小鼠—大鼠异种心脏移植miRNA表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究小鼠-大鼠异种异位心脏移植后供心miRNA表达谱的变化,为有效控制异种移植排斥反应奠定实验基础。
     方法
     1.采用改良Heron套袖法建立小鼠-小鼠/大鼠异位心脏移植模型,将小鼠心脏移植到受体右侧颈部。实验动物包括同系对照组、异种24h组和异种停跳组,每组含受体动物8只。
     2.试剂盒法分离提取RNA, Cy5标记所提取总RNA中的miRNA,浓缩标记样品进行miRNA芯片杂交,使用Axon GenePix 4000B Microarray Scanner进行图像扫描,筛选出异种心脏移植排斥反应中差异表达显著的miRNA。
     3. TargetScan软件预测差异表达显著的miRNA靶基因,寻找与异种移植排斥反应发生相关的基因。
     4.选取杂交结果中差异表达显著的miR-146a、miR-155和miR-451进行相对定量研究,通过TaqMan miRNA Assays技术对三组样本进行检测,验证芯片结果。
     结果
     1.模型建立练习阶段、稳定阶段和成熟阶段手术成功率分别为53.33%、85.71%和92.31%,3个阶段手术成功率相比较具有统计学差异且后两阶段成功率高于练习阶段。
     2.异种24h组和对照组芯片杂交结果显示24个miRNA差异表达显著,其中11个表达显著下调,13个表达显著上调。
     3.异种停跳组和对照组芯片杂交结果显示25个miRNA差异表达显著,其中12个表达显著下调,13个表达显著上调。
     4.异种停跳组和异种24h组芯片杂交结果显示6个miRNA差异表达显著,其中5个miRNA变化趋势一致,1个miRNA变化趋势相反。
     5.芯片杂交结果中差异表达显著的miR-146a、miR-155和miR-451进行相对定量研究,与对照组相比较结果具有统计学差异,且3个miRNA的变化倍数符合芯片分析的结果。
     结论
     1.采用改良Heron套袖法建立小鼠-小鼠/大鼠异位心脏移植模型,此方法操作简便、易于掌握,是研究异种心脏移植排斥反应的良好动物模型。
     2.在异种心脏移植排斥反应中出现多个miRNA显著的差异表达,涉及免疫、肿瘤的发生、胰岛素的合成与代谢、神经系统生理功能、细胞增殖、血管生成等多个方面,并广泛参与基因的转录调控。
     3.在小鼠-大鼠异种心脏移植排斥反应中miR-146a和miR-155同时出现高表达,miR-451出现显著低表达,说明它们参与了免疫应答和炎症反应的调控,提示miRNA在异种心脏移植排斥反应中可能发挥着重要的调控作用。
     4.微阵列芯片技术是有效的高通量分析心脏异种移植排斥反应miRNA差异表达的研究手段。
Objective To detect the miRNA expression profiles of the myocardial tissue after the heterotopic mouse to rat cardiac xenotransplantation and provide the experimental evidences for effective regulation of xenotransplantation rejection.
     Methods
     1. The heterotopic cardiac mouse-mouse/rat xenotransplantation models (in the right side of neck of recipients) were established by modified Heron sleeve method. The experimental animals were divided into normal control group, xenotransplantation group (24 hours) and xenotransplantation group (arresting). Each group included 8 recipients.
     2. RNA was extracted with kit and miRNA was marked with Cy5. Then concentration and hybridization were finished by miRNA array. The slides were scanned with Axon GenePix 4000B Microarray Scanner and the miRNAs which significantly differential expressed in the cardiac xenotransplantation rejection were filtrated.
     3. The target genes corresponded with the above miRNAs were predicted by software of Target Scan, which may be the causes of xenotransplantation rejection.
     4. MiR-146a, miR-155 and miR-451 in the three groups, which were obviously changed during xenotransplantation, were analysis by TaqMan(?) miRNA Assays, verifying the results of miRNA array.
     Results
     1. In the three stages (practicing, stable, skilled) of establishing the models, the successful rates of surgery were 53.33%,85.71%, and 92.31%respectively, with significantly difference. The successful rates in stable and skilled stages were high.
     2. There were 11 downregulated miRNAs and 13 upregulated miRNAs among the total 24 significantly differential expressed miRNAs found in xenotransplantation (24hours) group comparing with control group.
     3. There were 12 downregulated miRNAs and 13 upregulated miRNAs among the total 25 significantly differential expressed miRNAa found in xenotransplantation (arresting) group comparing with control group.
     4. Among the 6 significantly differential expressed miRNAs found in xenotransplantation (arresting) group comparing with xenotransplantation (24 hours) group,5 miRNAs had the consistent trend while the other one did not.
     5. MiR-146a, miR-155 and miR-451 in the three groups were obviously changed following xenotransplantation comparing with control group and the results were accordant with the results of miRNA array.
     Conclusions
     1. Modified Heron sleeve method is a simple and easy-to-learn operation for setting up the mouse-mouse/rat heterotopic cardiac xenotransplantation model. It is a good animal model for xenotransplantation rejection.
     2. It is demonstrated that there are significantly differential expressions of miRNAs in xenotransplantation involving in immune, tumor genesis, synthesis and metabolism of insulin, physiological functions of nervous system, cell proliferation, angiogenesis as well as transcriptional regulation.
     3. Simultaneous high expression of miR-146a and miR-155 and low expression of miR-451 in mouse-rat cardiac xenotransplantation rejection reveal the relevance to the regulation of immune response and inflammation. The miRNA is proposed to play an important role in regulating the cardiac xenotransplantation.
     4. Microarray chip is an effective method for the high-throughput analysis of miRNAs expression profile in cardiac xenotransplantation rejection.
引文
[1]Karoline A,Hosiawa,Hao Wang,et al. CD80/CD86 Costimulation Regulates Acute Vascular Rejection[J]. The Journal of Immunology,2005:6197-6204.
    [2]Michael Mendicino,MingFeng Liu,Anand Ghanekar, MD.Targeted Deletion of Fgl-2/Fibroleukin in the Donor Modulates Immunologic Response and Acute Vascular Rejection in Cardiac Xenografts[J].Circulation,2005;112:248-256.
    [3]Kellersmann R, Kellersmann A, Thiede A, et al.Comparison of in vivolymphocyte proliferation between allogeneic and xenogeneic heart transplantation in mice[J].Microsurgery,2003,23:498.
    [4]Ashton-Chess J, Roussel JC, Manez R et al.Cellular participation in delayed xenograft rejection of hCD55 transgenic pig hearts by baboons[J].Xenotransplantation,2003,10:446.
    [5]曹荣华,陈栋,郭晖.免疫活性细胞在异种移植急性血管性排斥反应中的意义[J].华中科技大学学报,2005,34(3):316-318.
    [6]Bartel DP. MicroRNAs:genomics,biogenesis,mechanism, and function[J]. Cell,2004,116(2):281-297.
    [7]Eleni Tsitsiou,Mark A Lindsay. microRNAs and the immune response[J]. Curr Opin Pharmacol.2009,9(4):514-520.
    [8]Chen CZ, Li L, Lodish HF, et al.MicroRNAs modulate hematopoietic lineage differentiati on[J]. Science,2004,303 (5654):83-86.
    [9]眭维国,蓝慧娟,陈怀周.移植肾慢性排斥反应miRNA差异表达研究[J].解放军医学杂志,2008,33(12):1441-1443.
    [10]John Quackenbush.Computational analysis of microaarray Data[J].Nature reviews/genetics,2001,2:418-427.
    [11]Platy JL.The immunological hurdles to cardiac to cardiac xenotransplantation [J].J Card Surg,2001,16(6):439-447.
    [12]Mcgregor CG,Teotia SS,Byrne GW,et al.Cardiac xenotransplantation:progress toward the clinic[J].Transplantation,2004,78(11):1569-1575.
    [13]赵勇主编.异种移植免疫学[M].北京:中国医药科技出版社.2003,176.
    [14]唐华,姚榛详,刘盛春,等.鼠异种异位心脏移植模型建立与病理特征观察[J].中国现在医学杂志,2008,18(1):21-24.
    [15]戚峰,邱宇杰,王鹏志,等.小鼠-大鼠异种异位心脏移植模型的建立[J].天津医科大学学报,2001,7(2):281.
    [16]Steinbrachel DA,Nielsen B,Salomon S,et al. A new model for heterotopic heart transplantation in rodents:graft atrial septectomy[J]. Transplant proc, 1994;26:1298-1299.
    [17]田进涛,董宗俊,徐何,等.豚鼠-大鼠异种异位心脏移植术并发症的预防[J]中华器官移植杂志,1997,18(4):216.
    [18]Hansen TN,Haworth RA,Southard JH. Warm and cold ischemia results in different mechanisms of injury to the coronary vasculature during reper-fusion of rat hearts[J]. Transplant Proe,2000,32(1):15-18.
    [19]兰平,王吉甫.袖套法异种心脏移植模型[J].中华显微微外科杂志,1997;20:134-135.
    [20]He, L,Hannon, G.MicroRNAs:small RNAs with a big role in gene regulation[J]. Nature,2004,5:522-531.
    [21]Wu LG,Fan JH,Belasco JG. MicroRNAs direct rapid deadenylation of Mrna[J]. Proc Natl Acad Sci USA,2006,103(11):4034-4039.
    [22]Vasudevan S,Tong YC,Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation[J].Science,2007,318(5858):1931-1934.
    [23]Seungyoon Nam,Meng Li,Kwangmin Choi. MicroRNA and mRNA integrated analysis (MMIA):a web tool for examining biological functions of microRNA expression[J]. Nucleic Acids Research,2009,Vol,37:356-362.
    [24]Welch C,Chen Y,Stallings RL.MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells[J].Oncogene,2007, 26(34):5017-5022.
    [25]Weiguo Sui,Yong Dai,YuanShuai Huang.Microarray analysis of MicroRNA expression in acute rejection after renal transplantation[J].Transplant Immunology 2008,19:81-85.
    [26]B. Sotolongo, T. Asaoka, E. Island. Gene Expression Profiling of MicroRNAs in Small-Bowel Transplantation Paraffin-Embedded Mucosal Biopsy Tissue[J]. Transplantation Proceedings,2010,42:62-65.
    [27]Lindsay MA.microRNAs and the immune response[J]. Trends immunol,2008,29(7):343-351.
    [28]Carmen U, Angelika K, Stefanie D. Role of microRNAs in vascular diseases, inflammation, and angiogenesis [J]. Cardiovasc Res,2008,79 (4):581-588.
    [29]Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate mmune responses [J]. Proc Natl AcadSci USA,2006,103 (33):12481-12486.
    [30]Md A. Nahid, Kaleb M. Pauley, Minoru Satoh. miR-146a Is Critical for Endotoxin-induced Tolerance[J]. Journal of biological chemistry,2009, 284(50):34590-34599.
    [31]Dipa Bhaumik, Gary K. Scott, Shiruyeh Schokrpur.MicroRNAs miR-146a/b ne gatively modulate the senescenceassociated inflammatory mediators IL-6 and I L-8 [J]. Aging,2009,1(4):402-411.
    [32]Mark M. Perry, Sterghios A. Moschos, Andrew E. Rapid Changes in MicroRNA-146a Expression Negatively Regulate the IL-12-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells[J]. J. Immunol,2008,180:5689-5698.
    [33]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during themacrophage inflammatory response [J].Proc Natl Acad Sci USA, 2007,104 (5):1604-1609.
    [34]Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock [J]. J Immunol,2007,179 (8):5082-5089.
    [35]Enikio Sonkoly,Mona Stahle,Andor Pivarcsi.MicroRNAs and immunity:Novel players in the regulation of normal immune function and inflammation[J].Seminars in Cancer Biology:2008(18):131-140.
    [36]Ruggiero,T,Trabucchi,M,De Santa,F. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages[J]. FASEB J.2009,23:2898-2908.
    [37]Thai TH,Calado DP,Casola S,Ansel KM,Xiao C,Xue Y,et al.Regulation of the germinal center response by microRNA-155[J].Science.2007;316:604-608.
    [38]Dorsett Y,McBride KM,Jankovic M,Gazumyan A,Thai TH,Robbiani DF, et al.MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation[J]. Immunity 2008;28:630-638.
    [39]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function [J]. Science,2007,316 (5824):608-611.
    [40]Susan Kohlhaas, Oliver A. Garden,Cheryl Scudamore. The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells[J]. The Journal of Immunology,2009,182:2578-2582.
    [41]Williams AE,Perry MM,Moschos SA,et al.Role of miRNA-146a in the regulation of the innate immune response and cancer[J].Biochem Soc Trans, 2008,36(6):1211-1215.
    [42]薛向阳,张青锋,黄玉富等.K562细胞红系分化过程中miRNA-451表达的变化[J].第二军医大学学报,2008,29(5):469-473.
    [43]Louis C. Dore,Julio D. Amigo,Camila O. dos Santos. A GATA-1-regulated microRNA locus essential for erythropoiesis[J]. PNAS,2008,105(9):3333-3338.
    [44]Luke Pase,Judith E. Layton,Wigard P. Kloosterman. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2[J]. Blood,2009,113(8): 1794-1804.
    [45]Rebl A, Fischer U, Siegl E, Seyfert HM.Tollip, a negative regulator of TLR-signalling, is encoded by twin genes in salmonid fish[J]. Fish Shellfish Immunol.2008,25(1-2):153-162.
    [1]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, andfunction [J]. Cell,2004,116(2):281-297.
    [2]ZhangBH, Pan XP, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA genes [J]. Plant,2006,46 (2):243-259.
    [3]Lee RC, FeinbaumR L, Ambros V, The C. elegans heterochronic gene lin-4e-ncodes small RNAs with antisense complementarity to lin214[J]. Cell, 1993,75 (5):843-854.
    [4]Zhang BH, Pan XP, Anders on TA. MicroRNA:A new player in stem cells[J]. Cell Physiol,2006,209 (2):266-269.
    [5]Kwon C, Han Z, Olson EN, Srivastava D. MicroRNA-1 in fluences cardiacdifferentiation in Dros ophila and regulates n otch signaling [J]. PNAS, 2005,102(52):18986-991.
    [6]Esau C, Davis S, Murray SF, Yu X, Pandey SK, Pear M. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J]. Cell Metab,2006,3 (2):87-98.
    [7]Aurelio A, Cohen SM. Drosophila lacking microRNA miR-278 are defective inenergy homeostasis [J]. Genes&Dev,2006,20 (4):417-422l.
    [8]Berezikov E, Guryev V, Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes[J].Cell,2005,120 (1):21-24.
    [9]Wightman B, Ha I, Ruvkun G Posttranscriptional regulation of theheterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C. elegans[J]. Cell,1993,75(5):855-862.
    [10]Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartelet DP. MicroRNAs in plants[J]. Genes Dev,2002,16 (13):1616-626.
    [11]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J].Science,2001,294 (5543):853-858.
    [12]Kurihara Y, Watanabe Y. Arabidop sis micro2RNA biogenesis through Dicer-like 1 protein functions[J]. Proc Natl Acad Sci USA,2004,101(34) 12753-12758.
    [13]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulatehemat opoietic lineage differentiati on [J]Science,2004,303:832-861.
    [14]Palantnik JF,Allen E,Wu X, et al. Control of leaf morphogenesis by microRNAs[J].Nature,2003,425:2572-2631.
    [15]Matthew NP, Lena E,. Jan K, et al.A pancreatic islets pecific microRNA regulates insulin secretion [J].Nature,2004,432:2262-2311.
    [16]Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecr owlike mRNA targets directed by a class of Arabadopsis miRNA[J]. Science,2002,297:20532-20561.
    [17]Lewis BP, Shi HI, Jonesrhoadesm W, et al. Prediction of mammalian microRNA targets[J].Cell,2003,115:7872-7981,
    [18]Lagos-Quintana M, Rauhut R, Yalcin A, et al.I dentificati on of tissues pecific microRNAs from mouse[J]. Curr Biol,2002,12:735-739.
    [19]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet, 2006,38:228-233.
    [20]van Rooij E, Sutherland LB, Liu N, et al. A signature pattern ofstressres ponsive microRNAs that can evoke cardiac hypertr ophyand heart failure[J]. Proc Natl Acad Sci US A,2006,103 (48):18255-18260.
    [21]Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart:do they play a role in cardiac hypertrophy?[J]. Am J Pathol, 2007,170 (6):1831-1840.
    [22]Parlakian A, Charvet C, Escoubet B, et al. Temporally controlled on set of dilated cardiomyopathy through disruption of the SRF genein adult heart[J]. Circulation,2005,112(19):2930-2939.
    [23]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy[J]. NatMed,2007,13 (5):613-618.
    [24]Boutz PL, Chawla G, Stoilov P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development[J]. GenesDev,2007, 21(1):71-84.
    [25]van Rooij E, Sutherland LB,Qi X, et al. Contr ol of stress2 dependentcardiac gr owth and gene exp ression by a micr oRNA [J]. Science,2007,316 (5824):5752 579.
    [26]Calin GA, Sevigriani C,Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancer [J] ProsNatlAcad SciUSA,2004,101 (9):2999-3004.
    [27]Iorio MV, Ferracin M,Liu CG, et al. MicroRNA gene expressi on deregulation in human breast cancer [J]. Cancer Res,2005,65(16):7065-7070.
    [28]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 micr-oRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res,2004,64 (11):3753-3756.
    [29]Calin GA, Dumitm CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes mir-15 and mir-16 at 13q14 in chronic lymphocytic leukemia [J]. Proc Natl Acad Sci USA,2002,99 (24):15524-15529.
    [30]Cimmino A, Calin GA, Fabbri M, et al. Mir-15 and mir-16 induce apoptosis by targeting BCL-2 [J]. Proc Natl Acad Sci USA,2005,102 (39):13944-13949.
    [31]Murakami Y, Yasuda T, Saigo K, et al.Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and nontumorous tissues [J] Oncogene,2006,25 (17):2537-2545.
    [32]Taganov KD, Boldin MP, Chang KJ, et al.NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate mmune responses [J]. Proc Natl AcadSci USA,2006,103 (33):12481-12486.
    [33]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function [J]. Science,2007,316 (5824):608-611.
    [34]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during themacrophage inflammatory response [J].Proc Natl Acad Sci USA,2007, 104 (5):1604-1609.
    [35]Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the res-ponse to endotoxin shock [J]. J Immunol,2007,179(8) 5082-5089.
    [36]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiati on[J]. Science,2004,303 (5654):83-86.
    [37]Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hemat opoieticsystem system[J]. Genome Biol,2005,6 (8):R71.
    [38]Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation [J]. J Exp Med,2006,203 (11):2519-2527.
    [39]Jing Q, Huang S, Guth S, et al.Involvement of microRNA in AU-rich elementmediated mRNA instability [J]. Cell,2005,120 (5):.623-634.
    [40]Hosiawa KA, Wang H, DeVries ME, et al. Regulati on of B and T-cell mediated xenogeneic transplant rejection by interleukin 12 [J].Transplantation 2006,81 (2):265-272.
    [41]熊海波,黄祖发,叶启发.FTY720与ICAM-1单抗对小鼠-大鼠异种心脏移植抗排斥的作用[J].中南大学学报,2007,32(1):41-46.
    [42]Kellersmann R,Kellersmann. A,Thiede A et al.Comparison of in vivolymphocyte proliferation between allogeneic and xenogeneic heart transplantation in mice[J].Microsurgery,2003; 23:498.
    [43]Ashton-Chess J, Roussel JC, Manez R et al.Cellular participation in delayed xenograft rejection of hCD55 transgenic pig hearts by baboons[J].Xenotransplantation,2003,10:446.
    [44]曹荣华,陈栋,郭晖.免疫活性细胞在异种移植急性血管性排斥反应中的意义[J].华中科技大学学报,2005,34(3):316-318.
    [45]Karoline A,Hosiawa,Hao Wang,et al. CD80/CD86 Costimulation Regulates Acute Vascular Rejection[J]. The Journal of Immunology,2005:6197-6204.
    [46]Michael Mendicino,MingFeng Liu,Anand Ghanekar, MD. Targeted Deletion of Fgl-2/Fibroleukin in the Donor Modulatess Immunologic Response and Acute Vascular Rejection in Cardiac Xenografts[J].Circulation,2005;112:248-256.
    [47]陆轩,萧明第,李敬来.异种心脏移植急性血管性排斥反应期组织因子与凝血的关系[J].中华器官移植杂志,2005,26(8):474-476.
    [48]眭维国,蓝慧娟,陈怀周.移植肾慢性排斥反应miRNA差异表达研究[J].解放军医学杂志,2008,33(12):1441-1443.
    [49]Weiguo Sui, Yong Dai, YuanShuai Huang. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation[J]. Transplant Immunology 2008,19:81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700