缺氧/好氧/动态膜生物反应器处理废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是导致水体富营养化和环境污染的一种重要的污染物质,许多传统水处理工艺对氨氮的处理效率很低,出水中氨氮严重超标,达不到日益提高的水质要求,影响人体健康和阻碍经济的持续稳定发展,如何有效地脱氮是当前水处理面临的一大难题。
     本次试验采用组合工艺缺氧/好氧/动态膜生物反应器,对低碳氮比废水进行了处理。通过改变水力停留时间,研究了水力停留时间对出水效果的影响,并选用水力停留时间为12h。对化粪池废水的试验结果表明,该工艺对COD有较高的去除率,但由于废水的碳氮比值较低,导致脱氮效果不理想。因此通过在进水中投加碳源,改变碳氮比值,研究了不同进水碳氮比条件下对污染物处理效果的影响,结果表明:COD、氨氮、总氮的去除率均随碳氮比值的增大而提高,说明进水中碳源增加有利于系统对有机物与氮的去除。同时由于动态膜的高效截留作用,系统对浊度有很好的去除效果。对缺氧/好氧/动态膜生物反应器的抗冲击性的研究表明,该系统有较强的抗冲击性和良好的稳定性。试验期间同时考察了生物反应器内的污泥浓度、SV30、SVI随着运行时间而变化的情况;考察了两种温度条件下污泥硝化、反硝化速率的大小。动态膜对污染物的去除贡献的研究表明,动态膜对废水中的有机物有10%左右的去除能力,对氨氮几乎没有去除贡献。试验中当膜污染严重时,用自来水冲洗,即可恢复膜的起始通量。
Nitrogen is one of the most important materials which induce water body eutrophication and contamination. Several traditional wastewater treatment technologies are low in nitrogen removal efficiency. The concentration of nitrogen is so high that the effluent unable to reach outlet water quality standard, it also do harm to our health and influencethe development of economy. How to remove nitrogen rationally is a hard difficult which waste-water treatment researchers must conquer now days.
     An anoxic/oxic/dynamic membrane bioreactor (A/O/DMBR) was chosen to treat the low C/N ratio wastewater in this experiment. Hydraulic retention time was changed one by one and under each changed congdition, the treat eficiency is studied and I selected the hydraulic retention time was 12h. The experiment showed that a high removal rate of COD could be seen using A/O/DMBR to treat septic-tank wastewater. But the removal effect of nitrification is not good because of the low C/N ratio. So, the removal effecicency was studied under the different C/N ratio condition through adding the carbon source into the wastewater. The result showed that: the removal rates of COD、NH3-N and TN were all increased as the C/N ratio increased, this indicates that increasing the carbon source is benifical to the removel of the organic and nitrification. Simultaneously because of the High-effect entrapment ability of the dynamic membrane, this system has a good removal effect of the turbidity. The research of anti-impact on anoxic/oxic/dynamic membrane bioreactor showed that this system has the stronger anti-impact and good stability. During the experimental period the biological reactor sludge density、SV30、SVI which changed along with the running time were also inspected, and the values of nitrification rate and denitrification rate under two tempreture cindition were examed. The research of the pollutant removal contribution of dynamic membrane indicated that dynamic membrane has the removal rate of COD about 10%, but it has no removal rate of NH3-N. In the experiment using running water flushing when membrane pollution was serious, then it can restore original membrane flux.
引文
[1]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社, 2004
    [2]郁飞远,刘光利,李碧良等.氨氮废水的生化处理实验[J].兰化科技, 1994, 12(2):148~153
    [3]方建章,黄少斌.生化法处理煤气废水[J].环境污染与防治,1999, 21(4): 10~12
    [4]尹军贤.焦化废水的生物脱氮技术[J].燃料与化工, 1996, 27(6): 309~314
    [5]胡勤海,金明亮,方士等.吹脱-SBR-附混凝法处理垃圾填埋场渗滤液[J].中国给水排水, 2000, 22(3): 21~24
    [6]方士,李莜.高氨氮味精废水的亚硝化/反硝化脱氮研究[J].环境科学学报, 2001, 21(1): 79~83
    [7]邓良伟,蔡昌达,陈铬铭等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报, 2002, 18(3): 92~94
    [8]白晓慧.利用好氧颗粒污泥实现同步硝化反硝化[J].中国给水排水, 2002, 18(2): 26~28
    [9] Mike O Neill, Nigel J Horan. Achieving simultaneous nitrification and denitrification of wastewater at deduced cost [J]. Water Science and Technology, 1995, 32(9~10): 303~312.
    [10] Hyungseok Yoo, Kyu-Hong Ahn. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Water Research, 1999, 33(1): 145~154
    [11]曹国民,赵庆样,龚剑丽等.新型固定化细胞膜反应器脱氮研究[J].环境科学学报. 2001, 21(2): 189~193
    [12] Hibiya Kazuaki, Terada Akihiko, Tsuneda Satoshi.et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. Journal of Biotechnology. 2003, 100(1): 23~32
    [13] Klangduen Pochana, Jurg Keller. Model development for simultaneous nitrification and denitrification [J]. Water Science and Technology, 1999, 39(1): 235~243
    [14]袁林江,彭党聪,王志盈.短程硝化一反硝化生物脱氮.中国给水排水, 2000, 16(2): 29~31
    [15]仝武刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发展.工业水处理, 2002, 22(9): 9~12
    [16] Werstraete W., Philips S. Nitrification denitrification processes and technologies in new contexts.Environmental Pollution, 1998, 102: 717~726
    [17]樊耀波等.水与废水处理中的膜生物反应器技术.环境科学, 1996, 16(5): 79~81
    [18]韩剑宏.中水回用技术及工程实例.化学工业出版社, 2004
    [19]丁思慧.用物化法对高浓度氨氮废水的前期处理.安徽化工, 2000, 106(4): 42~43
    [20]吴方同等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮.给水排水, 2001, 27(6): 20~24
    [21]王宗平等.垃圾渗滤液预处理—氨吹脱.给水排水, 2001, 27(6): 15~19
    [22]邓斌.利用烟道气处理焦化剩余氨水技术.环境工程, 2000, 18(3): 17
    [23]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮.环境科学, 1999, 20(5): 90~92
    [24] Schulze Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium ammonium phosphate.Wat. Sci. Tech., 1991, 23 (11/12): 659~667
    [25] Stratful, et al .Conditions influencing the precipitation of magnesium ammonium phosphate.Wat. Res., 2001, 35 (17): 4191~4199
    [26]周娟贞.化学沉淀法治理高浓度氨氮废水的研究.净水技术, 1992, 42(4): 13~14
    [27]王鹏等.垃圾渗沥液中氨氮的电化学氧化.中国环境科学, 2000, 20(4): 289~291
    [28]沈耀良,王宝贞.废水生物处理新技术一理论与应用.北京:中国环境科学出版社, 1999, 195~196
    [29]徐亚同,废水反硝化除氮.上海环境科学, 1994, 13(10): 8~12
    [30] Smith, Jr.C.V, et al., The Use of ultra-filtration Membrane for Activated Sludge Separation.Presented Paper of 24th Annual Purdue Industrial Waster Conference. 1969
    [31]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用[J].水处理技术, 1999, 25 (2): 63~69
    [32] KazuoYamamoto, et al.Direct solid-Liquid separation using hollow fiber membranein an activated sludge aeration tank. Wat Sci Tech, 1989, 21(4)
    [33] TaLsuki Ueda Kenjihata Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration Wat.Res.vol.33, No.12, pp. 2888~2892
    [34] A. Nagano et. al., the treatment of liquor wastewater containing high strength pended solids membrane bioreactor system Wat. Sci. tech.,1992, 26(3-4): 887~895
    [35] A. Hogetsu et al., High rate anaerobic digestion of wall scouring wastewater in a digester combined with membrane filter.Wat. Sci. tech., 1992, 25 (7):341~350
    [36]傅学起,胡国臣等.改进型膜生物反应器处理洗浴污水的试验研究[J].城市环境与城市生态, 2002, 58~61
    [37]刘锦霞,顾平.膜生物反应器脱氮除磷工艺的研究进展[J].城市环境与城市态, 2001, 14(2): 27~29
    [38] A.E.Marcinkowsky, K.A.Philips,H.O. Johnson and J.S. Shon, Hyperfiltration studies (IV) salt rejection by dynamically formed hydrous oxide membrane, J.Am.Chem. Socl, 88(1966)5744
    [39] G.Spencer and R. Thomas, Fouling, cleaning and rejuvenation of formed-in-place membranes, Food Technology, 45(1991)98~99
    [40] Yoshiaki Kiso.Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material [J].Wat.Res, 2000, 34(17): 4143~4150
    [41] Megat Johari. Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater, 2002, 147: 263~268
    [42] Al-Malack M H and Anderson G K. Cross flow micro-filtration with dynamic membrane.Wat.Res, 1997, 31(8): 1969~1979
    [43] Lee J, Ahn W Y, Lee C H. Comparison of the filtration characteristics between atached and suspended growt h microorganisms in submerged membrane bioreactor[J].Wat.Res, 2001, 35(10): 2435~2445
    [44] Mare Altman, Raphael Semiat, David Hasson. Removal of organic foulanls from feed waters by dynamic membranes [J]. Desalination, 1999, 125:65~75
    [45] Kryvomchko A, Atamanenke I, Komilovich B. A role of the clay minerals in the membrane purification process of water from Co(II)-Jons[J].Sepn and Purifn Tech, 2001, 25: 487~492
    [46] Gander, M.A., Jefferson, B. and Judd, S.J., Membrane bioreactors for use in small Wastewater treatment plants: membrane materials and effluent quality.Wat. Sci. Tech, 2000, 41(1)205~211
    [47] Chang, I. S., Gander, M., Jefferson, B.and Judd, S.J., Low-cost membranes for use in a Submerged MBR.Thans.IChemE., 2001, 79 (PartB): 183~188
    [48] Klangduen Pochana, Jurg Keller.Study of factors affecting simultaneous nitrification and denitrification (SND) [J]. Water Science and Technology, 1999, 39 (6): 61~68
    [49]傅金祥,徐微.温度对IMBR污水处理效果的影响.沈阳建筑工程学院学报(自然科学版), 2004, 20(3):211~214
    [50]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业出版社, 2002
    [51]唐受印,戴友芝.水处理工程师手册.北京:化学工业出版社, 2000
    [52]军羽,张希衡.水污染控制工程.北京:冶金工业出版社, 1984
    [53] Hankie K et al. Effects of the activity of heterotrophy on nitrification in suspended growth reactor.Water Res.1990, 24: 289~296.
    [54] yungseok Yoo and Kyu-Hong Ahn. Nitrogen removal from Synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated Reactor. Water Research, 1999, 33(1): 145~154.
    [55] Patricia A.M., Lesley A.Robertson. Nitrification and denitrification by thiosphaera pantotropha in Aerobic chemostat cultures. FEMS Microbiology Ecology, 1995, Vol, 18. No.4: 305~315
    [56]李丛芬.浅谈水质浊度标准.标准化报道. 2001, 22(5) 24
    [57] B.Belfort,R .H.Davis,A .L.Zydney. Theb ehavior of suspensions and macromolecular solutions in crossflow microfiltration, J. Membr. Sci. 96 (1994)1~58.
    [58] Piotr Czekaj, Francisco L, CarmeG, Membrane fouling during microfiltration of fermented beverages, J. Membr. Sci. 166(2000)199~212.
    [59] AI-Malack M H, Anderson G K, Cleaning techniques of dynamic membrane[J], Spen&Purifn Tech, 1997, 12: 25~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700