基于SAR的阿尔金东段变形特征监测及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原东北部现代构造变形的研究是当前活动构造研究的一个热点区域,特别是阿尔金断裂带对该区变形的控制作用。本文运用合成孔径雷达(Synthetic Aperture Radar,SAR)技术对阿尔金断裂带东段地区近期的构造变形特征进行了监测,并结合野外地质调查、地球物理以及全球定位系统(Global Positioning System,GPS)观测数据等多方面资料对阿尔金断裂带东段地区的构造变形机制进行了深入的探讨。
     相干斑是SAR图像的一大特色。SAR技术的应用离不开对相干斑的去除或抑制。本文引入第二代小波变换,提出了基于第二代小波变换的SAR图像斑点噪声去除方法。试验表明,该方法明显降低了原始图像的斑点噪声,改善了画面质量,同时还很好地保留了原始图像的辐射特性、纹理特征和细节信息。与传统的中值滤波、Lee滤波、小波硬阈值和小波软阈值等方法相比,噪声去除的综合性能更好。
     合成孔径雷达差分干涉测量技术(D-InSAR)可监测地球表面的微量形变,是近年来发展起来并得到日益重视的新方法。本文对ERS-1/2单视复数图像进行三通差分干涉处理,获取了阿尔金断裂带东段地区时间跨度为两年(从1996年1月到1998年1月)的构造变形图。通过对该图进行综合分析和解译,得到了关于阿尔金东段地区近期构造变形特征的几点认识:(1)阿尔金断裂带是青藏高原东北缘地壳变形的重要分界线,界线以北地区变形均匀,而且变形量较小,在0.8~1.8厘米之间,以南地区变形强烈且不均匀,变形强度的总体趋势为西高东低,中间受祁连山北缘冲断带西段的影响,在断裂带中出现了约为1.0厘米的变形低值。(2)南区存在N65°W和近NW两个方向的线性强变形带,前者与阿尔金左行走滑断裂带在其南部产生的次一级的压扭面方向一致;后者与祁连山北缘冲断带西段的展布方向一致。
     阿尔金断裂东段南北两侧构造变形存在差异,这一点认识得到了现今GPS观测结果和活动构造研究结果的证实;提出了区内强线性变形带L_1~L_6受控于阿尔金断裂的左行走滑作用,强线性变形带L_7~L_9是由祁连山北缘冲段带在新近纪的冲断过程中形成的;剖析了昌马盆地内部变形较弱的原因。
Nowaday tectonic deformation in north-eastern Tibetan Plateau, especially the control of the Altyn Tagh Fault (ATF) on this region is a hot spot of current active tectonics study. In this paper, SAR (Synthetic Aperture Radar) technique is applied to study the tectonic deformation characteristics of the eastern segment of the ATF and the deformation mechanism is studied thoroughly based on the combination of field survey records, geophysical data and GPS (Global Positioning System) survey data
     Speckle noise is a typical characteristic of SAR images. The reduction of speckle is necessary for any application of SAR technique. In this paper, second-generation wavelet transformation is introduced to SAR image de-noising and a new method of SAR image de-noising based on second-generation wavelet transformation is proposed. Experimental results show that the new method has favorable performance in despeckling and preserving edge and textual details and appears preferable to conventional filters such as Median Filter, Lee Filer, hard-thresholding and soft-thresholding.
     In recent years, the differential Interferometric Synthetic Aperture Radar (D-InSAR) technique has been widely used in surface deformation monitoring. In this paper, D-InSAR technique is applied to study the tectonic deformation characteristics of the eastern segment of the ATF. The results demonstrate that the ATF is an important crustal deformation boundary on the northeastern margin of the Tibetan Plateau. To north of this boundary, the surface deformation is weak and uniform while to south is strong but not uniform. From the west part to the east part in this area, the deformation intensity gradually decreases. Between these two parts exists the western part of the North Qilian Shan Fault, where the minimum deformation from January 1996 to January 1998 is about 1.0 centimeter. Besides, there exist two linear intensive deformation belts in south area, one is in N65°W direction, which is in accordance with the direction of the secondary compression-shear plane of the Altyn Tagh strike-slip fault zone. The other is in a roughly NW direction, which is consistent with the trend of the western part of North Qilian Shan Fault.
     The curstal deformation difference between south area and north area is supported by GPS survey data and active fault data. The linear intensive deformation belts in N65°W direction is controlled by the Altyn Tagh strike-slip fault and those in roughly NW direction is controlled by the western part of the North Qilian Shan Fault. And the mechanism of weak deformation in the interior of the Changma Basin is discussed.
引文
Henri M编,孙洪等译.合成孔径雷达图像处理[M].北京:电子工业出版社,2005
    陈述彭.遥感地学分析的时空维[J].遥感学报,1997,1(3):161—171
    陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社,1990
    陈正乐,万景林,王小凤,等.阿尔金断裂带8 Ma左右的快速走滑及其地质意义[J].地球学报,2002,23(4):295—300
    陈正乐,张岳桥,王小凤,等.新生代阿尔金山脉隆升历史的裂变径迹证据[J].地球学报,2001,22(5):413—418
    邓起东.中国活动构造研究的进展与展望[J].地质评论,2002(a),18(2):168—177
    邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学(D辑),2002(b),32(12):1020—1031
    范湘涛,卢华复,郭华东,等.库车冲断带新构造遥感分析[J].地质评论,2000,5(46):499—506
    范湘涛,卢华复,阎福礼,等.航天飞机成像雷达数据在库车冲断带前缘构造分析中的应用[J].地质科学,2002,37(3):257—263
    葛肖虹,段吉业,李才,等.阿尔金断裂与西北大地构造格局的新认识[M].北京:中国地质大学出版社,1992
    葛肖虹,张梅生,刘永江,等.阿尔金断裂研究的科学问题与研究思路[J].现代地质,1998,12(3):295—301
    郭华东.中国雷达遥感图像分析[M].北京:科学出版社,1999
    郭华东.雷达对地观测理论[M].北京:科学出版社,2001
    国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带[M].北京:地震出版社,1992
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山—河西走廊活动断裂系[M].北京:地震出版社,1993
    郭召杰,张志诚.阿尔金盆地群构造类型与演化[J].地质评论,1998,44(4):357—363
    廖明生,林珲.雷达干涉测量学:原理与信号处理处理[M].北京:测绘出版社,2003
    刘永江,葛肖虹,叶慧文,等.晚中生代以来阿尔金断裂的走滑模式[J].地球学报,2001,22(1):23—28
    刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999
    马德宝.星载合成空间雷达回波相干斑抑制和干涉研究[D]:[博士学位论文].河南:中国人民解放军信息工程大学,2000
    潘时祥,范永宏,刘智.雷达摄影测量[M].北京:解放军出版社,2000
    乔书波,李金岭,孙付平,等.InSAR技术现状与应用[J].天文学进展,2003,21(1):11—25
    舒宁.微波遥感原理[M].武汉:武汉测绘科技大学出版社,2000
    隋志龙,杨巍然,张利华.西藏定结幅区调工作中的断裂构造遥感研究方法探讨[J].大地构造与成矿学,2002,4(26):452—458
    孙家捅.遥感原理与应用[M].武汉:武汉大学出版社,2003
    王超.利用航天飞机成像雷达干涉数据提取数字高程模型[J].遥感学报,1997,1(1):46—49
    王超,刘智,张红,等.张北—尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550—2554
    王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002
    王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑),2003,33(增):21—32
    王翠珍,郭华东.雷达图像分析及地质应用[M].北京:科学出版社,1991
    王胜利,卢华复,贾东,等.甘肃昌马盆地构造特征与成因[J].高校地质学报,2001,7(1):13—20
    万景林,王瑜,李齐,等.阿尔金山北段晚新生代山体抬升的裂变径迹证据[J].矿物岩石地球化学通报,2001,20(4):222—224
    魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001
    徐华平,周荫清,李春升.星载干涉SAR中的基线问题[J].电子学报,2003,31(3):437—439
    杨藩,叶素娟,曹春潮,等.新生代阿尔金断层中、东段右行走滑特征[J].地质科学,1994,29(4):346—353
    杨清友,王超.干涉雷达复图像配准与干涉纹图的增强[J].遥感学报,1999,3(2):122—126
    杨树锋等著.祁连山北缘冲断带构造特征及含油气远景[M].北京:科学出版社,2007
    于勇,王超,张红,等.基于不规则网络下网络流算法的相位解缠方法[J].遥感学报,2003,7(6):472—477
    曾琪明,焦健.合成孔径雷达遥感原理及应用(四)[J].遥感信息,1998(4): 42—46
    浙江大学地球科学系和玉门油田公司勘探开发研究院.酒泉盆地构造特征和控油作用(内部资料),2002
    中国科学院地学部“中国地球科学发展战略”研究组.地球科学:世纪之交的回顾与展望[J].中国科学院院刊,2001,2:101—105
    Ainsworth T L, Chubb R A, Fusina R M, et al. InSAR imagery of surface currents, wave-fields, and fronts. IEEE Transactions on Geoscience and Remote Sensing. 1995, 33(5): 1117-1123
    Armijo R, Tapponnier P and Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. Journal of Geophysical Research, 1989, 94: 2787-2838
    Avouac J P, Tapponnier P, Bai M, et al. Active thrusting and folding along the northern Tien Shan and late cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal-of Geophysical Research, 1993, 98 (B4): 6755-6804
    Bartlett W L, Friendman M and Logan J M. Experimental folding and faulting of rocks under confining pressure: Part Ⅸ. Wrench faults in limestone layers. Tectonophysics, 1981, 79: 255-277
    Benedicte F, Francesco S. Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophysical Research Letters, 2000, 27(24): 3981-3984
    Bone D J. Fourier fringe analysis: The two-dimensional phase unwrapping problem. Applied Optics, 1991, 30 (25): 3627-3632
    Burgmann R, Hilley G, Ferretti A, et al. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 2006, 3: 221-224
    Calderbank R, Daubechies I and Sweldens W. Wavelet transform that map integers to integers. Applied and computational harmonic analysis, 1998, 5: 332-369
    Chang S G, Yu B and Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transaction on Geoscience and remote sensing, 2000, 9(9): 1532-1546
    Curlander J C and McDonough R N. Synthetic aperture radar systems and signal processing. New York: Wiley, 1991
    Dai M, Peng C, Chan A K, et al. Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Transaction on Geoscience and remote sensing, 2004, 42(8): 1642-1648
    Daubechies I and Sweldens W. Factoring wavelet transform into lifting steps. Journal of Fourier Analysis and Applications, 1998, 4 (3): 245-267
    Donoho D L. De-noising by soft-thresholding. IEEE Transaction on Information Theory, 1995, 41 (3): 613-627
    Eineder M and Adam N. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms From Different Viewing Geometries Into One Digital Elevation Model. IEEE Transactions on Geoscience and remote sensing, 2005, 43 (1): 24-36
    Fialko Y, Sandwell D, Simons M, et al. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 2005, 435:295-299
    Flynn T J. Consistent 2-D phase unwrapping guided by a quality map[C]. In: IGARSS'1996. Piscataway, New Jersey, USA, 1996. 2057-2059
    Gagnon L and Jouan A. Speckle filtering of SAR images-A comparative study between complex-wavelet-based and standard filters[C]. In: SPIE Proceedings. Beijing, PRC, 1997.31:80-91
    Gens R and van Genderan J L. SAR interferometry-issues, techniques, applications. International Journal of Remote Sensing, 1996, 17 (10): 1803-1835
    Goldstein R M and Zebker H A. Interferometric radar measurement of ocean surface currents. Nature, 1987, 328:707-709
    Goodman J W. Some fundamental properties of speckle Optical Society of America, 1976, 66 (11): 1145-1150
    Gabriel A K, Goldstein R M and Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 1989, 94 (B7): 9183-9191
    Graham L C. Synthetic interferometer radar for topography mapping. Proceedings of the IEEE, 1974, 62:763-768
    Guo H, Odegard J E, Lang M, et al. Wavelet based speckle reduction with application to SAR based ATD/R[C]. In: IEEE Intemational Conference on Image Processing. Austin, Texas, USA, 1994. 1: 75-79
    Hanssen R F. Radar Interferometry-Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001
    King R W, Shen F, Burchfiel B C, et al. Geodetic measurement of crustal motion in southwest China. Geology, 1997, 25:179-182
    Lee J S. Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 1981, 17 (1): 24-32
    Lin H, Shi H and Shan Y. The Relationship between Linear Weak-Information of Radar Image and Subordinate Faults in Landslide Area of Hong Kong. Geological Journal of China Universities, 2001, 1 (7): 34-42
    Lin Q, Vesecky J F and Zebker H A. New Approaches in Interferometric SAR data Processing. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (3): 560-567
    Massosnnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 506-520
    Massonnet D and Feigl K L. Radar Interferometry and Its Application to Changes in the Earth's Surface. Reviews of Geophysics, 1998, 36 (4): 441-500
    Massonnet D and Rabaute T. Radar interferometry: Limits and Potential. IEEE Transactions on Geoscience and Remote Sensing 1993, 31 (2): 455-464
    Massonnet D, Rossi M, Carmona C, et al. The displacement field of the landers earthquake mapped by radar interfemmetry. Nature, 1993,364:138-142
    Meting C, Huaman-Rodtigo D, Chorowicz J, et al. New data on the geodynamics of southern Peru from coinputerized analysis of SPOT and SAR ERS-1 images. Tectonophysics, 2000, 2 (59): 153-169
    Meyer B, Tapponnier P, Bourjot L, et al. Crustal thicking in Gansu-Qinghai, lithospheric mantal subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 1998, 135:1-47
    Molnar P and Tapponnier P. Cenozoic tectonics of Asia: Effects of continental collision. Science, 1975, 189 (4201): 419-426
    Orwig L P and Held D N. Interferometric Ocean Surface Mapping and Moving Object Relocation with a Norden Systems KuBand SAR[C]. In: Proceeding of the 1992 International Geoscience and Remote Sensing Symposium.Houston, USA, 1992. 1598-1600
    Peltzer G, Tapponnier P and Arrnijo R. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet. Science, 1989, 246:1285-1289
    Quiroga J A, Gonzalez-Cano A and Bernabeu E. Phase-unwrapping algorithm based on an adaptive criterion. Applied Optics, 1955, 34 (14): 2560-2563
    Rahnemoonfar M, Rahmati M, Tavakoli A, et al. Two dimensional phase unwrapping of Interferometric SAR data by means of wavelet technique[C]. In: IGARSS'2005. Seoul, Korea, 2005. 5467-5470
    Rogers A E E and Ingalls R P. Venus: mapping the surface reflectivity by radar interferometry. Science. 1969. 165:797-799
    Roth M W. Phase unwrapping for interferometric SAR by the least-error path. Johns Hopkins University Applied Physics Lab Technical Report. Maryland, USA, 1995, March 30
    Sveinsson J R and Benediktsson J A. Speckle reduction and enhancement of SAR images in the wavelet domain[C]. In: IGARSS'1996. Piscataway, New Jersey, USA, 1996. 1: 63-66
    Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM Journal of Mathematical Analysis, 1998, 29 (2): 511-546
    Tapponnier P, Mattauer M, Proust F, et al. Mesozoic philistines, suture and large-scale movement in Afghanistan. Earth and Plantary Science Letters, 1981, 52: 355-371
    Tapponnier P, Lacassin R, Leloup R, et al. The Ailao Shan-Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 1990, 343: 431-437
    Tapponnier P, Xu Z, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294: 1671-1677
    Wang E Q. Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth and Planetary Science Letters, 1997, 150 (1-2): 55-64
    Wang Q, Zhang P, Freymueller T J, et al. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science, 2001, 294: 574-577
    Ulaby F T, Kouyate F, Brisco B, et al. Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24 (2): 235-245
    Vidal-Pantaleoni A, Marti D and Ferrando M. An adaptive multiresolution method for speckle noise reduction in synthetic aperture radar images[C]. In: IGARSS'1999. Piscataway, New Jersey, USA, 1999. 2: 1325-1327
    Xie H, Pierce L E and Ulaby F T. Despeckling SAR images using a low-complexity wavelet denoising process[C]. In: IGARSS'2000. Hawaii, USA, 2000. 1: 321-324
    Xu W and Cumming I. A region growing algorithm for InSAR phase unwrapping[C]. In: IGARSS'1996. Piscataway, New Jersey, USA, 1996. 2044-2046
    Xu W and Cumming I. A region-growing algorithm for InSAR phase unwrapping. IEEE Transaction Geoscience and Remote Sensing, 1999, 37 (1): 163-174
    Yan F, Lu H, Yang H, et al. Determination of the Displacements along the Maergaichaka Fault, Using Remote Sensing Data, Tibet, China[C]. In: IGARSS'2003. Touluse, France, 2003. 3332-3334
    Yue Y J and Liu J G. Two-stage evolution model for the Altyn Tagh Fault, China. Geology, 1999, 27 (3): 227-230
    Zebker H A and Goldstein R M. Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research, 1986, 91 (BS): 4993-4999
    Zeng Q, Jiao J and Zhang H. A Novel Hybrid Method to Unwrapping Interferometric Phase[C]. In: IGARSS'2004. Anchorage, Alaska, USA, 2004. 2632-2635
    Zhong L, Charles W, Daniel D, et al. Aseismic inflation of Westdahl volcano, Alaska, revealed by satellite radar interferometry. Geophysical Research Letters, 2000, 27(11): 1567-1570
    Zhu W, Wang X, Cheng Z, et al. Crustal motion of Chinese mainland monitored by GPS. Science in China(Series D), 2000, 43 (4): 394-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700