
    [45]. Zhang Y, Apilado R, Coleman J, et al. Interferon gamma stabilizes the T helper cell type 1 phenotype [J]. J Exp Med 2001;194:165-72.
    [46]. Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Thl responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription [J]. J Exp Med 2006;203:755-66.
    [47]. Lighvani AA, Frucht DM, Jankovic D, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells [J]. Proc Natl Acad Sci U S A 2001;98:15137-42.
    [48]. Kurata H, Lee HJ, O'Garra A, Arai N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Thl cells [J]. Immunity 1999;11:677-88.
    [49]. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation [J]. Immunity 2007;26:579-91.
    [50]. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins lbeta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells [J]. Nat Immunol 2007;8:942-9.
    [51]. Brustle A, Heink S, Huber M, et al. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4 [J]. Nat Immunol 2007;8:958-66.
    [52]. Zhou L, Ivanov, Ⅱ, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways [J]. Nat Immunol 2007;8:967-74.
    [53]. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells [J]. Nature 2006;441:235-8.
    [54]. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells [J]. Immunity 2006;24:179-89.
    [55]. Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells [J]. Int J Cancer 2003;105:820-4.
    [56]. Shimozato O, Ugai S, Chiyo M, et al. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects [J]. Immunology 2006;117:22-8.
    [57]. Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23 [J]. J Immunol 2003;171:600-7.
    [58]. Overwijk WW, de Visser KE, Tirion FH, et al. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant [J]. J Immunol 2006; 176:5213-22.
    [59]. Benchetrit F, Ciree A, Vives V, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism [J]. Blood 2002;99:2114-21.
    [60]. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma [J]. Immunity 2008;28:29-39.
    [61]. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy [J]. Cancer Immunol Immunother 2005;54:721-8.
    [62]. Wieder T, Braumuller H, Kneilling M, Pichler B, Rocken M. T cell-mediated help against tumors [J]. Cell Cycle 2008;7:2974-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700