初级传入神经元TRPM8在大鼠慢性关节炎性疼痛中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性疼痛的治疗一直是临床的难点,冷刺激可以缓解慢性疼痛并可避免常用镇痛药物的副作用,但过度的冷刺激却可诱发疼痛和冷觉过敏。TRPs通道是位于细胞膜上的一类重要的阳离子通道,在慢性疼痛中发挥重要作用,是近年研究的热点。TRPM8是TRPs通道家族的重要成员,主要感知冷刺激,可被包括薄荷醇、icilin等在内多种凉性化合物及低温(<28℃)激活。TRPM8的确定为研究冷刺激与疼痛的关系提供了新的途径和手段。本研究以建立关节炎大鼠模型为基础,通过薄荷醇及TRPM8反义寡核苷酸激活或者抑制TRPM8,着重探讨TRPM8在慢性炎性疼痛大鼠中的作用。期望这些研究结果能为日后相关炎性疼痛研究及治疗提供依据。
     第一部分:关节炎大鼠背根神经节TRPM8表达的变化
     目的:建立完全弗氏佐剂关节炎大鼠,观察其背根神经节TRPM8的表达变化,以探讨TRPM8在冷觉过敏形成中的意义。方法:将30只健康雄性SD大鼠,体重300±20g,随机分成5组(n=6),制成弗氏佐剂关节炎模型,分别为关节炎1天组(CFA-1组)、关节炎4天组(CFA-4组)、关节炎7天组(CFA-7组)、关节炎10天组(CFA-10组)、关节炎14天组(CFA-14组);将30只健康雄性SD大鼠随机分成5组(n=6),制成对照模型,分别为对照1天组(NS-1组)、对照4天组(NS-4组)、对照7天组(NS-7组)、对照10天组(NS-10组)、对照14天组(NS-14组)。动态监测大鼠行为学指标,以免疫组织化学方法检测大鼠DRG的TRPM8表达。结果:模型建立后随着时间的推移,大鼠右侧L5DRG的TRPM8表达上调,CFA-7组、CFA-10组、CFA-14组三组大鼠TRPM8表达水平达到峰值。对照组DRG的TRPM8表达没有变化。结论:DRG内TRPM8可能参与冷觉过敏的形成机制。
     第二部分:薄荷醇和TRPM8反义寡核苷酸对慢性关节炎大鼠痛觉过敏和背根神经节TRPM8表达的影响
     目的:建立完全弗氏佐剂关节炎大鼠模型,观察薄荷醇、反义寡核苷酸对大鼠行为学的影响以及背根神经节TRPM8的表达变化,以探讨TRPM8在慢性炎性痛大鼠中的作用。方法:健康雄性SD大鼠,体重300±20g,行鞘内置管,随机分成8组(n=8),其中4组制成弗氏佐剂关节炎模型,鞘内分别给予薄荷醇100μg/kg(CFA-Menthol组)、生理盐水20μl(CFA-NS组)、反义寡核苷酸60μg/kg(CFA-Antisense组)、错义寡核苷酸60μg/kg(CFA-Missense组);另外4组制成对照组(假炎症组),鞘内分别给予薄荷醇100μg/kg(NS-Menthol组)、生理盐水20μl(NS-NS)组)、反义寡核营酸60μg/kg(NS-Antisense组)、错义寡核苷酸60μg/kg(NS-Missense组)。其中,CFA-Menthol组、CFA-NS组、NS-Menthol组、NS-NS组大鼠致炎后第14天给药1次;CFA-Antisense组、CFA-Missense组、NS-Antisense组、NS-Missense组致炎后第9天给药,每天2次,连续5天。动态检测大鼠冷板指标、机械缩爪阈值及热板缩爪潜伏期。采用免疫组化、western blot检测以上各组右侧L5DRG内TRPM8的表达。结果:CFA-Menthol组大鼠鞘内给予薄荷醇后冷觉过敏增强,热痛敏和机械痛敏有所逆转;CFA-Antisense组大鼠冷觉过敏有所缓解。免疫组化及western结果显示,CFA-Menthol组、CFA-NS组以及CFA-Missense组致炎大鼠右L5DRG内TRPM8表达上调,鞘内给予反义寡核苷酸的CFA-Antisense组、NS-Antisense组大鼠右L5DRG内TRPM8表达下调。结论:鞘内给予薄荷醇激活表达上调的TRPM8使致炎大鼠冷觉过敏增强,热、机械痛敏逆转;鞘内给予反义寡核苷酸阻断TRPM8表达,使致炎大鼠冷觉过敏有所缓解,而对非致炎大鼠的行为学没有影响。慢性炎性疼痛大鼠的冷觉过敏的变化与TRPM8表达变化有关,薄荷醇的镇痛作用与TRPM8表达上调有关。
     第三部分:薄荷醇、TRPM8反义寡核苷酸的ED50、ED95的测定
     目的:建立完全弗氏佐剂关节炎大鼠模型,测量大鼠对薄荷醇、反义寡核苷酸反应的ED50、ED95,以探讨其在炎性痛大鼠中的量效关系。方法:健康雄性SD大鼠,体重300±20g,行鞘内置管,随机分为14组(n=10),制成弗氏佐剂关节炎模型,其中7组第14天鞘内分别给予生理盐水20μl、薄荷醇31.62μg/kg、39.81μg/kg、50.12μg/kg、63.10μg/kg、79.43μg/kg、100.00μg/kg;另7组致炎后第9天鞘内分别给予生理盐水20μl、反义寡核苷酸18.97gg/kg、23.89gg/kg、30.07μg/kg、37.86μg/kg、47.66μg/kg、60.00μg/kg,每天2次,连续5天;第14天冷板测量大鼠右后足抬足次数,以盐水对照组抬足次数为标准,薄荷醇组升高30%记为有效,反义寡核苷酸组降低30%记为有效。按Probit模型分别计算薄荷醇、反义寡核苷酸的ED50及ED95。结果:薄荷醇的ED50、ED95分别为:53.36μg/kg、88.31μg/kg;反义寡核苷酸的ED50、ED95分别为:29.92μg/kg、50.36μg/kg。结论:薄荷醇的ED50、ED95分别为:53.36μg/kg、88.31μg/kg;反义寡核苷酸的ED50、ED95分别为:29.92μg/kg、50.36μg/kg。
The treatment of chronic pain has been the difficulty in clinical. Cold stimulus can alleviate chronic pain and avoid the side effects of commonly used analgesic drugs. However, excessive cold can evoke pain and induce hypercryalgesia. Transient receptor potential channels(TRPs), the research hotspot in recent years, which plays an important role in chronic pain, is an important kind of cation channel located on cell membrane. TRPM8, a member of TRP channel family, is activated by cool compounds such as menthol, icilin, and by temperature below 28℃.The identification of TRPM8 produces profound, novel methods to relieve pain. In the dissertation, a model of chronic arthritic rats was constructed. Based on this model, the effect of TRPM8 on the chronic arthritic rats was explored when it was activated by menthol or blocked by the antisense oligonucleotides.The results of this study are expected to provide important information for future treatment and studies associated with chronic arthritic pain.
     Part one:Alteration of TRPM8 expression in dorsal root ganglion of arthritic rats.
     Objective:To establish the rat model of complete Freund's adjuvant-induced arthritis, observe the changes of TRPM8 expression in dorsal root ganglion of the arthritic rats, and analyze the significance of TRPM8 on the development of hypercryalgesia. Methods:The 30 healthy male SD rats, weighed 300±20g, which were made into model of adjuvant induced arthritis, were randomized into 5 groups(n=6), as 1 day arthritis group (group CFA-1),4 day arthritis group (group CFA-4),7 day arthritis group (group CFA-7),10 day arthritis group (group CFA-10),14 day arthritis group (group CFA-14).The other 30 healthy male SD rats were made into control model without arthritis, randomized into 5 groups(n=6), as 1 day in control group (group NS-1),4 day in control group (group NS-4),7 day in control group (group NS-7),10 day in control group (group NS-10),14 day in control group (group NS-14). Behavioral indicators of rats were examined every day. Immunohistochemistry was used to detect the expression of TRPM8 in dorsal root ganglion. Results:As model established, the expression of TRPM8 was up-regulation which reached a peak level in groups CFA-7, CFA-10 and CFA-14, while the expression of TRPM8 in the control groups was not changed. Conclusion:TRPM8 expressed in DRG may be involved in the mechanism of cold allergy in arthritic rats.
     Part two:Effects of menthol and TRPM8-antisense oligonucleotides on hyperalgesia and the experssion of TRPM8 in dorsal root ganglion of rats with chronic arthritis
     Objective:To establish the rat model of complete Freund's adjuvant-induced arthritis, observe the effect of menthol and TRPM8-antisense oligonucleotides on the behavioral indicators and the expression of TRPM8 in dorsal root ganglion of chronic arthritic rats, and analyze the significance of TRPM8 in chronic inflammatory pain rats. Methods:Healthy male SD rats, weighed 300±20g, were implanted intrathecal catheters and randomized into 8 groups. Amongst, the rats in 4 groups were made into model of adjuvant-induced arthritis and administered intrathecally with menthol 100μg/kg(group CFA-Menthol), saline 20μ(group CFA-NS), antisense oligonucleotid-es 60μg/kg(group CFA-Antisense), missense oligonucleotides 60μg/kg(group CFA-Missense). The rest rats in the other 4 groups were made into control model without athritis and administered intrathecally with menthol 100μg/kg (group NS-Menthol), saline 20μl(group NS-NS), antisense oligonucleotides 60μg/kg(group NS-Antisense), missense oligonucleotides 60μg/kg(group NS-Missense). Drugs were given once in the 14th day in group CFA-Menthol, CFA-NS, NS-Menthol and NS-NS, while given twice a day for five days from the 9th day in the rest groups.The cold plate indicators, mechanical withdrawal threshold (MWT) and thermal paw withdrawal latency (PWL) of rats was examined to evaluate their behavior. Immunohistochemical stain and western blot were used to measure the expression of TRPM8 in the rats'right L5 dorsal root ganglion. Results:After applied menthol, the hypercryalgesia of rats in group CFA-Menthol was enhanced, while the hyperthermalgesia and the mechanical pain were reversed. And the hypercryalgesia of rats in group CFA-Antisense was inhibited. The expression of TRPM8 was up-regulation in ipsilateral L5 dorsal root ganglion of the rats in group CFA-Menthol, CFA-NS and CFA-Missense with athritis,while blocked in goup CFA-Antisense and NS-Antisense after applied with TRPM8-antisense oligonucleotides. Conclusion:TRPM8 in athritic rats, activated by menthol given intrathecally, enhanced the hypercryalgesia while reversed the hyperthermalgesia and the mechanical pain.TRPM8, blocked by TRPM8-antisense oligonucleotides, inhibited the hypercryalgesia in athritic rats while had no effect on normal rats.The changes of chronic arthritic rats'hypercryalgesia were concerned with alteration of TRPM8 expression and the analgesic effect of menthol was related with the up-regulation of TRPM8.
     Part three:Measurement of the ED50 and ED95 of intrathecal menthol and TRPM8-antisense oligonucleotides for arthritic rats.
     Objective:To establish the rat model of complete Freund's adjuvant-induced arthritis, measure the the ED50 and ED95 of intrathecal menthol and TRPM8-antisense oligonucleotides for arthritic rats, and analyze the dose-effect relationship of menthol and TRPM8-antisense oligonucleotides in chronic arthritic rats. Methods: 140 healthy male SD rats, weighed 300±20g, were implanted intrathecal catheters, made into model of adjuvant-induced artliritis and randomized into 14 groups(n=10). Amongst, the rats in 7 groups were applied intrathecally saline 20μl, menthol 31.62μg/kg,39.81μg/kg,50.12μg/kg,63.10μg/kg,79.43μg/kg, 100.00μg/kg in the fourteenth day. The rats in the other 7 groups were applied intrathecally saline 20μl, antisense oligonucleotides 18.97μg/kg,23.89μg/kg,30.07μg/kg,37.86μg/kg,47.66μg/kg,60.00μg/kg, twice a day for five days from the ninth day.The number of the right hind paw lifts was measured. And if the number in group menthol or antisense oligonucleotides was thirty percent higher or lower than that of group NS, it would be confirmed as effective. ED50 and ED95 values were calculated using a Probit Regression models. Results:ED50 and ED95 values of menthol were 53.36μg/kg, 88.31μg/kg. ED50 and ED95 values of antisense oligonucleotides were 29.92μg/kg, 50.36μg/kg.Conclusion:ED50 and ED95 values of menthol were 53.36μg/kg, 88.31μg/kg.ED50 and ED95 values of antisense oligonucleotides were 29.92μg/kg, 50.36μg/kg.
引文
[1]Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation[J]. Annu Rev Neurosci,2006,29(7):135-61.
    [2]McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature,2002,416(6876):52-8.
    [3]Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli and menthol[J]. Cell,2002,108(5):705-15.
    [4]Peier AM, Story GM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J]. Cell,2003,112(6):819-29.
    [5]Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1[J]. Nature,2004,427(6971): 260-5.
    [6]Dhaka A, Murray AN, Mathur J, et al. TRPM8 is required for cold sensation in mice[J]. Neuron,2007,54(3):371-8.
    [7]Colburn RW, Lubin ML, Stone DJ Jr, et al. Attenuated cold sensitivity in TRPM8 null mice[J]. Neuron,2007,54(3):379-86.
    [8]Thut PD, Wrigley D, Gold MS. Cold transduction in rat trigeminal ganglia neurons in vitro [J]. Neuroscience,2003,119(4):1071-83.
    [9]Sauls J. Efficacy of cold for pain:fact or fallacy? [J]. Online J Knowl Synth Nurs, 1999,10(6):8.
    [10]Proudfoot CJ, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain[J].Curr Biol,2006,16(16):1591-605.
    [11]Galeotti N, Cesare ML, Mazzanti G, et al. Menthol:a natural analgesic compound [J].Neurosci Lett,2002,322(3):145-8.
    [12]Andersson DA, Chase HW, Bevan S. TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH[J]. Neurosci,2004,24(23):5364-9.
    [13]Premkumar LS, Raisinghani M, Pingle SC, et al. Down-regulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation[J].J Neurosci,2005,25(49):11322-9.
    [14]Rohacs T, Lopes CM, Michailidis I, et al. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain[J]. Nat Neurosci, 2005,8(5):626-34.
    [15]Butler SH, Godefroy F, Besson JM, et al. A limited arthritic model for chronic pain studies in the rat[J].Pain,1992,48(1):73.
    [16]Jasmin L, Kohan L, Franssen M, et al. The cold plate as a test of nociceptive behaviors:description and application to the study of chronic neuropathic and inflammatory pain models[J]. Pain,75(2-3):367-382.
    [17]Vendruscolo LF, Pamplona FA, Takahashi RN. Strain and sex differences in the expression of nociceptive behavior and stress-induced analgesia in rats[J].Brain Res, 2004,1030(2):277-283.
    [18]Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods,1994,53(1):55.
    [19]De Castro CM, De Sutter P, Gybels J,et al. Adjuvant-induced arthritis in rats:a possible animal model of chronic pain[J].Pain,1981; 10(2):173-185.
    [20]Julius D, McKemy DD, Neuhausser WM. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature,2002,416(6876):52-8.
    [21]Chung MK, Caterina MJ. TRP channel knockout mice lose their cool[J]. Neuron, 2007,54(3):345-347.
    [22]Bautista DM, Siemens J, Glazer JM, et al. The menthol receptor TRPM8 is the principal detector of environmental cold[J]. Nature,2007,448(7150):204-208.
    [23]Yaksh TL,RudyTA.Chronic catheterization of the spinal subarachnoid space[J]. Physiol Behav,1976,17(6):1031-1036.
    [24]Voets T, Talavera K, Owsianik G, et al. Sensing with TRP channels[J]. Nat Chem Biol2005;1(2):85-92.
    [25]Montell C. The TRP superfamily of cation channels[J]. Sci STKE 2005(272):3.
    [26]H Luo,J Cheng,JS Han,et al. Chang of vanilloid recpter 1 expression in dosal root ganlion and spinal dorsal horn during inflammatory nociception induced by complete Freund's adjuvant in rats[J]. Neuroreport,2004,15(4):655-658.
    [27]Lawson SN, Waddell PJ. Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons [J]. J Physiol 1991, 435(8):41-63.
    [28]Viana F, de laPena E, Belmonte C. Specificity of cold thermotransduction is determined by differential ionic channel expression[J].Nat Neurosci 2002,5(3):254-60.
    [29]Hjerling LJ, Alqatari M, Ernfors P, et al. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression[J].J Neurosci 2007,27(10):2435-2443.
    [30]Jyvasjarvi E, Kniffki KD. Cold stimulation of teeth:a comparison between the responses of cat intradental A delta and C fibres and human sensation[J].J Physiol 1987,391(10):193-207.
    [31]Darian SI, Johnson KO, Dykes R.'Cold' fiber population innervating palmar and digital skin of the monkey:responses to cooling pulses [J]. Neurophysiol 1973,36(2):325-346.
    [32]Davis KD. Cold-induced pain and prickle in the glabrous and hairy skin[J]. Pain 1998,75(1):47-57.
    [33]Byers MR,Narhi MVO. Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration[J]. Microsc Res Tech.2003,60(5):503-15.
    [34]Harrison JL, Davis KD. Cold-evoked pain varies with skin type and cooling rate: a psychophysical study in humans[J]. Pain 1999,83(2):123-135.
    [35]Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J]. Cell 2003,112(6):819-29.
    [36]Sawada Y, Hosokawa H, Hori A, et al. Cold sensitivity of recombinant TRPA1 channels[J]. Brain Res 2007,1160(7):39-46.
    [37]Bandell M, Story GM, Hwang SW,et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin[J]. Neuron 2004,41(6):849-857.
    [38]Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1[J]. Nature 2004,427 (6971):260-265.
    [39]Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing [J]. Neurosci 2005,25(16):4052-61.
    [40]Doerner JF, Gisselmann G, Hatt H, et al. Transient receptor potential channel Al is directly gated by calcium ions[J].Biol Chem 2007,282(18):13180-9.
    [41]Zurborg S, Yurgionas B, Jira JA, et al. Direct activation of the ion channel TRPA1 by Ca2+ [J].Neurosci 2007,10(3):277-9.
    [42]Kwan KY, Allchorne AJ, Vollrath MA, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction[J]. Neuron 2006,50(2):277-89.
    [43]Obata K, Katsura H, Mizushima T, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury[J]. Clin Invest 2005,115(9):2393-401.
    [44]Georgopoulos AP.Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin[J]. J Neurophysiol,1976,39(1):71-83.
    [45]Iggo A.Cutaneous thermoreceptors in primates and sub-primates[J]. Physiol. 1969,200(2):403-30.
    [46]Fisher K, Lefebvre C, Coderre TJ. Antinociceptive effects following intrathecal pretreatment with selective metabotropic glutamate receptor compounds in a rat model of neuropathic pain[J]. Pharmacol. Biochem. Behav,2002,73(2),411-8.
    [47]Simmons RM., Webster AA, Kalra AB,et al. Group Ⅱ mGluR receptor agonists are effective in persistent and neuropathic pain models in rats[J]. Pharmacol Biochem Behav.2002,73(2):419-27.
    [48]Chen SR,and Pan HL. Distinct roles of group Ⅲ metabotropic glutamate receptors in control of nociception and dorsal horn neurons in normal and nerve-injured Rats[J]. Pharmacol Exp Ther.2005,312(1):120-6.
    [49]Gerber G, Zhong J, Youn D,et al.Group Ⅱ and group Ⅲ metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn[J]. Neuroscience,2000,100(2):393-406.
    [50]Neugebauer V, Chen PS, Willis WD. Groups Ⅱ and Ⅲ metabotropic, glutamate receptors differentially modulate brief and prolonged nociception in primate STT cells[J].J Neurophysiol,2000,84(6):2998-3009.
    [51]Carlton SM, Hargett GL,Coggeshall RE. Localization of metabotropic glutamate receptors 2/3 on primary afferent axons in the rat[J]. Neuroscience,2001,105(4):957- 69.
    [52]Jia H, Rustioni A, Valtschanoff JG. Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn[J]. J Comp Neurol,1999,410(4):627-642.
    [53]Li H, Ohishi H, Kinoshita A, et al. Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn:An electron microscope study in the rat[J]. Neurosci,1997,223(3):153-156.
    [54]Zhong J, Gerber G, Youn D, et al.Group Ⅱ and group Ⅲ metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn[J]. Neuroscience,2000,100(2):393-406.
    [55]Tamaru Y, Nomura S, Mizuno N, et al. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS:Differential location relative to pre-and post-synaptic sites[J]. Neuroscience,2001,106(3):481-503.
    [56]Tsuzuki K, Xing H, Ling J, et al. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission[J].J Neurosci,2004,24(3):762-71.
    [57]Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensoryion channel TRPA1[J].Proc Natl Acad Sci USA,2005,102(34):12248-52.
    [58]Andersson DA, Chase HW, Bevan S. TRPM8 Activation by Menthol,Icilin,and Cold Is Differentially Modulated by Intracellular pH[J].Neuro,2004,24(23):5364-69.
    [59]Yehuda G, Edward M, David R,et al. ED50 and ED95 of Intrathecal Hyperbaric Bupivacaine Coadministered with Opioids for Cesarean Delivery[J]. Anesthesiolo-gy,2004,100:676-82.
    [60]Brendan C, Marie D, David R, et al. The ED50 and ED95 of Intrathecal Isobaric Bupivacaine with Opioids for Cesarean Delivery[J]. Anesthesiology,2005,103(3): 606-12.
    [61]Vinik HR, Bradley EL Jr, Kissin I. Isobolographic analysis of propofol-thiopental hypnotic interaction in surgical patients[J]. Anesth Analg,1999,88(3):667-70.
    [62]杨树勤。中国医学百科全书。医学统计学分册,上海科学技术出版社,1985:205。
    [63]夏结来,徐雷。计数资料的统计分析模型.疾病控制杂志[J]。2003,7:81~ 84。
    [64]Nancy A, Obuchowski. Receiver Operating Characteristic Curves and their use in Radiology[J]. Radiology,2003,229(1):3-8.
    [65]Zhou XH, Higgs RE. COMPROC and CHECKNORM:'computer programs for comparing accuracies of diagnostic tests using ROC curves in the presence of verification bias[J]. Comput Methods Programs Biomed,1998,57(3):179-86.
    [66]Niehof SP, Huygen FJ, Weerd RW,et al.Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1:diagnostic value and involvement of the central sympathetic system. Biomed Eng Online,2006, 5(5):30.
    [1]Romanovsky AA. Thermoregulation:some concepts have changed.Functional architecture of the thermoregulatory system[J].Physiol Regul Integr Comp Physiol, 2007,292(1):37-46.
    [2]Venkatachalam K, Montell C. TRP Channels[J]. Annu Rev Biochem,2007,76(10): 387-417.
    [3]Cheng W, Yang F, Takanishi CL, et al. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties[J].Gen Physiol,2007,129(3):191-207.
    [4]Gavva NR, Treanor JS, Garami A,et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hy perthermia in humans [J]. Pain,2008,136(1-2):202-210.
    [5]陈军。哺乳动物外周皮肤温热冷感受器的分子生物学基础[J]。神经解剖学杂志,2004,20(2):186-190。
    [6]Kim KY, Bang S, Han S, Nguyen YH, et al. TRP-independent inhibition of the phospholipase C pathway by natural sensory ligands[J]. Biochemical and Biophysical Research Communication,2008,370(2):295-300.
    [7]Putney JW Jr. Amodel for receptor-regulated calcium entry[J]. Cell Calcium,1986, 7(1):1-12.
    [8]WangH, WoolfCJ. Pain TRPs[J]. Neuron,2005,46 (1):9-12.
    [9]ChangWC, ParekhAB. Close functional coupling between Ca2+ release-activated Ca2+ channels, arachidonic acid release, and leukotriene C4 secretion[J]. Biol Chem, 2004,279 (29):29994-9.
    [10]Birot, Toth B, Matincsak R, et al. TRP channels as novel players in the pathogenesis and therp of itch [J]. Bioch Bioph Acta,2007,1772(8):1004-21.
    [11]Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway [J]. Nature,1997,389 (6653):816-24.
    [12]Stander S, Moormann C, Schumacher M, et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures [J]. Exp Dermatol,2004,13(3):129-139.
    [13]Gunthorpe MJ, Benham CD, RandallA, et al.The diversity in the vanilloid (TRPV) receptor family of ion channels[J]. Trends PharmacolSci,2002,23(4):183-191.
    [14]Caterina MJ,Lefflera,Malmberg AB,et al.Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J]. Science,2000,288 (5464):306-313.
    [15]Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway [J]. Nature,1997,389(6653):816-824.
    [16]Puntambekar P, Mukherjea D, Jajoo S, et al. Essential role ofRacl NADPH oxidase in nerve growth factor induction of TRPV 1 expression[J]. Neuro Chem,2005, 95(6):1689-1703.
    [17]Koplas PA, Rosenberg RL, Oxford GS. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons[J]. Neurosci,1997,17(20): 3525-37.
    [18]Voets T, Droogmans G, W issenbach U, et al. The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels[J]. Nature,2004,430(7001): 748-754.
    [19]Rau KK, Jiang N, Johnson RD, et al. Heatsensitization in skin and muscle nociceptors expressing distinct combinations of TRPV1 and TRPV2 protein[J]. Neurophysiol,2007,97:2651~62.
    [20]Steinhoff M, Bienenstock J, Schmelz M, et al. Neurophysiological, neuroimm-unological, and neuroendocrine basis of pruritus [J].J Invest Dermatol,2006,126 (8):1705-1718.
    [21]Xu H, Delling M, Jun JC, et al. Clapham, oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels [J].Nat Neurosci,2006,9(5): 628-635.
    [22]Xu H, Blair NT,Clapham DE.Camphor actives and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism [J].J Neurosci,2005,25(39):8924-37.
    [23]Guler AD, Chung MK, Caterina MJ. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel,TRPV3[J]. Biol Chem,2005,280 (16):15928-15941.
    [24]Hu HZ, Xiao R, Wang C, et al. Potentiation of TRPV3 channel function by unsat-urated fatty acids[J].Cell Physiol,2006,208(1):201~212.
    [25]Yoshida T, Inoue R, MoriiT, et al.Nitric oxide activatesTRP channels by cysteine Snitrosylation[J].NatChem Biol,2006,2(11):596~607.
    [26]Watanabe H, Davis JB, Smart D, et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives [J]. J Biol Chem,2002,277(16):13569-77.
    [27]Watanabe H, Vriens J, Prenen J, et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels [J].Nature,2003,424(6947): 434-438.
    [28]Todaka H, Taniguchi J, Satoh J, et al. Warm temperature-sensitive transient receptorpotential vanilloid 4 (TRPV4) play an essential role in thermal hyperalgesia [J].J Biol Chem,2004,279(34):35133-35138.
    [29]Alessandri HN, Dina OA, Joseph EK, et al.A transient receptor potential vanilloid 4-dependentmechanism of hyperalgesia is engaged byconcerted action of inflamma-tory mediators[J].Neurosci,2006,26(14):3864-3874.
    [30]Atoyan R, Shander D, Botchkarevan V. Non-neuronal expression of transient receptor potential type A1(TRPA) in human skin [J].J Invest Dermatol, 2009,129(9):2096-2099.
    [31]Jordt SE, Bautisata DM, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents[J].Cell,2006,124(6):1269-82.
    [32]Trevisani M, Siemens J, Materazzi S, et al.4-hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1 [J].Proc Natl Acad Sci USA,2007,104(33):13519-13524.
    [33]Story GM, Peier AM, Reeve AJ,et al. ANKTMl,a TRP like channel expressed in nociceptive neuron,is activated by cold temperature [J]. Cell,2003,112(6):819-829.
    [34]Petrus M, Peier AM, Bandell M, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition[J].Mol Pain.2007,3 (10):40.
    [35]Bautista DM, Siemens J, Glazer JM, et al. The menthol receptor TRPM8 is the principal detector of environmental cold[J]. Nature,2007,448(7150):204-8.
    [36]Bromm B, Scharein E, Darsow U, et al. Effects of menthol and cold on histamine-induced itch and skin reactions in man [J]. Neurosci Lett,1995,187(3):157-160.
    [37]ChuangHH, NeuhausserW M, JuliusD. The super-cooling agenticilin reveals amechanism of coincidence detection by a temperature-sensitive TRP channel[J]. Neuron,2004,43:859-69.
    [38]孙倩,罗非。感觉凉爽的TRPM8受体[J]。生理科学进展,2006,37(3):101-3.
    [39]Julius D,McKemy D D,Neuhausser W M.Identification of a cold receptor reveals a general role for TRP channels in ther mosensation[J].Nature,2002,416(6876):52-58.
    [40]McKemy D D,Neuhausser W M.Julius D.Identification of a cold receptor reveals a general role for TRP channels in ther mosensation[J].Nature,2002,416(6876):52-58.
    [41]Dhaka A, Murray AN, Mathur J, et al.TRPM8 is required for cold sensation in mice[J].Neuron,2007,(54):371-378.
    [42]Dhaka A, Earley T, Watson J, et al. Visualizing cold spots:TRPM8-expressing sensory neurons and their projections [J]. Neurosci,2008,1628(3):566-575.
    [43]Chung MK, Caterina MJ. TRP channel knockout mice lose their cool[J]. Neuron, 2007,54(3):345-7.
    [44]AnderssonDA, ChaseHW, Bevan S. TRPM8 activation bymenthol, icilin, and cold is differentially modulated by intracellular pH[J].Neurosci,2004,24(23):5364~9.
    [45]Proudfoot CJ, Garry EM, Cottrell DF, etal. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain[J].Curr Biol,2006,16(16):1591~1605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700